
Formal modeling and quantitative analysis of
KLAIM-based mobile systems �

Rocco De Nicola
D.S.I. - Univ. di Firenze

v. Lombroso 6/17,
I50134 Firenze, Italy

denicola@dsi.unifi.it

Diego Latella
C.N.R.-I.S.T.I. - A. Faedo

v. Moruzzi 1,
I56124 Pisa, Italy

Diego.Latella@isti.cnr.it

Mieke Massink
C.N.R., I.S.T.I. - A. Faedo

v. Moruzzi 1,
I56124 Pisa, Italy

Mieke.Massink@isti.cnr.it

ABSTRACT
KLAIM is an experimental language designed for modeling and
programming distributed systems composed of mobilecomponents
where distribution awareness and dynamic system architecture con-
figuration are key issues. In this paper we propose STOcKLAIM,
a STOchastic extension of cKLAIM, the core subset of KLAIM.
cKLAIM includes process distribution, process mobility, and asyn-
chronous communication. The extension makes it possible to in-
tegratethe modeling of quantitativeaspects of mobilesystems—
e.g. performance—with the functional specification of such sys-
tems. We present a formal operational semantics of STOcKLAIM,
which associates a labeled transition system to each STOcKLAIM

network and a translation to Continuous Time Markov Chains for
quantitative analysis. We also show how STOcKLAIM can be used
by means of a simple example, i.e. the modeling of the spreading
of a virus.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Formal methods

General Terms
Languages, Performance, Verification

Keywords
Formal Modeling and Validation, Stochastic Behavior, Mobile Sys-
tems, Coordination Languages

1. INTRODUCTION
Components of modern widely distributed ubiquitous systems

are characterized by highly dynamic behavior and have to deal with
changes of the network environment and its heterogeneity. This is

�This work has been partially funded by Project EU-
IST IST-2001-32747 Architectures for Mobility (AGILE),
http://www.pst.informatik.uni-muenchen.de/projekte/agile/.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05, March 13-17, 2005, Santa Fe, New Mexico, USA
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

a major result of the dramatic recent change which made comput-
ers from isolated devices to powerful, interconnected, interacting
components of large complex systems, often referred to as global
computers. Such systems, and the applications running on them,
are characterized by features which were absent, or hidden on pur-
pose, in previous generation systems, like distribution awareness
and code mobility. The World Wide Web is an example of such a
global system. In order to capture these aspects in a systematic way,
specification languages have been developed that allow designers to
address key concepts such as locality and movementof data, pro-
cesses or devices explicitly. KLAIM (Kernel Language for Agents
Interaction and Mobility, [9, 4]) is an experimental language de-
signed for modeling and programming distributed systems com-
posed of mobile components interacting via multiple distributed
tuple spaces. The KLAIM interaction model builds over, and ex-
tends, Linda’s one of single shared tuple space [13]. In [9] it is
shown how KLAIM can be used for modeling, as well as program-
ming, mobile code applications, i.e. applications whose distinct
feature is the exploitation of code mobility. In particular, KLAIM

supports all major paradigms relevant in such a context, namely
remote evaluation, mobile agentsand code on demand.

In this paper we address a first step toward the extension of
KLAIM with stochastic features. In particular, we focus on (a vari-
ant of) cKLAIM, the Coresubset of KLAIM, first introduced in [15]
and described also in [4], which includes process distribution, pro-
cess mobility, and asynchronous communication of names through
shared located repositories (tuples).

The extension of cKLAIM that we propose and call STOcKLAIM,
makes it possible to integrate the modeling of quantitative as-
pects of mobile systems— e.g. performance—with the functional
specification of such systems. The operational semantics of our
language associates a Labeled Transition System (LTS) to each
STOcKLAIM network specification. The associated LTS defines
in turn a stochastic process [21]—and in particular a Continuous
Time Markov Chain (CTMC)—which can be used for checking
stochastic properties of the behavior of the network.

CTMCs provide a modeling framework which has proved ex-
tremely useful for practical analysis of quantitative aspects of sys-
tem behavior. Moreover, in recent years proper stochastic ex-
tensions of temporal logics have been proposed and efficient al-
gorithms for checking the satisfiability of formulae of such log-
ics on CTMCs (i.e. stochastic model checkers) have been imple-
mented [20, 22, 24, 6]. It is finally worth pointing out that there
is a strong connection between traditional (i.e. qualitative) model-
checking and stochastic model-checking, which brings to a sound
integration of formal modeling and analysis of functional (qualita-
tive) and non-functional (quantitative) aspects of system behavior.

428

2005 ACM Symposium on Applied Computing

Such integration in the context of mobile systems is our main long
term goal.

cKLAIM can be used for specifying networksas finite collections
of nodes that may host processes and data. The central ingredi-
ents of cKLAIM are names; a countable set of names is assumed
(�� ��� � � � � �� ��� � � � � ����� � � � are used for denoting such names)
that provide the abstract counterpart of the set of communicable
objects and can be used as localities, basic variables or process vari-
ables.

Each network node is singled out by a name that indicates its
locality. Processes are the active computational units and may be
executed concurrently either at the same locality or at different lo-
calities. They are built up from the terminated process ��� and
from a set of basic actions by using prefixing, parallel composition
and recursion. Basic actions permit removing/adding data from/to
node repositories, activating new threads of execution and creating
new nodes. cKLAIM has four different basic actions; and three
of them explicitly indicate the (possibly remote) locality where
they will take effect. With an output action ��� �� � � a pro-
cess can write the datum �� in repository �. With an input action
�� � � � a process can withdraw a datum from repository �. Pro-
cesses can be written to/withdrawn from a repository as well. The
action ���� � � � spawns process � at repository � and action
��	��
 � serves for creating a new node; thus providing a means
for modeling dynamic network architectures. Action ��	��
 � is
not indexed with an address because it always acts locally.

