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Abstract. There are several kinds of UML diagrams for convenient modelling of
behaviour, but these diagrams can be hardly used for modelling mobility. The situa-
tion is not very different in the case of agent languages. There exist already some pro-
posals for modelling mobility of interacting agents by graphical notations, but these
notations are rather not very intuitive and hard to read if the specification becomes a
bit complex. In this paper we propose a new graphical notation for modelling inter-
action of mobile objects. The notation is based on UML sequence diagrams. We
model behaviour of mobile objects using a generalized version of lifelines. For dif-
ferent kinds of actions like creating, entering or leaving a mobile object we use ster-
eotyped messages. We provide also a zoom-out, zoom-in facility allowing us to
abstract from specification details. We explain our notation in a series of examples,
study its applicability and limits.

1 Introduction

The emergence of World-Wide-Web and WAN provided a qualitatively new computation-
al infrastructure which changed our view of computing. Its emergence fostered new con-
cepts of location like virtual location for administrative domains, fire-walls, physical
location for computing devices operating in different places and so on. The Web provides
rather a dynamic collection of several independent administrative domains which are very
different and where the communication latency matters (cf. [9]). The computing devices
differ in their power, availability and the network links differ in capacity and reliability.
The network topology, which was carefully hidden in LAN, starts to play a fundamental
role; it is dynamic and very complex.

There are many different concepts of computing which exploit the Web infrastructure.
One of the most important is the paradigm of mobile computing which gains more and
more interest. Code mobility emerged in some scripting languages for controlling network
applications like Tcl. There are agent languages like Telescript and place based languages
like Linda. Agents mobility has been supported by Telescript, AgentTcl or Odyssey (cf.
e.g. [9]). Mobile hosts like laptops, WAPs or PDAs can move between networks. Entire
networks can be mobile too like for example the IBM’s Personal Area Network, networks
of sensors in airplanes or trains. Here the administrative barriers and multiple access path-
ways interact in very complex ways. Mobile computations can cross barriers and move be-
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tween virtual and physical locations, they can turn remote calls to local calls avoiding the
latency limits. There exist several formalisms and some notations for modeling mobility,
but the most relevant for our approach are Ambient Calculus [5], Maude [12], Agent UML
[2] (see below). There exists still a discrepancy between these formalisms and on the other
hand the graphical modeling languages capable of specifying mobility. One of the major
advantages of UML [13] is its expressiveness. UML provides a variety of different kinds
of diagrams which allows one for specification of software systems from different points
of view. UML proved to be very useful in describing various aspects of behavior, but at the
moment offers limited support for modeling mobility. In particular its sequence diagrams
can be hardly used to specify even simple cases (see section 3). Similarly, the graphical lan-
guages for agent systems capable of specifying mobility become very hard to understand
when the complexity increases.

In this paper we present Sequence Diagrams for Mobility (SDM), an extension of
UML sequence diagrams for modeling mobile objects. The idea is similar to the idea of am-
bients or Maude, in that a mobile object can migrate from one host to another and it can be
a host for other mobile objects. It may interact with other objects. Like a place, a mobile
object can host other mobile objects, it can locally communicate and receive messages from
other places. Objects can be arbitrarily nested, generalizing the limited place-agent nesting
of most agent and place languages. To model nested and dynamically changing structure,
we generalize the concept of object lifeline of UML sequence diagrams. First, we blow up
the lifeline to an action box which now plays the function of lifeline and of object boundary.
Second we stretch the lifeline to contain also the paths of objects migrating from one host
to another. Our idea generalizes the idea of Use Case Maps [4, 1] and it allows us to specify
ambients with their nested structure and mobility, in particular moving objects are treated
the same way as their hosts (i.e. the hosts can be mobile too, cf. [9]). We provide also the
possibility to abstract from certain details of SDM if they are unnecessary for a view, i.e.
we develop the concept of zoom-in and zoom-out view, where certain details may be shown
or abstracted away if not necessary for the description. The qualitatively new ideas in our
approach are:

• the blowing up of object’s lifeline and message arrows to model not only the com-
munication but also the changing topology and in particular mobility

• the new concept of lifeline, resulting in equal treatment of all object independently
whether they migrate, perform computations or host other objects

• the zoom-in, zoom-out modelling facility
The paper is organized as follows. In section 2, we present related work. In section 3,

we specify a very simple behavior of a mobile object using UML sequence diagrams; then
we gradually introduce the basic concepts of our notation. In section 4, we present more
advanced concepts; we discuss the problem of identifying mobile object across complex
lifelines and present a unification algorithm for that. Finally in section 5, we consider a bit
more complex example trying to push our graphical notation to its limits.

2 Related Work

There exist several formalisms and some notations for modeling and specification of mo-
bility. We mention here the most relevant for our approach. A very interesting formal no-
tation is provided by the Ambient Calculus [5]. In this formalism, on one hand the ambients



are playing the role of physical or logical locations and on the other hand they are playing
the role of processes. The ambients can move around entering or leaving other ambients
and performing computations. The topology can be explicitly observed and constraints the
communication and mobility. The ambients barriers model security constraints like those
provided by fire-walls. This calculus is based on local synchronous communication and
mobility. The advantage of this calculus is that it provides nice abstractions for modeling
mobility across nested locations and allows one to specify security constraints.

One of the earliest formal notation capable of specifying mobile objects was Maude
[12], although specification of mobility was not its primary goal. Maude is a very flexible
formalism for specifying complex communication patterns where synchronous as well as
asynchronous communication is supported and where hierarchical object structures are al-
lowed, like in ambient calculus. Mobile Maude is an agent language extending Maude for
specification of mobile computation [6]. It uses a reflection mechanism to obtain a declar-
ative mobile language design.

UML [13] gained wide acceptance as a modeling language. There exist already sev-
eral proposals for extending UML to model new artifacts. There is an extension, called
Agent UML, for modeling agents and their interactions protocols [2, 3]. Class and inter-
action diagrams are extended for specification of complex agent interaction protocols.
There are facilities including agents roles, multi-threaded lifelines, extended message se-
mantics and various kinds of protocols. Packages are used to express nested protocols. In
particular, sequence diagrams are extended by some constructs analogous to MSC inline
expressions [8].

There exist two interesting extensions of UML which can be used for modeling mobil-
ity. The first one [10] is similar to an early idea of Use Case Maps, where for example the
behavior of a traveler was modelled by a line going from one location to another [4, 1]. To
model locations, stereotyped classes are used, object moves are modeled by stereotyped
messages. This approach is well suited for the case when there are only mobile objects and
static locations, but not for modeling objects like ambients which are both locations able to
host other ambients and mobile devices. The second one [14] extends UML collaboration
diagrams to model dynamic change of composition relationship. It was not meant to model
mobility, but it can be used for this goal too. This approach is well suited for simple cases
and provides very compact but hard to read specifications for larger ones, specially when
the objects perform many jumps (cf. section 5). On the other hand, the duality between col-
laboration diagrams and sequence diagrams is not preserved and requires further research.

Let us mention an approach to three-dimensional animation of UML diagrams [7]. We
have to mention also Message Sequence Charts (MSC) [8], a graphical language similar to
sequence diagrams but with much more constructs included for specifications like inline
expressions or High Level MSC. Unlike sequence diagrams, MSC are aimed at strictly
asynchronous systems and can not model method calls.

At the moment, we do not try to provide means for specifying complex behaviors or
protocols. To model the choice, one can use the proposal of [3] or the composition opera-
tion like inline expressions [9]. We do not model security issues concerning the problem of
whether an object can cross a barrier or communicate with another object.



