
1

CAFÉ - 1

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

Action-based Model Checking
(and its applications to distributed,

mobile, object-oriented systems)

A Tutorial

A. Fantechi, DSI - University of Florence, Italy
S. Gnesi, ISTI – CNR, Pisa, Italy

2003

CAFÉ - 2

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
Introduction

This tutorial aims to present the possibilities offered by
model checking tools for the verification of
distributed, mobile, object-oriented systems,
modelled by formalisms derived by process algebras.

2

CAFÉ - 3

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
Outline of the tutorial

First part:
• action-based logics interpreted over LTSs,
• discussion about their expressive power
• relations with process algebras.
• model checking algorithms and tools

Second part:
• examples of applications
• infinite state systems
• extensions to mobility
• …and what about UML????

CAFÉ - 4

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
Model checking

Model Checking:
“checking that a given structure is a model for a given
logical formula”.

in practice:
- specification language based on finite state automata,
process algebras, Petri nets
- model checking: proving that a formula in temporal
logic (expressing a desired property) is satisfied by the
automaton (or automata) that specifies the system

3

CAFÉ - 5

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
Model Checking (Clarke/Emerson, Queille/Sifakis- 1981)

MC

yes
AG([p] EF<q> true)

ACTL
Formula

algorithm

p

q

Finite-state model

no

p ≠q

Counter-example

…
≠q ≠q

CAFÉ - 6

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
States or actions?

CTL, the branching time temporal logic most used in model
checking (EMC, SMV,…) is based on predicates on the
states

CTL models are Kripke Structures, that is transition systems
where the states are labelled by a set of atomic predicates

LTL, the linear time temporal logic used by SPIN has linear
models: execution traces, sequences of states labelled by
atomic predicates

Success of model checking techniques in hardware
technology: a state is a bit vector

4

CAFÉ - 7

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
States or actions?

Model checking techniques in software technology: states are
variables’values.

But often many aspects of software (and the most interesting
ones for the classes of reactive, concurrent, distributed
software) are often seen as events, and event-based
transistion systems are often used as models

Process algebras have been recognized, since two decades,
as a useful mean to model the behaviour of a system,
abstracting from data and functions.

CAFÉ - 8

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
States or actions?

In process algebras, a system is seen as a set of
processes, and each process is characterised by the
actions performed in the time by the process.

Hence a model checker focusing on actions, rather than
states, is able to address the whole word of systems
commonly modelled with process algebras, and with
languages derived by process algebras. These systems
include concurrent and distributed systems, mobile
systems, and cover the behavioural aspects of object-
orented systems.

5

CAFÉ - 9

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
The ACTL logic: syntax

 ACTL Syntax --> f ::= true | ~ f| f L f | E f | A f

(state formulae)
 g ::= Xc f | Xt f | f c U c f ’ | f c U f’

(path formulae)

Action formulae --> c ::= a | ~ c| c L c | c | c

• ACTL Semantics
The satisfation of an ACTL formula is inductively defined
over labelled transition systems

CAFÉ - 10

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
Preliminary definitions

A labelled transition systems (LTS) is a 4-tuple A=(S, s0, Act, Æ), where:
S is a finite set of states; s0 is the initial state;
 Act is a finite set of observable actions;
 Æ Õ S¥Act¥S is the transition relation between states.

We denote by s -aÆ s', a Œ Act, the transition from the state s to the
state s' by executing a; in particular, s -aÆ s' indicates that a system
in state s can perform a transition to state s' by executing the action
a.
Da(s) = {s’ | s -aÆ s'} set of successors of s
P(s) is the set of paths starting from s; a path is a sequence of
successive transitions.

6

CAFÉ - 11

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
ACTL semantics

CAFÉ - 12

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
Action indexed Untils

f

t ⁄

f

t ⁄

f¢
t ⁄

f

length ≥ 0

bn

b2

f

b1
f

t ⁄

f

t ⁄

f
t ⁄

f¢

f
b1

b2

bn

f

a

 j cUc' j' j cU j'

where b1|= c, ..., bn |= c and a |= c'

7

CAFÉ - 13

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
Derived modalities

Hennessy-Milner “weak” modalities, [] < >:
<a>f = E(ttffUa f) (There exists a visible transition labelled by a)

[a]f = ¬ <a> ¬ f (For all transitions labelled by a,….)