The basic idea underlying our extension is rather simple. Our
modeling assumption is that any action � of a cKLAIM process
takessome time to be executed. The time taken by a particular ac-
tion � for being executed is determined by a random variable. In
the context of this paper we restrict such random variables to expo-
nentially distributed ones. This restriction is quite common when
dealing with quantitative system modeling due to the mathematical
tractability of exponential distributions. Consequently (efficient)
analytical methods and automatic tools exist for reasoning about
system models based on exponential distributions. Moreover, ex-
ponential distributions can be used for approximating general dis-
tributions, like, e.g. deterministic ones. Finally, exponential distri-
butions form the basis for the definition of CTMCs.

The parameter which completely characterizes an exponentially
distributed random variable is its rate �, which is a positive real
number. 1 Consequently, we equip each action � with a rate � and
call the resulting pair a stochasticaction. The intended meaning of
��� �� is that the time taken for the complete execution of action �
is a random variable distributed as 	
� ���.

After having discussed in Sect. 2 existing work on stochastic
languages for mobility, in Sect. 3 we define the syntax and static
semantics requirements of STOcKLAIM, together with an infor-
mal explanation of its operational semantics. The formal defini-
tion of the operational semantics is given in Sect. 4. The seman-
tics associates each STOcKLAIM network to a LTS; in Sect. 4
also a translation from such LTSs to CTMCs is defined. Appli-
cations of STOcKLAIM are given in Sect. 5 by means of an illus-
trative example—namely the spreading of a network virus—while
some conclusions and an outline of future research are presented in
Sect. 6. An extended version of this paper can be found in [10].

1Recall that a real-valued random variable
 is exponentially dis-
tributed with rate �—written 	
� ���—if the probability of

being at most �, i.e. Prob�
 � ��, is � � ��� if � � � and
is � for � � �, where � is a real number. The expected value of

 is ���. Exponentially distributed random variables enjoy the
so called memoryless property, i.e. Prob�
 � � � �� �
 �
�� �Prob�
 � ���, for �� �� � �.

2. RELATED WORK
In our proposal, at a conceptual level, we follow essentially the

same approach as Priami in [23] where he extends the �-Calculus
with stochastic features. There is however a key difference between
our work and the above mentioned one. In fact, the basic model
of interaction of �-Calculus processes is synchronous, while that
of KLAIM processes is asynchronous. Synchronization of actions
with exponentially distributed durations poses non-trivial problems
to the compositional definition of the operational semantics when
the intuition on action execution times is to be preserved by com-
position operators. For an interesting discussion on the subject we
refer the reader to [5]. As we shall see in the sequel, the choice
of using an asynchronous model of interaction as the underlying
model for stochastic behavior allows for a rather simple definition
of the operational semantics. Moreover it preserves a direct relation
between the rates assigned to actions in specifications and those as-
signed to them in the automata models associated to such specifi-
cations. Such a relation is more involving in approaches based on
synchronous models of interaction due to rate/probability normal-
ization procedures required by such models. Of course, the above
advantages come at the price of dropping component synchroniza-
tion as a primitive interaction mechanism. However, experience
has shown that many fundamental behavioral aspects of mobile,
cooperating agents in distributed networks can be satisfactorily de-
scribed and analyzed by relying on asynchronous models of inter-
action [9, 3]. On a more technical level, another peculiarity of our
approach is the fact that the definition of the operational semantics
of the language is based on a structural congruence which includes,
among others, commutativityand associativityof (network and)
process parallel composition, non-deterministic choice, and ab-
sorption. The use of such “coarser” structural congruences greatly
simplifies the definition of the operational semantics of locality-
based, KLAIM-like languages. By using approaches which rule
out commutativity and associativity of parallel and choice opera-
tors, one cannot easily exploit the locality-based pattern matching
style which is typical of KLAIM-like languages operational seman-
tics definition. In [11] a probabilistic discrete- (resp. continuous-
) time extension of full KLAIM has been proposed. Basically, all
sources of non-determinism in the notation have been enriched with
probabilistic information. In particular, (process) choice and paral-
lel composition operators have been replaced by their probabilistic
counterparts and, in the discrete-time case, probabilities have been
added also to the network nodes used in network composition. In-
tuitively, the probability attached to a node is related to the schedul-
ing criteria at the global network level and extends the scheduling
probability defined by the process parallel composition operator at
the node level. In the continuous time case, rates of exponential
distributions are associated to nodes, which are related to the ex-
ecution time of any action in the node. Finally, the mappings of
logical to physical names (i.e. KLAIM allocation environments)
have been replaced by mappings from logical names to probabil-
ity distributions on physical names. Our proposal is orthogonal to
this approach in the sense that non-deterministic and parallel oper-
ators are left unchanged while specificrates are associated to each
action, so that the former are features of the specific actions rather
than of the node where the actions are executed. This gives rise to a
clean semantic model which directly reflects the modeling choices
expressed at the specification level, whereas the probabilities of dif-
ferent alternatives of choice, parallel, or network compositions are
derivedon the basis of the race conditionprinciple [23]. In the pro-
posal of [11] the specifier has several different conceptual tools and
related linguistic constructs for expressing probabilistic informa-
tion. On the other hand there is a certain interference among such