3 The SDM Language

In this section we study the possibility to model mobile systems using sequence diagrams.
In subsection 3.1 we show that sequence diagrams, as specified by [13], do not suffice to
model mobile systems. In subsection 3.2 we describe the basic ideas of Sequence Diagrams
for Mobility (SDM), an extension of the sequence diagrams.

3.1 Modeling in Sequence Diagrams

Let us consider a simple example. A passenger ps boards an airplane ap at Warsaw airport
WAW, flies to Munich MUC and then deplanes (cf. figure 1). It is not easy to model this using
sequence diagrams only, since there exist no direct means for modelling change of state nor
change of topology (for example the fact that a passenger is in airport and then in a plain).
The state description can be contained in the box; the fact that the person is at Warsaw air-
port is indicated by at = WAW. This kind of modelling has the disadvantage, that when an
object changes its state, we need a new box. Such boxes can be connected by a message
arrow with stereotype <<become>>. Let us observe that boarding an airplane involves an
airplane and a passenger, but here boarding is modelled indirectly as the change of state of
a passenger. To disallow a plane to fly without a passenger we need notice() message
to inform the plane that the passenger boarded.

As we have seen, UML sequence diagrams can model mobility in a rather very indirect
way and even in this simple case are rather hard to read. There are also other possibilities
to model this but they do not yield readable specifications either. Therefore in the following
we introduce a new kind of sequence diagrams which are well suited for modelling mobil-
ity.

3.2 Basic features of SDM

Mobility is the ability to cross barriers. Mobile objects may interact with other mobile ob-
jects, by sending messages and changing locations. In our approach, a mobile object is also
a location where interaction may happen. Different locations are separated by action boxes.
The action boxes describe what happens inside and what outside and allow one to show in

Fig. 1. Boarding flying and deplaning
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a transparent way message exchange and object’s migration. Locations can be arbitrarily
nested and form a tree structure, this is aimed at modeling firewalls, administrative domains
networks and so on. For example, a personal area network may be located in a car located
in a ferry which may enter a harbor and so on.

For modeling mobile objects, we use a stereotyped class <<mobile>> and introduce
a new type of sequence diagrams. We follow the principle that sequence diagrams describe
scenarios or certain system runs. Our notation allows us for specification at the level of ob-
servable traces but not on the level of simulation or bisimulation. In the UML community,
there is a briskly discussion concerning the causal and temporal ordering of events in inter-
action diagrams (cf. [11]). We do not want to take position on that matter, while designing
this notation we assumed that the causal or temporal ordering of the events is implied only
by the lifelines and message flow; the fact that one object is depicted below another object
does not have any meaning. This interpretation allows us for descriptions which are inde-
pendent of particular observer and compress in one diagram different possible observa-
tions.

In ambient calculus communication across a single barrier is synchronous; communi-
cation across multiple barriers is performed via other ambients which navigate from one
location to another. In UML but also in Maude, objects can communicate in synchronous
or asynchronous way. We stick to this principle. Unlike ambients, in our notation it is pos-
sible to express actions at a distance (like RMI) even if many barriers are involved, so that
multiple steps can be rendered atomic. In general, we do not want to restrict the language
artificially; if something is easy to specify in our notation, then we allow it without bother-
ing whether it is easy to implement or not. But of course if necessary one can define a dia-
lect disallowing some expressions.

A mobile object can change its location in a jump action. For example an object may
cross a firewall in a message; in this case the topology changes too (cf. [9]). To model this,
object lifelines in sequence diagrams are blown up to action boxes; it models actions per-
formed by a mobile object and indicates the boundaries of the object. Consequently, in our
two dimensional representation we have two lines which denote the same thread. This im-
plies that different arrows must be attached to different levels of an action box. Unfortu-
nately, we can not use here dashed lines for the action boxes as in sequence diagrams, since
the pictures become blured specially when the complexity increases. To avoid the visual
clatter we use continuous lines.