CAFÉ - 14

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
Universal derived modalities

8

CAFÉ - 15

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
Existential derived modalities

CAFÉ - 16

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
Other examples

9

CAFÉ - 17

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
Safety and liveness properties

Classical distinction of properties of reactive systems:

• Liveness properties (something good eventually happens)

• Safety properties (nothing bad can happen)

 AF EXgood true

AG ¬EXbad true (= ¬EF EXbad true)

CAFÉ - 18

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F Relations between ACTL and
process algebras

 A logic L is adequate with respect to an equivalence@ ,
if for every pair of processes q and q', q @ q' holds if
and only if q and q' satisfy the same set of ACTL
formulas.

The ACTL logic is adequate with respect to
strong bisimulation equivalence on LTSs

Therefore minimization by strong bisimulation
preserves ACTL formulae.

10

CAFÉ - 19

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F Relations between ACTL and
process algebras

Distinctive feature of ACTL and of
 Process algebras (vs. CTL/Kripke Structures):
 explicitation of the unobservable action Tau
(in Kripke Structure internal moves are
 modelled by stuttering)

The ACTL-X (ACTL without next) logic is
adequate with respect to branching
 bisimulation equivalence on LTSs

CAFÉ - 20

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F Variants of ACTL and other action-
based logics

“Machine readable” syntax
E[f{c}U{c'}f'] instead of E(f cUc f’)
EX{c}true instead of Exc true

Strong version of HML modalities:
<a>f = EXa f [a]f = ¬ <a> ¬ f

Unless [Meolic]
E[f{c}W{c'}f'] = E[f{c}U{c'}f'] | EG f{c}
A[f{c}U{c'}f'] = A[f{c}W{c'}f'] & AF {c'}f’

Eventually an action
EF{c}f = E[true{true}U{c}f]

11

CAFÉ - 21

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F Variants of ACTL and other action-
based logics

Expressive power of ACTL w.r.t. CTL:
CTL have more expressive power than ACTL

(CTL can predicate over conjunctions of
actions labeling a transition)

Expressive power w.r.t. mu-calculus:
 ACTL properties can be expressed in mu-

calculus

CAFÉ - 22

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F Variants of ACTL and other action-
based logics

m-ACTL is an extension with a fixed point operator of
ACTL

m-ACTL embeds the idea of "evolution in time by
actions"

 j ::= true | ~ j | j&j | Eg | Ag | <a> j | mY.j (Y)
 g ::= X{a}j | Tj | j {a} U {a'} j' | j {a} Uj'

The satisfation of a m-ACTL formula is defined
inductively over a Labelled Transition System

12

CAFÉ - 23

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F Relations between ACTL and
process algebras

• m-ACTL is adequate w.r.t. strong bisimulation @

A logic L is adequate with respect to @, if for every pair of
processes q and q', q @ q' holds if and only if q and q'
satisfy the same set of ACTL formulas.

• m-ACTL is able to express safety, liveness and cyclic
properties of concurrent systems.

• m-ACTL has the same expressive power than m-
calculus

• m-ACTL is expressive w.r.t. strong bisimulation.

CAFÉ - 24

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
Basic model checking algorithm

We present a model checking algorithm for (a subset of)
ACTL, directly derived by the Clarke-Emerson-Sistla
1986 algorithm

The algorithm proceeds visiting the automaton and
labelling each state with the set of subformulae of the
formula to be checked, that are satisifed in that state
(following the satisfaction relation |= used for
defining the semantics of the logic).

The subset considered is composed of state formulae:

P := true | ~P | EX{act}P | E[P{act}U P]

13

CAFÉ - 25

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F (Explicit) Model checking algorithm
!

for i =1 to length(p0)
 for each subformula p of p0 of length i
 case on the form of p

p = true /* nothing to do */
p = q and r: for each s in S

if q in L(s) and r in L(s) then add q and r to L(s)
end

p = ~q: for each s in S
 if q in L(s) then add ~q to L(s)
end

p = EX{a}q: for each s in S
if (for some t in S, s-a‡t, q in L(t)) then add EX{a}q toL(s)
end

p = E[q {a}U r]: for each s in S
if r in L(s)
then add E[q {a}U r] to L(s)
end
for j = 1 to card(S)
 for each s in S

if q in L(s) and (for some in S, s-a‡t or s-t‡t, E[q {a}U r] in L(t))
 then add E[q {a}U r] to L(s)

 end
end

end of case
 end
end

CAFÉ - 26

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

Looking for a “bad”
transition

14

CAFÉ - 27

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

Formula expressing:
there exists no path that executes the bad transition.