429

� ��� NETWORKS

� � �� ����
� � �� �� �
� � �� �
� � �� �

� ��� PROCESSES

���

� ��� ����
� � � �
� � � �
� �

� ��� ACTIONS

��� �� � �
� ��� � � �
� �� � � �
� ���� � � �
� ��	��
 �

� ��� TERMS

�
� ��
� ��

Table 1: Syntax of STOcKLAIM

concepts which results in several normalization steps. As a result,
the relationship between the specific probability/rate values used
in a specification and those resulting in the associated semantical
structure can be quite complicated. In [18] a probabilistic exten-
sion of the asynchronous�-Calculus is proposed, which does not
address time and continuous distributions. Finally, in [14] PEPA
nets are proposed, where mobile code is modeled by expressions of
the stochastic process algebra PEPA which play the role of tokens
in (stochastic) Petri nets. The Petri net of a PEPA net models the
architecture of the net, which to our understanding, is a static one.
A PEPA expression can move from a place to another one if there
is a transition from the first place to the second. A proper synchro-
nization mechanism between PEPA expressions and Petri nets is
provided in order to fire transitions (i.e. to move code).

We are not aware of other proposals for stochastic/probabilistic
calculi for mobile systems.

3. SYNTAX OF STOcKLAIM
Let�, ranged over by �� ��� ��� � � �, be a set of localities, � , ranged

over by �� ��� ��� � � �, a set of locality variables, 	, ranged over by
����� ��� �� � � � a set of process variables, and
, ranged over by
�� ��� ��� �� �� � � � � a set of rate names. We assume that the above
sets are mutually disjoint. Moreover, we let �� �� range over �� � .
The syntax of STOcKLAIM, given in Table 1, is exactly the same
as that of cKLAIM, except that processes have a richer action prefix
operator, and for the addition of an explicit choice composition op-
erator. Moreover, processes can be stored to (resp. retrieved from)
localities by means of out (resp. in) actions, in much the same way
as data. A networknode � �� ���� intuitively means that value ���� is
stored, or located, in node, or locality, �. Similarly, for process � ,
� �� �� � means that � is stored in � as a piece of data. On the other
hand � �� � indicates that process � is running in locality �. Com-
plex networks are built from simpler ones by means of the network
parallel operator��. Given network � , the set of values located in
locality � coincides with all those �� and � such that � �� ���� or
� �� �� � occurs in � . The set of processes running in locality � co-
incides with all those � such that � �� � occurs in � . The intuition
behind action prefix ��� ���� is that the execution time of action
� is distributed exponentially with rate specified by rate name�.
Rate names are mapped to rate values by means of binding func-
tions, which are (partial) functions from
 to IR�. The main reason
for using rate namesinstead of just rates is related to the way we
deal with the race conditionsemantics for the non-deterministic
choice operator (�� � ��) and interleaving one (�� � ��). As

we mentioned in Sect.1, STOcKLAIM networks can be mapped to
CTMCs. The presence of a choice operator for processes facili-
tates the specification of stochastic processes since each choice ex-
pression essentially corresponds to a state of the underlying CTMC
with as many transitions as those of the components of the choice
(and of possibly nested parallel compositions). A typical problem
in the definition of stochastic process calculi, due to the race condi-
tion principle, is that an expression like ��� ���� ���� ���� should
not be identified with the expression ��� ����—as it would be the
case in non-stochastic process calculi. In fact, to an external ob-
server, the first process should appear twice as fast as the second
one2, i.e. it should be equated to ��� 	���� . There are several ways
for dealing with the problem of not identifying a process offering a
choice of two equal components with one of the components. One
way is to use proved transition systemsas in [23] that permit distin-
guishing left and right components by labeling transitions starting
from derivations labeled with the actual proof of process transi-
tions. Unfortunately, such an approach is not naturally compatible
with a definition of the operational semantics based on a structural
congruence which includes, among others, commutativity and as-
sociativity of ����� � and absorption. As we shall see, such struc-
tural congruences greatly simplify the definition of the operational
semantics since they allow the full exploitation of locality-based
pattern matching in the application of the deduction rules. Conse-
quently, in this paper we prefer not to use proved transition systems
and to require that the rate names occurring in any network expres-
sion be distinct. Actually it would suffice to require that the rate
names of the initial steps of the components of choice expressions
be distinct and similarly for all rate names of the components of
process and node parallel compositions. But, we prefer a more ho-
mogeneous approach. Clearly, care is needed to guarantee name
uniqueness in presence of process replication and migration dur-
ing execution. This choice allows us to keep the definition of the
operational semantics as simple as possible, focusing more on the
main issues of mobility and stochastic behavior than on the techni-
calities of such a definition. Moreover, the use of rate names and
binding functions instead of actual rate values permits re-using a
network specification, with different bindings, for several valida-
tion sessions, as we will see in the examples in Sect.5. Finally, the
separation of rates from rate names facilitates the future extension
of our calculus with rate variables.

Recursive behaviors are modeled via process definitions; it is
assumed that each identifier � has a single defining equationof the

form �
�
� � where � may contain occurrences of � and other

process names. It is also assumed that occurrences of � on the
right part are always guarded, i.e. prefixed by a stochastic action.

Finally, a term � can be either a locality constant � or a param-
eter, i.e. a locality variable � or a process variable �. Parameters
are identified by prefixing them by an exclamation mark.

4. SEMANTICS OF STOcKLAIM
In this section, the operational semantics of STOcKLAIM is de-

fined as well as the translation from the resulting LTSs to CTMCs.

2An expression like ��� ���� � ��� ���� is interpreted as a race
conditionbetween � and �. This, intuitively can be interpreted as
follows: when such a process is executed, both� and � are enabled
and their actual execution times are given by a sample of 	
� ���
and 	
� ��� respectively. The action with the smallest execution
time is actually executed. From standard theory we know that for
independent random variables
 and � respectively in 	
� ���
and in 	
� ��� the random variable MIN�
�� � is exponentially
distributed with rate �� �.

