

F	States or actions?	
	CTL, the branching time temporal logic most used in model checking (EMC, SMV,) is based on predicates on the states	
CTL models are Kripke Structures, that is transition system where the states are labelled by a set of atomic predicat LTL, the linear time temporal logic used by SPIN has linear models: execution traces, sequences of states labelled b atomic predicates		
Ēr	1&&T Formal Methods,&& Tools Group - ISTI CNR	

mber 3, 03

Let TS_1 and TS_2 be LTSs and let $s_1 \in S_1$ and $s_2 \in S_2$. We say that s_2 *BC-simulates* s_1 if there exists a strong *BC-Simulation* that relates s_1 and s_2 . $R \subseteq S_1 \times S_2$ is a strong BC-simulation if $(s_1, s_2) \in R$: • either $s_1 - / \rightarrow$ or 1) $s_1 - a \rightarrow s_1$ ' implies s_2 ': $s_2 - a \rightarrow s_2$ ' and $(s_1', s_2') \in R$ 2) $s_2 - a \rightarrow s_2$ ' implies s_1 ': $s_1 - a \rightarrow s_1$ ' and $(s_1', s_2') \in R$

TS₂ *BC-simulates* TS₁ (TS₁ \leq_{bc} TS₂) if a branching complete simulation *R* exists such that $(s_{01}, s_{02}) \in R$

M&&T

Formal Methods && Tools Group - ISTI CNR

	HAL application a more abstract representation of GS
define S0(in,out) = in?(v). S1(in,out,v) + tau. S0(in,out)	
<pre>define S1(in,out,v1) = in?(v). S2(in,out,v1,v) + out!v1. S0(in,out) + tau. out!v1. S0(in,out)</pre>	
define S2(in,out,v1,v2) = in?(v). S3(in,out,v1,v2,v) + out!v1. S1(in,out,v2) + tau. out!v1. out!v2. S0(in,out)	
define S3(in,out,v1,v2,v3) = out!v1. S2(in,out,v2,v3)	
define GSMbuffer(in,out) = S0(in,out)	
	Revenue 3 03

		HAL applications		
We summarize the figures (states, transitions and times) of				
the different steps	of a typical session of	of verification for		
the handover protocol (GSM spec)				
•				
buildHD GSM.pi	506 745	37.52 sec.		
reduceHD-red GSM.hd	245 484	1.19 sec.		
buildFC2	545 1062	1.54 sec.		
Minimize automaton	49 91	3.45 sec.		
Model checking		6 sec.		
»	States Trans.	Time		

Evaluate (F: Formula, S: Sta	te) is		
if we have already done th	is evaluation and		
return the already know	result		
elsif we are are already t	rying to evaluate F in S then		
return true or false d	epending on maximum or minimum		
fixed point se	nantics		
else			
Keep track of the fact	that we are trying to evaluate F	in S	
(e.g. push the	pair (F,S) in a stack)		
for each sub-formula F'	and		
call recursively	Evaluate (F' S'):		
if the result of Eva	luate (F'S') is sufficient		
to establish	the result of evaluate (F,S) the	n	
exit from the loop	,		
end if			
end loop			
(at this point we h	ave in any case a final		
Keep track of the fact	that we are		
no longer try	ing to evaluate F in S:		
(e.g. pop the pair	(F,S) from the stack)		
Possibly keep track of	the performed evaluation and resu	alt (e.g. push the triple (F, S, res	sult) in a hash table)
return the final result			
end if			
end Evaluate;			

Q	Live Home Page 🔘 Apple 🔘 iTools 🔘 Apple Support 🔘 Apple St	ore 💿 Microsoft MacTopia 💿 MSN 💿 Office for Macintosh
Favorites		UML Explorer
Hist	Write below an UML model description	UML HELP 🚖
ory Search Scrapbook	State S0 = S1, s2, s3 S1.S5.88 -(r2/a2)-> s3 s3 - (a2/e1)-> S1.S5.s9 S1.S4.85 -(r1/a1)-> s2 S1 - (e1/-)-> s2 S1 - (e1/-)-> S1 State S0.S1 = S4 # S5	Trace System Evolutions Explore States Transitions
Page	Set the initial value for the events queue	
Holder	e1+e2	
	Write below the formula to be verified	ACTL Help 🗢
	<f1> [e2] true</f1>	Start the Evaluation

Formal Methods && Tools Group - ISTI CNR