~ EF EX{!k} true
Length = 2

Length = 3

Length = 4

Note that EF p = E[true{true}U p]

CAFÉ - 28

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
Labeling

Length = 2

Length = 3

Length = 4

EX{!"k"}true

EFEX{!"k"}true

EFEX{!"k"}true

~EFEX{!"k"}true

~EFEX{!"k"}true

~EFEX{!"k"}true

~EFEX{!"k"}true

~EFEX{!"k"}true

15

CAFÉ - 29

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
Counterexample

• The labeling alghoritm permits, in the
caso of negative result, to find out the reason of
the result, since it is possible to find all those
states that do not verify some significant
subformula, and hence contribute to the failure
of the verification;
in general, model-checking alghoritms are able
to provide a counterexample: for example, a
path in the model that does not verify the
(sub)formula. !

CAFÉ - 30

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F Counterexample generation with AMC

top > load "/home/fantechi/jackov/Tzeroprimo.fc2"
Taking input from /home/fantechi/jackov/Tzeroprimo.fc2...
time: (user: 0.00 sec, sys: 0.00 sec)

top > eval
Evaluate mode. Graph 0

|= ~EF EX{!k} true

The formula is FALSE in state 0 time: (user: 0.00 sec, sys: 0.00 sec)

|= why
why: (~ EF EX {!"k"} true) false 0

 0 :(EF EX {!"k"} true)(1) is true

choice ?
|= why
why: (EF EX {!"k"} true) true 0

 0 :
 |
 | labelled by : ?1
 |
 2 :
 |
 | labelled by : ?3
 |
 4 :(EX {!"k"} true)(1) is true

16

CAFÉ - 31

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
Computational Complexity

Computational Complexity of this algorithm is in the worst
case (Until formulae):

O(length(p0) * card(S) * (card(S)+card(R)))

where card(S) is the number of states and card(R) is the
number of transitions.

An immediate optimization in the search produces a
complexity:

O(length(p0) * (card(S)+card(R))) !

CAFÉ - 32

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
State space explosion

Though the explicit model chcking algoithms are linear in
the state space, is this space that often have a
challenging size.

Indeed, in concurrent systems, the state space grows
exponentially with the number of independent
processes.

The state space is explicitly represented (e.g. by a matrix
representing the transition relation), so tools capacity is
limited by memory (no more than one million states)

A symbolic representation of the state space has been
adopted to address large state spaces.

17

CAFÉ - 33

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F Symbolic Model Checking

Method used by most “industrial strength” model checkers:

 uses boolean encoding for state machine and sets of states.

 Can handle much larger designs – hundreds of state
variables.

 BDDs traditionally used to represent boolean functions.

CAFÉ - 34

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
Ordered Decision Tree

18

CAFÉ - 35

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
Ordered Decision Tree

CAFÉ - 36

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
Binary Decision Diagram

19

CAFÉ - 37

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
Binary Decision Diagram

CAFÉ - 38

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
BDD encoding

How to represent state-transition graphs with Ordered
Binary Decision Diagrams:

Assume that states are encoded by n boolean variables
v1, v2, …, vn.
Possible actions are encoded by m boolean variables
a1, a2, …am

The Transition relation T will be given as a boolean formula
in terms of the state and action variables:

T(v1,…, vn, a1, a2, …am, v’1,…, v’n)
Which gives true if there is a transition leaving the current

state v1,…, vn, labelled by action a1, a2, …am, and with
next state v’1,…, v’n

Now convert T to a OBDD!!

20

CAFÉ - 39

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

Similar encodings can be done for ACTL formulae, through
encoding boolean operators, quantifiers, and fixed points.