430

4.1 STOcKLAIM Operational Semantics
The operational semantics of STOcKLAIM is an orthogonal ex-

tension of the one of cKLAIM as presented, e.g., in [4, 15].
The transition relation is defined over (network) configurations,
i.e. triples ��� ����—henceforth written as �� � � �—where
� is a finite set of localities, � �
 � IR� is a mapping from
rate names to rates, with ������—the domain of �—also finite,
and � a STOcKLAIM network expression. Let �Loc�� denote
the set of all localities occurring free 3 in � and �Rat�� be the
set of all rate names occurring in � . We require �Loc�� � �
and �Rat�� � ������. Finally, we require that all rate names
occurring in � be distinct and that for expressions of the form
�� �� � ���� , (i) there exists at most onefree occurrence of �
in � which is not the first argument of an out or eval operator, and
(ii) there exists no defining equation for �.

The Structural Congruence is the smallest congruence on con-
figurations, containing the identity, satisfying the laws given in Ta-
ble 2. The main difference with those of cKLAIM is the addi-
tion of the laws for commutativity (CO�) and associativity (AS�)
for non-deterministic choice, a law for its neutral element (NE�),
and a law (REN) for rate name renaming. The law for rate re-
naming (REN) states that the rate names occurring in � can be
replaced by means of a substitution . is a function in
 �

such that (i) it preserves rate names uniqueness (i.e. it is injec-
tive) (ii) it is defined exactly on the rate names occurring in � (i.e.
���� � � �Rat��), and (iii) the substitution does not interfere
with the current binding (i.e. ������ � ��!" � � �). The bind-
ing in the configuration where the substitution has been applied is
defined for the new names and gives the same rates as for the old
ones (i.e. the new binding is the composition of the old binding and
the inverse of).

The Reduction Relation �� is the smallest relation induced by
the rules of Table 3. Let �, ranged over by #� #�� #�� � � � be the set
of all standard representativesof the equivalence classes on config-
urations induced by the Structural Congruence Laws. We abstract
here from the way in which such representatives are chosen; a pos-
sibility could be taking the smallestelements, where we can use
set inclusion for locality sets and binding(-domain)s, and lexico-
graphic order for network terms. For configuration # � �, let � #
be the smallest set such that (i) # � � #, and (ii) if #� � � #,
#�� � �, � �
 and �#�� �� #��� � �� can be derived using the rules
and laws of tables 3 and 2, then also #�� � � #.

The operational semantics of a network ��, with rate names
defined by binding ��, associates a LTS, �$���� ��� ����

�%�
���� #�� to �� with ��. % ���� � #� is the set of states of
the LTS, where the initial state of the LTS, #� � �, is the standard
representative of �Loc���� �� � ��;
 �
 is the set of labels
(i.e. rate names) of the LTS and �� � %�
�% is its transition
relation, as deduced by the Reduction Rules and the Congruence
Laws. As usual, #

�
��#� stands for �#� �� #�� � ��; moreover, if #

is the state �� � � � , we let �� denote the binding � of #.
Let us briefly comment on some of the rules. Rule (OUTL),

resp. (OUTP), models the dispatching of a name, resp. a process,
at an existing(possibly remote) locality. Notice that, if the desti-
nation locality does not exist then the rule cannot be applied. In
order to preserve uniqueness of rate names, when executing action
���� � � ��� ���� process �� is stored instead of �; �� is ob-
tained from � by means of function RN, defined in Fig. 1, which
renamesall rate names in � into fresh names; function RN returns
also a new binding where the fresh names are bound to the same

3The formal definition of free and bound names in cKLAIM can be
found in [15].

�CO��� �� � � �� �� �� � �� � � �� �� ��

�AS��� �� � � �� �� ��� �� ��� �
�� � � ��� �� ��� �� ��

�NE�� �� � � � �� � � �� � � � �� � � ���

�CO�� �� � � � �� �� � �� � �� � � � �� �� � ��

�AS�� �� � � � �� �� � ��� � ��� �
�� � � � �� ��� � ��� � ��

�NE�� �� � � � �� � � �� � � � �� � � ���

�CLO� �� � � � �� �� � �� � �� � � � �� �� �� � �� ��

�REN� �� � � � � �� �� Æ ��� � �
for any �
�
 injective, and such that
���� � � �Rat�� and ��!" � � ������ � �

Table 2: Structural Congruence of STOcKLAIM

rates as those the original ones were bound to. Notice that, in the
definition of function RN, rate name uniqueness is guaranteed by
means of function
����� and by a proper sequentialization of
the application of RN to the components of (process) parallel and
non-deterministic composition; such sequentialization is achieved
by means of ���. The selection criterion of
����� is immaterial
here and is easily implementable due to finiteness of the domain of
binding functions. Rate names renaming takes place also for pro-
cess spawning (EVA) and instantiation (PIN) for similar reasons.

Rule (INL), resp. (INP) models retrieval and removal of names,
resp. processes, from given localities. Action �� � � �� is a
blocking action that can be performed only if the required datum
is present at the chosen locality ��. Moreover, if the argument �� �
is a locality variable (��), resp. a process variable (��), the retrieved
datum is used to replace all free occurrences of �, resp. �, in the
rest of the process executing the action; instead, if the argument is a
locality constant the only effect is its removal from the target node.

Rule (NLC) models the creation of a new node, with its fresh
name; indeed the expected result of ��	��
 � is a fresh name, i.e.
a name not present in the set of all used names, �; function
�����
is used to choose such a new element of � � �, the selection crite-
rion being immaterial here. The new name is then added to the set
of used names, �. Rule (EVA) is used to model the spawning of
the argument process at the intended locality; there it will run con-
currently with the processes already present. The remaining rules
are standard and are used to deal with parallel composition, nonde-
terministic choice and to take advantage of structural congruence.
For the rest, the rules should be self-explanatory.