A description of a mobile object’s behavior starts with a box containing optionally the
object name or class. A mobile object may jump into another object, or jump out of an ob-
ject. If an object jumps into or out of another object, then the action box ends in the former
location and the object is moved to another location. This move is indicated by a stereo-
typed message arrow which starts with a black circle; we call it jump arrow. We use here
notation siilar UML state machines to indicate that after the jump the moving object starts
its operation in a new location. A mobile object can not continue its operation outside of its
new host, if it is already inside another host; consequently the arrow starts strictly at the end
of the first action box to indicate that all action in the box must precede the jump. We as-
sume, that the mobile objects can not be bi-located or merged, therefore an object box may
have at most one jump arrow attached to the top and at most one arrow attached to the bot-
tom. If a mobile object starts its operation (and was not active before anywhere else), then
this is indicated by a special box like in the case of sequence diagrams. If a mobile object



was already active somewhere else, then there must exist a jump arrow such that its sharp
end is attached to the left or right upper corner of the corresponding action box (see figure
2). This requirement corresponds to the fact that mobile objects can not be merged, nor ap-
pear out of nowhere. An action box of an object which already performed a jump may op-
tionally start with the objects name and/or class. The name is mandatory, if its lack would
lead to an ambiguity (see subsection 4.3). We indicate the end of mobile object description
by two horizontal lines, where the upper line is dashed. Let us point out that it does not
mean that the object was terminated (see below).

Figure 2 shows what a mobile object looks like. As in the case of sequence diagrams,
the object’s names must be underlined. In the left hand side of figure 2, passenger ps enters
airplane ap. Since there is no conflict concerning the identity of objects inside ap. The cor-
responding action box does not bear any name. Then ps deplanes ap and starts its opera-
tion outside ap, the name in the action box is not necessary either, since the identity of ps
can be uniquely traced. No message arrow is attached to the corresponding action box ex-
cept of the jump. In the middle of figure 2, a mobile object c enters object d of class MO by
activating an operation of d (like a virus which sends itself in an e-mail). After the opera-
tion is finished the objects starts to operate inside d. In the right hand side, another scenario
is shown, the object c does not manage to cross the barrier and disappears. We do not in-
dicate it in any special way.

If an object sends a message to another object, then a message arrow must start at the
sender’s action box (at its left or right side) and must end at the receiver’s action box. Figure
3 shows two communicating objects a1 and a2 inside the object a. The objects a1 and a2
reside inside a from the very beginning.

Figure 4 shows an object bwhich creates a new object c. We use here a message arrow
with stereotype <<create>>. Similarly for cloning an object, we use a message with ste-
reotype <<copy>> [13], the copy is then assumed to behave as its original would do inside
the new location (cf. [2]). Let us observe that the end line of the action box of the virus and
the end line of the action box of the 131 PC are different. This does not have any meaning,
but allows us for better grouping of object boxes (see sections 4 and 5).

ap

ps

d : MO

Fig. 2. Object mobility

c d : MOcps

a2
m

a1

a : MO

Fig. 3. Communication



Another important operation is open, this operation opens an object making its hosted
objects visible. If a mobile object is opened, then it ends its life, but its sub-objects continue
to operate. This operation is similar to operation open in ambient calculus [5], but it may
be synchronous as well as asynchronous, depending on the type of message used.

In figure 5, we have shown an object b, which is opened by object a. The opening of
an object is indicated by a horizontal line. Object a sends message open to b, then b is
opened and the hosted objects b1 and b2 cease to operate. A mobile object can be also ter-
minated, in this case all its hosted objects are terminated too, it can be of course expressed
by a series of open operations. The recursive termination is indicated by a continuous line.
For the recursive termination caused by an other object we use a message with stereotype
<<destroy>> (cf. [13]). The SDM diagrams can model immediate open (cf. figure 5)
and destroy (see the left hand side of figure 6) as well as cases where the opened or de-
stroyed objects continue to operate, in this case the sharp end of the message arrow is
placed above the termination line.