Model checking then amounts to a few implication-like
boolean operators on the BDDs of the LTS and of the formula

The evaluation of this operator is also reduced to a
BDD traversal

‡ very efficient in terms of memory occupation
‡ can handle millions of states easily

CAFÉ - 40

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F Other techniques for dealing with State
Explosion

• Use of simmetries in the model
• Abstraction techniques
• Compositional Reasoning (Assume/Guarantee)
• Abstract Interpretation
• LTS Minimization by equivalence
• Partial Order Reduction
• Model checking "On the Fly"(local model checking):
 lo stato globale dell'automa non viene costruito

completamente prima di applicare l'algoritmo di
etichettamento, ma vengono via via generate solo le
regioni dell'automa che sono strettamente necessarie a
verificare la formula

21

CAFÉ - 41

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
ACTL model checkers

AMC - Explicit model checker for ACTL inside the JACK
verification environment (ISTI- CNR)

FMC - On the fly model checker for ACTL inside the JACK
verification environment (ISTI- CNR)

Evaluator - inside the CADP verification environment
(INRIA): on-the-fly model-checking of regular
alternation-free mu-calculus formulas on LTSs. Regular
alternation-free mu-calculus allows direct encodings of
ACTL .

EST - Efficient Symbolic Tool: BDD- based model checker
for ACTL (University of Maribor)

…

CAFÉ - 42

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
INFINITE STATE PROCESSES

Non-finiteness due to:
– Data, variables,
– inherent behaviour of the system under specification: I.e.

Context-free or more.

we do not build an abstract (with respect to values) model on which
the properties are proved.

we define a suitable chain of finite labeled transition systems based
on the operational semantics: this allows us to choose the
approximation level case by case.

22

CAFÉ - 43

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
CCS process algebra

• CCS Syntax --> p::= m.p | nil | p+p | p||p |
p\A | x | p[f]

• CCS Semantics --> Operational semantics
 Labelled transition systems

(finite-non finite state)
 Behavioural equivalences

Example BAG:
 X = p1. (g1.nil | X) + p2.(g2.nil | X) non finite state

p1,p2 insertion of data values 1,2
g1,g2 extraction of data values 1,2

CAFÉ - 44

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
ACTL subsets

Finite ACTL
We say that f is a finite ACTL formula if f is an ACTL formula without
until operators.

Positive ACTL
We say that f is a positive ACTL formula if f is an ACTL formula
without negations (we admit negations in the action formulae).
The positive finite ACTL subset is defined analogously.

Depth of a finite formula
If f is a finite ACTL formula, the depth of f is the maximum number of
nested next operators occurring in f

23

CAFÉ - 45

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
Formulae preserved by preordes

A preorder £ over T preserves a formula f if:

(TS_1 |= f and TS_1 £ TS_2) implies TS_2 |= f

£s: Simulation preorder does not preserve universal positive formulae

Example:
Each path starts with an action a: AXa true

CAFÉ - 46

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

a a

a b

≤s

a b≤s

T1 =|AXa true
T2 ≠ |AXa true
T3 =|AXa true

 a

Simulation preorder and ACTL properties

T1 T2

T1 T3

24

CAFÉ - 47

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

Branching complete-simulation

Let TS1 and TS2 be LTSs and let s1 Œ S1 and s2 Œ S2.
We say that s2 BC-simulates s1 if there exists a strong BC-Simulation
that relates s1 and s2. R Õ S1 ¥ S2 is a strong BC-simulation if
(s1, s2) Œ R:

• either s1 - / Æ or
1) s1 - a Æ s1’ implies s2’: s2 - a Æ s2’ and (s1’, s2’) Œ R
2) s2 - a Æ s2’ implies s1’: s1 - a Æ s1’ and (s1’ , s2’) Œ R

TS2 BC-simulates TS1 (TS1 ≤bc TS2) if a branching complete
simulation R exists such that (s01, s02) Œ R

CAFÉ - 48

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

Bc-simulation

≤bc preserves the whole positive fragment of ACTL:

Proposition
Let TS1 and TS2 be LTSs and let f be a Positive ACTL formula:
• (TS1 |= f and TS1 ≤bc TS2) implies TS2 |= f

≤bc is more adequate than ≤s for proving properties.
The set of formulae preserved by ≤s is strictly included in
the set of formulae preserved by ≤bc .