4.2 From LTSs to CTMCs
In order to apply numerical analysis techniques for studying

quantitative aspects of (mobile) systems, and especially in order to
use stochastic model checking, it is necessary to obtain a CTMC
from the LTS associated to a STOcKLAIM network expression.
This in turn requires the LTS be finite. Consequently, we will take
into consideration only finite LTSs. There are several ways for as-
suring finiteness of the LTS automatically generated from higher
level specifications, like process algebras. Some rely on syntacti-
cal restrictions, like avoiding certain (combinations of) operators,

431

(OUTL) �� � � � �� ���� ��� � ��� ���� �� �� �� � � �
��

�� � � � �� � �� �� �� � � �� �� �� �����

(OUTP) �� � � � �� ���� � � ��� ���� �� �� �� � � �
��

�� �� � � �� � �� �� �� � � �� �� �� ����
where ���� ��� � RN�����

(INL) �� � � � �� ��� � � ��� ���� �� �� �� �����
�
��

�� � � � �� �& �� �� �� ���

where & �

�
����'��� � � ���
(� � � � ���

(INP) �� � � � �� ��� ���� � ��� ���� �� �� �� �� ��
�
��

�� � � � �� � �� �'�� �� �� �� ���

(NLC) �� � � � �� ���	��
 �� ����
�
��

� � ����� � � � �� � ���'�� �� �� �� ���
where �� �
����� �� � � � �

(EVA) �� � � � �� ����� � � ��� ���� �� �� �� � � �
��

�� �� � � �� � �� �� �� � � � ��

where ���� ��� � RN�����

(PIN)
�� �� � � �� � � �

����� ��� � �

�� � � � �� �
�
����� ��� � �

where �
�
� � and �� �� ��� � RN��� ��

(CHO)
�� � � � �� �� �� �

�
�� ��� �� � � �� � � �� � �

�� � � � �� �� � �� �� �
�
�� ��� �� � � �� � � �� � �

(PAR)
�� � � ��

�
�� ��� �� � � �

�� � � �� �� ��
�
�� ��� �� � � � �� ��

(STC)

�� � � � � ��� �� � ��� �� � � ��

��� �� � ��
��
�� ��� �� � ���

��� �� � �� � ��� �� � � �

�� � � �
�
�� ��� �� � � �

Table 3: Reduction Rules of STOcKLAIM

RN����� �� ���� ����� ��

RN���� ����� �� ���� ���� �
���� �� ��� where

�� �
����� �� �
 � ������
�� �� ��� � RN��� ������'����

RN�� �) �� �� ���� ��
� �) ��� ���, �) � ��� ��, where

�� �� ���� � RN��� ��
���� ��� � RN��� ����

RN��� �� ���� ������ � �
�
� �

Figure 1: Definition of function RN

and they have been studied extensively in the context of traditional
process algebra (see e.g. [12]). Others, typically used in the con-
text of verification tools design, are based on the introduction of
constraints on certain kinds of resources, e.g. buffer sizes and data
value domains, in the definition of the operational semantics. The
latter approach seems to be most suitable for STOcKLAIM. For in-
stance a limit can be imposed on the maximum number of values
which can be stored in a single node. We leave the details of these
issues for further study.

CTMCs have been extensively studied in the literature (a com-
prehensive treatment can be found in [21]; we suggest [17] for a
gentle introduction). For the purposes of the present paper it suf-
fices to recall that a CTMC� is a pair ����� where � is a finite
set of statesand � � � � � � IR�� is the rate matrix. The rate
matrix characterizes the transitions between the states of �. If
��*� *�� �� � then it is possible that a transition from state * to
state *� takes place, and the probability of “taking” such a transi-
tion within time �, is �� ��	���

�
��. If ��*� *�� � � then no such
a transition can take place4. Finally, we would like to point out that
the traditional definition of CTMCs does not include self-loops, i.e.
transitions from a state to itself. On the other hand, the presence
of such self-loops does not alter standard analysis techniques (e.g.
transient and steady state ones) and turn out to be useful when ad-
dressing model-checking CTMCs [1], therefore we will allow them
in this paper.

Given a network � with binding � and assuming �$��� �� �
�%�
���� #�� finite, the CTMC ����� associated to � with
binding �, denoted by %�+%��� ��, is defined as follows: the
set � of states coincides with %, and for all #� #� � %

��#� #�� ����

� �
���

����
��� �� � ����� �� �

� � ����� � �

where ����� ���� ��
� � #

��

��#��

5. MODELING A VIRUS
In this section we show how STOcKLAIM can be used for

modeling stochastic aspects of mobile systems. In fact we also
give an idea of how stochastic model-checking would work for
STOcKLAIM.

5.1 Stochastic model-checking
A complete model-checking framework for a modeling language

requires the availability of a proper temporal logic for the specifi-
cation of the requirements against which models are to be checked.
Such a logic should provide specific modalities for the primitive
notions which the modeling language is built upon, besides (or ex-
tending) the purely temporal ones. So, in the case of STOcKLAIM

we should address both the stochastic features and mobility. We
are currently developing a logic for STOcKLAIM which addresses
both issues by means of integrating notions of ACSL [19] with con-
cepts of the KLAIM logic [4]. ACSL is an action-based variant of
CSL, the Continuous Stochastic Logic, as proposed in [2]. CSL
is the input logic for the Erlangen-Twente Markov Chain Model
Checker, ETMCC [20]. For the example in the present paper, we
use a simple customization of CSL which allows us to express lim-
ited aspects of mobility, namely the fact that a certain process is
running at a certain locality. We do this by using atomic propo-
sitions of the form ��� where � is a process identifier and � a
4The reader should be warned that the above intuitive interpreta-
tion is correct only if there is only one transition originating from
*. If this is not the case, then a race condition arises among all
transitions originating from *.