In figure 6, object a terminates object b. After terminating b, all its sub-objects are ter-
minated too. The termination is indicated by a continuous line stretching across all objects.
The left hand side of the figure shows immediate termination and the right hand side shows
asynchronous termination.

c
<<create>> <<copy>>

131 : PC 742 : PC

Fig. 4. Object createation and cloning
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4 Advanced Concepts

In this section we present some more advanced concepts and study the topology of nested
objects more carefully. In the first subsection, we introduce the concept of zoom-in and
zoom out view. In the second subsection, we define the notion of lifeline in general terms
and give an example of a complex lifeline. In the third subsection, we present an algorithm
for naming action boxes in complex lifelines. This algorithm can be used to figure out an
object’s identity along complex lifelines.

4.1 The Zoom-in and Zoom-out View

In this subsection we show how to zoom into and zoom out of objects to see or to abstract
from the internal details, respectively. The left hand side of figure 7 shows communicating
mobile object c, in the zoom-in view, which displays the hosted object c1 with its topo-
logical details. The zoom-out view of c does not show its sub-objects but only its external
communication. The right hand side of figure 7 shows once more the open operation per-
formed by object a on object b. In this case the two sub-objects emerge, this is indicated
by the fork operation which is analogous to the fork operation of state machines (cf. [13]).

Let us observe that in the case of high parallelism zooming out may yield a more com-
plex diagram, especially when the diagram contains a hierarchy of nested and in parallel
operating objects. In such a case not only parallel forked lifelines for the emerging traces
may be necessary, but also more powerful forms of combining lifelines such those provided
by MSC inline expressions [8].

Fig. 7. Zoom-in and zoom-out
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It is possible also to zoom into an object’s jump arrow to see the behavior of the par-
ticipating objects. Figure 8 shows object b which, together with its hosted objects, jumps
into object c contained in object x. In the top of the figure, the jump is shown in the zoom-
out view. Below we show the zoom-in view of the jump. It displays the communication be-
tween b1 and b2. The zoom-in version of this arrow has only one black circle and one
sharp end. We introduce this notation in order to make explicit that the communication hap-
pens between start of the jump and the end of the jump. Let us observe that it is not equiv-
alent to the combination of jump out of a and jump into x, which would mean that the
communication took place outside a and x (see section 5).

The possibility to mix the views is very convenient, since a specifier may chose the ap-
propriate level of details displaying or abstracting from details. Figure 11 shows an exam-
ple, where we abstract from the details of a flight which are not visible for an observer (see
section 5).

4.2 Lifelines

The topology of nested objects changes during objects life. Therefore, we have to trace ob-
jects along performed jumps. An object’s lifeline starts there where in the diagram the ob-
ject appears for the first. The lifelines contains all jump arrows of the object and its hosts.
We have to consider also the jumps of hosts, since the object may move with its hosts. The
lifeline ends there where the object’s description ends or there where the object terminates.

Figure 9 shows objects performing complex jumps. The object x jumps into the object
awhich is already in d. Then a communicates this fact to e and afterwords x leaves a (and
d) and jumps into e. It jumps out of e, then e jumps into x. x jumps into d, and then e
jumps out of x. The curve shows the lifeline of object x.

4.3 Matching Action Boxes

To figure out an object’s lifeline, it is necessary to trace the object’s identity. In order to do
this, we have to match nested action boxes before and after a jump. If the zoom-in view of
the arrow is concerned, we have to consider also the action boxes before the jump, in the
beginning of the jump as well as at the end of the jump and after the jump. The matching
must be consistent along all object’s lifelines. It may prove hard since the hosted objects
may be rearranged and moved without changing the semantics.