25

CAFÉ - 49

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

a a

a b

≤bc

≤s

a b
≤bc

≤s

 a

BC-Simulation and ACTL properties

T1 T2

T1 T3

T1 =|AXa true
T2 ≠ |AXa true
T3 =|AXa true

CAFÉ - 50

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

Model checking by approximation chains

To model-check if a CCS description of a system enjoys properties
specified as ACTL formulae, its LTS is usually first built

This does not work when the system has a infinite-state
representation

Our approach for proving the validity of properties on infinite-
state system consists in checking the properties on the
elements of an "increasing”approximation chain of finite
transition systems, until the properties are verified.

Thus, in general, this is a semi-decision procedure for proving
properties.

26

CAFÉ - 51

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

Bc-simulation and approximation chains

Using the Bc-simulation preorder is it possible to define chains of
 finite LTSs that approximates the behavior of possible
infinite-state process.

Each element of the chain is finite and each Tsi is completely
included in Tsi+1.

Approximation chains can be used to define a decision procedure
to verify the satisfiability of ACTL formulae on
infinite-state processes

CAFÉ - 52

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

a b ≤bc a b

a b

≤bc a b

a b

a b

a b
≤bc

Approximating chains

27

CAFÉ - 53

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

a b

a b

b

a b≤bc

CAFÉ - 54

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F Example: BAG
X= p1. (g1.nil | X) + p2.(g2.nil | X)

•The bag is not a set,therefore there exists a computation path
on which it is possible to get twice the same value from the bag
consecutively: EF<g_1><g_1> true

•It is possible, on some (but finitely many) states to do a put
•immediately followed by a get action: EFEG<p_1><g_1> true

•There exists a computation path on which it is possible to do
infinitely often put actions: EGAF(E (true trueU p1|p2 true).

•It is always possible to perform a put action: AG EXp1|p2true

28

CAFÉ - 55

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

M2(X)

p1

g1.nil|x g2.nil|x

p2
M1(X)

x

X= p1. (g1.nil | X) + p2.(g2.nil | X)

M1 (X) |≠ EF<g_1><g_1> true
M2 (X) |≠ EF<g_1><g_1> true

CAFÉ - 56

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

M3(X)

M3(X) |≠ EF<g_1><g_1> true

M4(X) |= EF<g_1><g_1>true

29

CAFÉ - 57

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

Properties,

EFEG<p_1><g_1> true,
EGAF(E (true trueU p1 |p2 true),
AG EXp1| p2true
 are not verified by any Mi for each i

Their satisfiability implies detecting a cycle in the transition
system.
By induction on the length of the chain Mi it can be proved that no
cycle belongs to the transition systems of the chain.

Example: BAG
X= p1. (g1.nil | X) + p2.(g2.nil | X)

CAFÉ - 58

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

We have used another way of approximating systems which is based
on a different operational semantics, which allows us to prove a greater
set of properties than those proved by Mi, the SS semantics [DI93].

It is more abstract than SOS, since the SS rules have built in some
behavioral equivalence axioms, i.e. they accomplish some simplifications
on the terms during the derivations.

In this way it is possible to obtain more succinct LTSs than those
obtainable with the standard SOS rules.

Sometimes, the transition system obtained by using the SS rules
is finite while the SOS one is not.

SS approximations

30

CAFÉ - 59

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

N2(X)

N1(X)p1

g1.nil|x g2.nil|x

p2

SS approximations chains

CAFÉ - 60

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

N3(X)

31

CAFÉ - 61

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

Properties,
EF<g_1><g_1> true
is verified by N3

EFEG<p_1><g_1> true,
EGAF(E (true trueU p1|p2 true),
are verified by N2

AG EXp1| p2true
is not verified by any Ni for each i

Example: BAG
X= p1. (g1.nil | X) + p2.(g2.nil | X)

CAFÉ - 62

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
 p-logic: an extension of ACTL for mobility

Mobility is introduced, referring to the p-calculus formalism as
a basic process algebra able to express the typical issues of
mobility.
Model checking tools operating over pi-calcualus agent are
offered by the Mobility Workbench (MWB) and by the HD-
Automata Laboratory (HAL). The core of HAL are the HD-
automata: they are used as a common format for the various
history-dependent languages. The HAL environment includes
modules which support verification of behavioral properties of
pi-calculus agents expressed as formulae of suitable temporal
logics.