432

locality. A state * in the CTMC corresponding to a LTS will satisfy
���, i.e. will be labeled by such an atomic proposition, if and only
if the associated configuration # in the LTS (belongs to the same
congruence class which contains a configuration which) is of the
form �� � � � and � �� � is a sub-expression of � . Despite the
above limitation, our examples should illustrate the benefits of a
formal approach to modeling and analysis of stochastic aspects of
mobile systems.

CSL is a stochastic variant of the well-known Computational
Tree Logic (CTL, see e.g. [7]). CTL permits stating properties of
states, and of paths. CSL extends CTL with two probabilistic oper-
ators that refer to the steady-state and the transient behavior of the
system under consideration. While the steady-state operator refers
to the probability of the system being, in the long run, in any of
the statesbelonging to a given set (specified by a state-formula),
the transient operator allows us to refer to the probability of the oc-
currence of particular pathsin the CTMC. In order to express the
time-span of specific paths, the path-operators until � and next

are extended with a parameter that specifies a time-interval. Let ,
be an interval on the real line,) a probability value and -. an or-
dering operator on IR, i.e. -. � ������� ��. The syntax of CSL
is:

State-formulas

� ��� � � �� � � � � � ��	
��� � ��	
���
��	
��� : prob. that � holds in steady state is �� �
��	
��� : prob. that path-formula � holds is �� �

Path-formulas

� ��� �� � � ��� �

�� � : next state is reached at time � � � and fulfills �
��� � : � holds along path until � holds at � � �

The meaning of atomic propositions (/), negation (�) and disjunc-
tion (�) is standard; using these operators, other boolean operators
such as conjunction (�), implication (), true (TRUE) and false
(FALSE), and so forth, can be defined, as usual. The state-formula
��	
�� asserts that the steady-state probability for the set of states
satisfying , the -states, meets the bound -.). !�	
�0� asserts
that the probability measure of the set of paths satisfying 0 meets
the bound -.). The operator !�	
��� replaces the usual CTL path
quantifiers " and #. In CTL, the state-formula "0 is valid in state
* if there existssome path starting in * and satisfying 0 and #0 is
valid if all paths satisfy 0. In CSL, the formula !���0� holds if
almost allpaths satisfy 0. Moreover, clearly "0 holds whenever
!���0� holds. Thus, qualitative as well as stochastic properties
can be expressed in CSL5.

In CTL, a path satisfies an until-formula �� if there is a state
on the path where � holds, and at every preceding state on the path,
if any, holds. The CSL counterpart, �� � is satisfied by a path
if � holds at time � � , and at every preceding state on the path,
if any, holds. In CSL, temporal operators like �, � and their
real-time variants �� or �� can be derived, e.g., !�	
��� � �
!�	
�TRUE �� � and !�
��

� � � !��
��
� ��. The un-

timed next- and until-operators are obtained by
 �
� and
��� � � �

� � for , � ���$�.
Four different types of performance and dependability measures

5We recall that in the context of probabilistic program/model verifi-
cation, a qualitative property is one which does not involve numeric
probabilities, except probability �; in such a context, a qualitative
property is satisfied by a system if the probability of the set of com-
putations which satisfy the property amounts to �, i.e. the property
is satisfied by almost allcomputations (see e.g. [8, 16]).

���
�
� ���� ����� � ����� � �������� �

/* alternative present only for 1 � � */
���� ����� � ����� � �������� �
/* alternative present only for 1 � ! */
���� ����� � ������ �������� �
/* alternative present only for 2 � � */
���� ����� � ������ ��������
/* alternative present only for 2 � � */

���
�
� ��� �� � ��� � �����	�� �

/* the received virus is undetected and will run */
��� �� � ��� �
�������
/* the received virus is detected and suppressed */

	��
�
� ����� � � ��� � ��������

/* the virus is activated */

Figure 2: Specification of an infected network

can be expressed in CSL, viz. steady-state measures, transient-state
measures, path-based measures, and nested measures.

The ETMCC model checker [20] is a prototype tool that sup-
ports the verification of CSL-properties over CTMCs. The model
checker takes as input a model file with a textual representation of a
CTMC, a label file associating each state to the atomic propositions
that hold in that state and a given accuracy. ETMCC is based on
sparse matrix representations of CTMCs. Alternative model check-
ers for CSL include PRISM [22], Prover [24] and the APNN (Ab-
stract Petri Net Notation) toolbox [6].

5.2 Modeling and analyzing the spreading of
a virus

This example has been inspired by a similar one in [11]. Al-
though our example is slightly simpler than the one presented in
[11], we are able to show some quantitative results which we ob-
tained by means of model-checking, while the treatment of the ex-
ample in [11] is essentially limited to system specification. We
model the spreadingof a virus in a network. A network is modeled
as a set of nodes and the virus running on a node can move arbi-
trarily from the node to a subset of adjacent nodes, infecting them.
At each node, an operating system runs, which upon receiving the
virus, can either run it or suppress it. In this paper, for the sake
of simplicity we consider simple networks which are in fact grids
of ! � � nodes. Each node is connected with its four neighbors
(north, south, east, west), except for border nodes, which lack some
connections in the obvious way (e.g. the nodes on the east border
have no east connection). Moreover, we assume that the virus can
move only to oneadjacent node. Finally, we refrain from modeling
aspects of the virus other than the way it replicates in the network.
In particular we do not consider the local effects of the virus and we
make the virus die as soon as it has infected one of the neighbors
of its locality.