Fig. 9. Object’s lifeline
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On the graphical level, we may perform graphical manipulation by rearranging the
boxes so that the boxes match. This matching can be formalized using pattern matching.
The tree structure of terms mirror well the tree structure of complex objects. We formalize
the snapshots of the mobile objects by terms, so the object’s states before and after a jump
will be modeled by two terms. We use the function symbol

f : Names × Objects --------> Objects
to model mobile objects. Each object is assumed to have a name and may contain other ob-
jects. To compose objects we use the commutative and associative operation (cf. [12])

* : Objects × Objects -------> Objects
To model the fact that an object does not contain any other object we use the constant

ε : -------> Objects.
If an action box does not have name, then we use a variable for the unknown name.

For example, the state of object c before it performs a jump can be formalized by the
term f(c, f(e, ε) * f(d, f(z, ε))) (see figure 10)). The action box corresponding to object x
after the first jump is formalized by the term f(X1, f(X2, f(X3, ε)) * f(X4, ε)).

A lifeline provides a set of pairs of terms corresponding to object’s states before and
after a jump (like those two terms above). These pairs of terms have to be unified using the
same substitution. We require that for a sequence of term pairs t1, t1´,..., tn, tn´ there exists

exactly one substitution σ such that ti
σ equals ti´

σ modulo commutativity and associativity,
for i = 1,..., n. The existence condition assures that a consistent naming exists and the
uniqueness condition assures that naming is uniquely determined.

Let us consider the following rather sophisticated example (see figure 10): The object
c contains object e and object d which in turn contains object z. c jumps into object a,
which already contains object b. Then one of the nested objects within a is opened. Further,
object a, with all its sub-objects, jumps into the object x.

It is not easy to identify the object names in host x. We use the matching algorithm to
identify the object’s identities through this complex history.

The snapshot of the object c before jump can be formalized by the term
t1 = f(c, f(e, ε) * f(d, f(z, ε)))

The snapshot of object a after c jumps in can be formalized by the term
f(a, f(b, ε) * f(X1, f(X2, f(X3, ε)) * f(X4, ε)))

Fig. 10. Matching action boxes
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In particular the snapshot of x after the jump is
t1´ = f(X1, f(X2, f(X3, ε)) * f(X4, ε))

The snapshot of object a before its jump is given by the term
t2 = f(a, f(b, ε) * f(X1, f(X3, ε) * f(X4, ε)))

The snapshot of object x is formalized by the term
f(x, f(Y1, f(Y2, f(Y3, ε) * f(e, ε)) * f(Y4, ε)))

The snapshot of object a after its jump is formalized by the term
t2´ = f(Y1, f(Y2, f(Y3, ε) * f(e, ε)) * f(Y4, ε))

We have to unify the terms t1  and t1´ and at the same time the terms t2 and t2´. The unifi-
cation is performed modulo associativity and commutativity of *. It is not hard to check
that the following function unifies these terms:

{X1 → c, X2 → d, X3 → z, X4 → e, Y1 → a, Y2 → c, Y3 → z, Y4 → b}
The right hand side of figure 10 shows the result of the matching algorithm.

5 A More Complex Example

In this section we consider an example of a flight from Warsaw to Munich (cf. [5]) seen
from two different perspectives. The first version is very simple. Then we refine this ver-
sion adding several details pushing our notation to its limits. Let us point out that specifying
this system using a process algebra for mobility or collaboration diagrams would be much
harder.

Figure 11 shows a simple story of a passenger x1 who boards an airplane in Warsaw
airport, flies to Munich and publishes a picture in a WAN. This story is described from the
perspective of an observer on the polish side. The person x1 together with other passengers
enters the airport and then boards the airplane A7. The airplane flies to Munich (the flight
number is 99), but the only thing the observer can see is that the airplane is airborne but not
what happens inside the airplane nor further details of this flight. The next event which the
observer is able to notice is the appearance of a picture in the WAN. To model several pas-
sengers (i.e. objects of class Pass), we use the multi-object notation [13], which allows us
to present in a compact way several passengers playing the same role. Person x1 is distin-
guished using composition relationship. The observer does not care about the order in

Fig. 11. Flight example
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which the passengers board or leave the lane and what they do during the flight. We ab-
stracted here from the architecture of WAN and the person’s possession.