32

CAFÉ - 63

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F Variants of ACTL: Mobile systems

p-logic syntax -->
f ::= true | ~ f| f L f | E X{m}f | <m> f | E F f| E F{m}f

m ::= tau | x!y |x!(y) | x?y
E X{m}f strong next
<m> fweak next
E F f eventually
E F{m}f eventually guarded by m

As usual [m] f, AG f can be defined by duality
p-logic is adequate with respect to strong early bisimulation
equivalence

CAFÉ - 64

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
p-logic semantics

33

CAFÉ - 65

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

in?a in?b … …

P(in,out) ::= in?(x). out! x nil

out!a.nil
out!a

out!b.nil

out!b

nil nil

P(in,out)

...

 x,in,out Œ N

 N infinite sets of names

in, out: channels

x : place holder

THE SEMANTICS MODEL OF P IS:
INFINITE STATE

INFINITE BRANCHING

CAFÉ - 66

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

p-calculus requires an infinite number of states also for very simple
agents. The creation of a new name gives rise to an infinite set of
transitions: one for each choice of the new name.

In HD-automata names appear explicitly in states, transitions and
labels (local names) . Local names do not have a global identity.

In this way, for instance, a single state of the HD-automaton can
be used to represent all the states of a system that differ just
for a bijective renaming.

JACK for MOBILITY
HD -automata

34

CAFÉ - 67

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

in?(a) in?in

FROM HD-AUTOMATA TO LTSS
P(in,out) ::= in?(x). out! x nil

out!a.nil

out!a

out!in.nil

out!out

nil

P(in,out)

 in,out are the active names of P

 a fresh name

in?out

out!out.nil

out!in

CAFÉ - 68

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

 in?(x)
map:{a->out, b->x}

FROM p-calculus to HD-AUTOMATA
P(in,out) ::= in?(x). out! x nil

a!b.nil
names: {a,b}

a!b a!a

Nil
names: {}

P(in,out)
names:{in,out}

names:{...} local names
map:{a->out, b->x} embedding function
from names of the target state to the
source state
in?(x) input fresh name

in?out
map:{a->out}

a!a.nil
names: {a}

in?in
map:{a->out, b->in}

35

CAFÉ - 69

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
From p-logic to ACTL

A translation function exists from p-logic to ACTL

soundness : a p-logic formula is satisfied by a p -calculus agent P if
and only if the finite state ordinary automaton associated with P
satisfies the corresponding ACTL formula

The translation of a formula is thus not unique, but depends on the agent P.
Specifically, it depends on the set S of the fresh names of the ordinary
automaton associated with the agent P.

CAFÉ - 70

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
From p-logic to ACTL

36

CAFÉ - 71

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

in?(a) in?in

Model checking facilities
P(in,out) ::= in?(x). out! x nil

out!a.nil

out!a

out!in.nil

out!out

nil

P(in,out)

EX {in?u}EX{out!u} true (p-logic)

EX {in?(a)}EX{out!a} true (ACTL)
a fresh name

in?out

out!out.nil

out!in

CAFÉ - 72

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

The generation of the ordinary automaton associated with a pi-
calculus agent consists of two stages.

The first stage constructs an intermediate representation of agent's
behaviour as HD-automaton

The second stage builds the ordinary automaton starting from the HD-
automaton.
The generation of the ordinary automaton has been split into these
two steps to achieve modularity in the structure of the verification
environment and allows a more efficient implementation of the
second translation step.

JACK for MOBILITY

37

CAFÉ - 73

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F The HAL environment: an overview

HAL is written in C++ and compiles with the GNU C++
compiler (the GUI is written in Tcl/Tk).
 It is currently running on SUN stations (under SUN-OS)
 and
on PC stations (under Linux).

CAFÉ - 74

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F The HAL environment: an overview

map mapmap map

HD-automata

Unfold.