The specification schema of the virus and the operating system
running at each node is given in Fig. 2, where a network is con-
ventionally represented as a !�� matrix of localities ��� . For the
verification, we chose ! � � � � with the following initial state:
���::��� �� ���::�����, while ��� ::��� for � � 1� 2 � � with 1 �� � or
2 �� �. The resulting LTS is not shown for space reasons; it consists
of 	� states and �� transitions.

There are several issues that can be analyzed. First of all we can
study the probability that the virus is running at node ��� within
� time-units after the infection of node ���; for instance we can

433

� � � � � � � � � �	

�
		��	�

�
		��	�

�
		��	�

�
		��	�

�
		��	�

�
		��	�

�
		�		

����	��

������

������	

���� ����� �

�
��
�
�
�
���
��
��
��
��
��
��
��
��

Figure 3: Results for Firewalls with different detection capabil-
ity

check if such a probability is smaller than a given upper bound).
This question becomes more interesting when we define the rates
associated to the detection (resp. lack of detection) of the virus
in such a way that the operating systems of the localities on the
diagonal from bottom-left to top-right—���, ��� , and ���—have a
relatively high rate of detection and can be considered as a firewall
to protect the nodes ��� , ���, and ���.

We can now express the above property in CSL for locality ���

and) � ��	 as follows:

!����������������
��

��������

The ETMCC model checker gives as a result the list of states
where the formula holds. Moreover, as for the case of steady
state probabilities, the tool provides also, for each state, the
actual probability that starting from such a state, the formula
�����������

��
������� is satisfied. In the lowest curve of Fig. 3

the probability to reach, from the initial state, a state where the virus
is running in locality ��� is presented for time values ranging from
� to �� with �� �� � �� !�� � �� *�� � �� ��� � �� ��� � 	 for
� � 1� 2 � �, �� ��� � �� ��� � �� ��� � ��, and �� ��� � �
otherwise, �� ��� � �� ��� � �� ��� � �, and �� ��� � ��
otherwise. We performed similar analyzes for different values of
the detection (resp. lack of detection) rates of the firewall. In par-
ticular for ���� ���� ��� and ���� ���� ��� ranging over ��� � � � � ���,
with �	���
� � �	���
� constant for � � 1 � � (and equal to ��).
For the sake of readability, in Fig. 3 we show the results only for
���� ���� ��� � ��� �� ��� and ���� ���� ��� � ��� �� ���. The re-
sults clearly indicate that for high detection rates the probability for
locality ��� to run the virus within a certain time interval is lower.

Finally we show two examples of qualitative properties. Both
properties clearly show the limitations of this, simplified, model of
the spreading of a virus in a network. In STOcKLAIM more realistic
models can easily be specified. Their analysis requires adequate
tool support, not available at the time of writing the present paper,
such as the automatic generation of a CTMC from a STOcKLAIM

specification, in order to generate their considerably larger state-
spaces.

The first property states that it is never the case that the virus is
running at two different localities in the network at the same time.

Actually this property is a conjunction of many properties, each of
them stating that a certain pair of localities cannot both have a virus
running at the same time.�

� � 1� �� 2� 3 � �
�1 �� � � 2 �� 3�

!������������ � ���������

For example, verification shows that the formula
!������������ � ��������� is not satisfied in any state.

The second qualitative property shows that we can always reach
a state in which the network is free of viruses forever.

!����!�����
�

�������

����������

This highly desired property is satisfied in every state. The outer-
most path-formula in the last formula is satisfied only by one state,
which is absorbing.

6. CONCLUSIONS AND FUTURE WORK
In this paper we introduced STOcKLAIM, a stochastic extension

of cKLAIM, that makes it possible to integrate the modeling of
quantitative and qualitative aspects of mobile systems. The starting
point of our proposal is to use continuous random variables with
exponential distributions for modeling action durations.

We presented a formal operational semantics for STOcKLAIM

that associates a labeled transition system to each STOcKLAIM

network and showed how it can be transformed into a Continu-
ous Time Markov Chain (CTMC). We worked out a small example
modeling the spreading of a virus through a network. We analyzed
some of the qualitative and quantitative aspects of this example
such as the velocity of spreading of the virus.

The results in this paper show the viability of the approach and
give a first impression of its practical usefulness when addressing
quantitative aspects of mobile systems. In particular, they show
that the choice of an asynchronous model of computation for the
base-language greatly simplifies the definition of the operational
semantics of the stochastic extension. Such definition is further
simplified by the fact that the auxiliary structural congruence in-
cludes, among others, associativity and commutativity of paral-
lel and non-deterministic operators. These advantages are not re-
stricted to KLAIM, but can be exploited for other languages based
on an asynchronous model of interaction, s.a. Linda-based lan-
guages.

The ideas proposed in this paper give rise to a whole range of
related interesting research questions. There is a need for equip-
ping STOcKLAIM with a logic for the integrated expression of
functional, stochastic and mobility aspects of behavior. Moreover,
proper tools for supporting system modeling and verification based
on STOcKLAIM and related logic should be developed. Finally, we
plan also to cover ore significant subsets of KLAIM.

7. ACKNOWLEDGMENTS
We want to thank Joost-Pieter Katoen for fruitful discussions on

the issues raised by the research presented in this paper. We also
thank the anonymous reviewers for their valuable comments.

434

8. REFERENCES
[1] C. Baier, B. Haverkort, H. Hermanns, and J. Katoen.

Automated Performance and Dependability Evaluation
Using Model Checking. In Computer Performance
Evaluation, pages 261–289. Springer-Verlag, 2002.