This simple view shows some of the barriers person x1 has to cross while flying from
Warsaw to Munich. There are political boundaries which regulate the movement of people
and devices, like airplanes, computers and so on. Within those boundaries, there are other
boundaries like those protecting airports and single airplanes against intruders. Only people
with appropriate passports and tickets may cross those boundaries. Therefore, in our model
we make explicit those boundaries and moving across them.

In the view presented in figure 11, we have abstracted from several details. The view
of passenger x1 is much more detailed. He can see that the airplane A7 is a very active mo-
bile computing environment, full of people who are talking, working with their laptops,
calling their families, making pictures or connecting to Web via phones/modems provided
in the airplane.

Figure 12 shows refined and extended version the previous example. We can see here,
what happens inside the airplane during the flight; the jump arrow contains the action box
of the airplane A7. Passenger x1 makes pictures with his digital camera, the pictures are
send then to the WAN. As usual, a digital camera does not allows him to send pictures di-
rectly to WAN. It is also forbidden to use mobile phones during the flight. Therefore the
passenger saves the pictures to his notebook nb, logs into the onboard network and then
transmits the pictures to WAN via the onboard network. We abstract here from the structure
of the WAN network (indicated by dashed line). Let us point out that the sending of the
picture by passenger x1 is not temporally related to crossing any border like those over PL,
EU and so on. The only thing we can say is that it happens between the start of the airplane
and its landing. Finally, all the passengers leave the airplane and the airport. The passenger
can see that the airplane is boarded by new passengers. The dashed line in the head of the
last box of passenger x1 means that the story of this passenger started earlier and that the
head is a not beginning of his history.

Fig. 12. Flight details
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Let us observe that the airplane is empty before the new passengers board. We assume
that the action boxes determine the ordering of events, in this case the jump out arrows
cross only one barrier of the airplane action box. Namely, if an arrow crosses both barriers
of an action box then it means that the object is not involved in the corresponding event; in
this case the arrow ordering does not matter for figuring out the behavior of the object and
the corresponding ordering of events. If an arrow starts or ends at a barrier, then it is meant
that the object produces or receives the event, respectively. If an arrow crosses only one
barrier, then this means that another object within the barriers is involved in the event, and
therefore the event can be perceived by an observer of the host object. In both cases the rel-
ative ordering of such events matters.

It is very useful to have not only asynchronous communication which uses objects to
transfer messages between remote objects as in the case of ambient calculus [5], but also to
have synchronous messages, which in this case modell more exactly events like a phone
call. The behavior presented here was a simply a sequence od events. To specify more com-
plex behavior we would need the MSC’s inline expressions or the constructs proposed in
Agent UML [13]. Let us observe that this example can hardly be specified in a notation like
[10] since a mobile host like the airplane plays the role of host and the role of mobile object
at the same time (cf. [10]). The regions, packages or agencies can hardly be used for that
purpose.

Concluding Remarks

UML provides a variety of different kinds of diagrams which allows one for specification
of software systems from different points of view. It is beneficial to have the possibility to
specify a software system using different kinds of diagrams. UML sequence diagrams can
be hardly used to specify mobility; therefore we proposed a new graphical notation for
modeling object mobility. This notation proved to be very convenient and powerful; it ex-
tends sequence diagrams in a natural way.

In the future, we are going to define a UML profile for modelling mobile systems. This
profile will extend/adjust different kinds of UML diagrams. We are going to study the du-
ality between sequence diagrams and collaboration diagrams. We plan to perform a realis-
tic case study which will test the appropriateness of our diagrams. Finally, we are going to
provide a formal semantics for SDM which will allow one for precise analysis of systems,
for proving or disproving their properties and which will help us to provide a tool support.
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