Ordinary automata Logic for ordinary automata
ACTL

CCS with
pi-calculus localities Petri nets

pi-calculus
logic

JACK

38

CAFÉ - 75

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F The HAL environment: an overview

map mapmap map

HD-automata HD-logic

Unfold. Unfold.

Model and
equivalence

Check
Minimization

Ordinary automata Logic for ordinary automata

CCS with
pi-calculus localities Petri nets

pi-calculus
logic

JACK

CAFÉ - 76

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

 The specification, GSM, describing the core of system is basically
composed by four modules:

 a Mobile Station MS, mounted in a car moving through two
different

Geographical areas (cells), that provides services to an end user;
 a Mobile Switching Centre MSC, that is the controller of the

radio
communications within the whole area composed by the two cells;
 the Base Station modules BSa and BSp, that are the interfaces

between
the Mobile Station;
 the Mobile Switching Centre.

HAL applications
handover protocol

39

CAFÉ - 77

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

define Car(talk,switch,out) =
 talk?(msg).out!msg.Car(talk,switch,out) +
 switch?(t).switch?(s).Car(t,s,out)

define Base(talkcentre,talkcar,give,switch,alert) =
 talkcentre?(msg).talkcar!msg.
 Base(talkcentre,talkcar,give,switch,alert)
 +
 give?(t).give?(s).switch!t.switch!s.give!give.
 IdleBase(talkcentre,talkcar,give,switch,alert)

define IdleBase(talkcentre,talkcar,give,switch,alert) =
 alert?(empty).Base(talkcentre,talkcar,give,switch,alert)

define Centre(in,tca,ta,ga,sa,aa,tcp,tp,gp,sp,ap) =
 in?(msg).tca!msg.Centre(in,tca,ta,ga,sa,aa,tcp,tp,gp,sp,ap)
 +
 tau.ga!tp.ga!sp.ga?(empty).ap!ap.Centre(in,tcp,tp,gp,sp,ap,tca,ta,ga,sa,aa)

define GSM(in,out) =
 (tca)(ta)(ga)(sa)(aa)(tcp)(tp)(gp)(sp)(ap) |(Car(ta,sa,out), Base(tca,ta,ga,sa,aa),
 IdleBase(tcp,tp,gp,sp,ap), Centre(in,tca,ta,ga,sa,aa,tcp,tp,gp,sp,ap))

HAL applications

CAFÉ - 78

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

 There are two kinds of correctness checking that can be
performed by exploiting HAL facilities.

One is the checking that the specification of the The
Handover Protocol is (early) bisimilar to a more abstract
service specification, that models the intended behaviour
of the system.

The other is the (model) checking of some interesting
properties.

HAL applications

40

CAFÉ - 79

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

define S0(in,out) =
 in?(v). S1(in,out,v)
 +
 tau. S0(in,out)

define S1(in,out,v1) =
 in?(v). S2(in,out,v1,v)
 +
 out!v1. S0(in,out)
 +
 tau. out!v1. S0(in,out)

define S2(in,out,v1,v2) =
 in?(v). S3(in,out,v1,v2,v)
 +
 out!v1. S1(in,out,v2)
 +
 tau. out!v1. out!v2. S0(in,out)

define S3(in,out,v1,v2,v3) =
 out!v1. S2(in,out,v2,v3)

define GSMbuffer(in,out) = S0(in,out)

HAL applications
a more abstract representation of GSM

CAFÉ - 80

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

Some logic formulae, describing that the protocol is reliable:, have been
expressed p-logic formulae.

no messages are lost: that is whenever a message is received from the external
environment through an input channel then it will be eventually
retransmitted to the end user via the output channel.

AG([in?m]EF<out!m>true)

in-order delivery: whenever three messages are sequentiallyreceived in sequence
through an input channel then the first message can be soon retransmitted
to the end user through the output channel.

 AG[in?m][in?n] ~ EF {~ out!n } EX { out!m } true

HAL applications

41

CAFÉ - 81

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

We summarize the figures (states, transitions and times) of
the different steps of a typical session of verification for
the handover protocol (GSM spec)

buildHD GSM.pi 506 745 37.52 sec.
reduceHD-red GSM.hd 245 484 1.19 sec.
buildFC2 545 1062 1.54 sec.
Minimize automaton 49 91 3.45 sec.
Model checking 6 sec.