[2] C. Baier, J. Katoen, and H. Hermanns. Approximate
Symbolic Model Checking of Continuous-Time Markov
Chains. In J. Baeten and S. Mauw, editors, Concur ’99,
volume 1664 of LNCS, pages 146–162. Springer-Verlag,
1999.

[3] L. Bettini, R. De Nicola, and M. Loreti. Formulae meet
Programs over the Net: a Framework for Reliable Network
Aware Programming, 2003. (submitted for publication.
Available at: http://music.dsi.unifi.it).

[4] L. Bettini, V. Non, R. De Nicola, G. Ferrari, D. Gorla,
M. Loreti, E. Moggi, R. Pugliese, E. Tuosto, and B. Venneri.
The Klaim Project: Theory and Practice. In C. Priami, editor,
Global Computing: Programming Environments, Languages,
Security and Analysis of Systems, volume 2874 of LNCS,
pages 88–150. Springer-Verlag, 2003.

[5] J. Bradley and N. Davies. Reliable Performance Modeling
with Approximate Synchronisations. In J. Hillston and
M. Silva, editors, Proceedings of the 7th workshop on
process algebras and performance modeling, pages 99–118.
Prensas Universitarias de Zaragoza, September 1999.

[6] P. Buchholz, J.-P Katoen, P. Kemper, and C. Tepper.
Model-checking Large Structured Markov Chains. The
Journal of Logic and Algebraic Programming. Elsevier,
56(1-2):69–96, 2003.

[7] E. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 1999. ISBN 0-262-03270-8.

[8] C. Courcoubetis and M. Yannakakis. Verifying Temporal
Properties of Finite State Probabilistic Programs. In 29th
Annual Symposium on Foundations of Computer Science,
pages 338–345. IEEE Computer Society Press, 1988.

[9] R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A Kernel
Language for Agents Interaction and Mobility. IEEE
Transactions on Software Engineering. IEEE CS,
24(5):315–329, 1998.

[10] R. De Nicola, D. Latella, and M. Massink. Formal modeling
and quantitative analysis of KLAIM-based mobile systems.
FULL VERSION. Technical Report 2004-TR-25, Consiglio
Nazionale delle Ricerche, Istituto di Scienza e Tecnologie
dell’Informazione ’A. Faedo’, 2004.

[11] A. Di Pierro, C. Hankin, and H. Wiklicky. Probabilistic
KLAIM. In R. De Nicola, G. Ferrari, and G. Meredith,
editors, Coordination Models and Languages, volume 2949
of LNCS. Springer-Verlag, 2004.

[12] A. Fantechi, S. Gnesi, and G. Mazzarini. How Much
Expressive Are LOTOS Expressions? In J. Quemada,
J. Manas, and M. Thomas, editors, Formal Description
Techniques — III. North-Holland Publishing Company, 1991.

[13] D. Gelernter. Generative Communication in Linda.
Communications of the ACM. ACM Press, 7(1):80–112,
1985.

[14] S. Gilmore, J. Hillston, L. Kloul, and M. Ribaudo. PEPA
Nets: a Structured Performance Modelling Formalism.
Performance Evaluation - An International Journal.
Elsevier, 54:79–104, 2003.

[15] D. Gorla and R. Pugliese. A Semantic Theory for Global
Computing Systems, 2004. (Submitted for publication.
Available at

http://www.dsi.uniroma1.it/˜gorla/papers/bis4k-full.pdf).
[16] S. Hart and M. Sharir. Probabilistic Temporal Logics for

Finite and Bounded Models. In 29th Annual Symposium on
Foundations of Computer Science, pages 1–13. IEEE
Computer Society Press, 1988.

[17] B. Haverkort. Markovian Models for Performance and
Dependability Evaluation. In E. Brinksma, H. Hermanns,
and J. Katoen, editors, Lectures on Formal Methods and
Performance Analysis, volume 2090 of LNCS, pages 38–83.
Springer-Verlag, 2001.

[18] O. Herescu and C. Palamidessi. Probabilistic Asynchronous
�-Calculus. In J. Tiuryn, editor, FoSSaCS 2000, volume 1784
of LNCS, pages 146–160. Springer-Verlag, 2000.

[19] H. Hermanns, J. Katoen, J. Meyer-Kayser, and M. Siegle.
Towards Model Checking Stochastic Process Algebra. In
W. Grieskamp, T. Santen, and B. Stoddart, editors,
Integrated Formal Methods - IFM 2000, volume 1945 of
LNCS, pages 420–439. Springer-Verlag, 2000.

[20] H. Hermanns, J. Katoen, J. Meyer-Kayser, and M. Siegle. A
Tool for Model-Checking Markov Chains. International
Journal on Software Tools for Technology Transfer.
Springer-Verlag, 4(2):153–172, 2003.

[21] V. Kulkarni. Modeling and Analysis of Stochastic Systems.
Chapman & Hall, 1995.

[22] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic
Symbolic Model Checking with PRISM: A Hybrid
Approach. In J.P. Katoen and P. Stevens, editors, Tools and
Algorithms for the Construction and Analysis of Systems,
volume 2280 of LNCS, pages 52–66. Springer-Verlag, 2002.

[23] C. Priami. Stochastic �-Calculus. The Computer Journal.
Oxford University Press., 38(7):578–589, 1995.

[24] H. Younes and R. Simmons. Probabilistic Verification of
Discrete Event Systems Using Acceptance Sampling. In
E. Brinksma and K. Larsen, editors, Computer Aided
Verification, volume 2404 of LNCS, pages 223–235.
Springer-Verlag, 2002.

435

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