» States Trans. Time

HAL applications

CAFÉ - 82

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F UMC model checker

A most recent approach to the specification of distributed
object-oriented processes is by using the proper UML
diagrams, such as the state diagrams, to express the
behavioural aspects of the overall design. Again, this tutorial
will address the issue of how action-based model checking
can be upgraded to deal with UML state diagrams: the UMC
model checker will be presented as an example.

42

CAFÉ - 83

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

m-ACTL+

Evolution formulae:

c ::= tt | [target.]event[(args)] | t | c Ÿ c | ÿ c

m-ACTL+ formulae:

F ::= true | F1 Ÿ F 2 | ÿ F |
 EX{c}F | AX{c}F | EF{t}F | EF F | min Y:F(Y) | Y |
 ASSERT(VAR=value)

CAFÉ - 84

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

L2TS

Doubly Labelled Transition System: (Q, q0, Act*+{tau}, R, L)

 (Q, q0, Act*+{tau}, R) is a LTS

 L is a labelling function L: Q Æ AP
 AP is a finite set of atomic propositions

 (tipically of the form VAR=value)

43

CAFÉ - 85

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

m-ACTL+ semantics 1

transition label |= evolution formula is the Satisfaction relation

a |= tt holds always

a |= ÿ c iff not a |= ÿ c

a |= c 1 Ÿ c 2 iff a |= c 1 and a |= c 2
a |= t iff a = tau

a |= [target.]event[(args)] iff a = e1;…;en 1 £ n and

 $ i, 1 £ i £ n : ei = target.event(args)

CAFÉ - 86

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

state |= formula is the Satisfaction relation

q |= ASSERT(VAR=value) iff VAR=value Œ L(q)
q |= true holds always

q |= ÿ F iff not q |= ÿ F

q |= F1 Ÿ F 2 iff q |= F 1 and q |= F 2

q |= EX{c}F iff $ q’ tale che q — aÆ q’, q’ |= F , a |= c

m-ACTL+ semantics 2

44

CAFÉ - 87

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

q |= AX{c}F iff $ q’ : q — aÆ q’, and

 " q’ : q — aÆ q’, q’ |= F , a |= c

q 0 |= EFF iff $ q 1 … q n ,, a 1 … a n , , 0 £ n : q n |= F

 and " i : 0 £ i < n, q i — a i+1 Æ q i+1

q 0 |= EF{c}F iff $ q 1 … q n ,, a 1 … a n , , 0 £ n : q n |= F

 and " i : 0 £ i < n, q i — a i+1 Æ q i+1 , a i |= c

q |= min Y:F(Y) iff " n: 0 £ n ⁄ (F n (ÿtrue)),

 where F 0 (Y) = F (ÿtrue) , Fn+1 (Y) = F(Fn (Y))

m-ACTL+ semantics 3

CAFÉ - 88

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

EX {Chart.my_event} true
in the current configuration the system can perform an evolution in which a state
machine sends the signal my_event to the state machine Chart.

EX {my_event(3)} true
in the current configuration the system can perform an evolution in which a state
machine sends the signal my_event(3)to some other state machine.

AG ((EX {my_event}true) -> ASSERT(Chart.Status=1))
the signal my_event can be sent, only when the object is in status 1.

m-ACTL+

45

CAFÉ - 89

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F UMC

•Development of Model checking techniques based on:

On the fly model checking UML State machines

• we have defined a procedure which builds the model of a complex system
 starting from its component subsystems (a network) while evaluating a formula.
• a network represents a concurrent system as a collection of synchronized agents
working in parallel.
• It is possible in this way to verify interesting properties also on systems for
which the state explosion problem makes other verification tools inapplicable

CAFÉ - 90

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

Evaluate (F: Formula, S: State) is
 if we have already done this evaluation and
 the result is available then
 return the already known result
 elsif we are are already trying to evaluate F in S then
 return true or false depending on maximum or minimum
 fixed point semantics
 else
 Keep track of the fact that we are trying to evaluate F in S
 -- (e.g. push the pair (F,S) in a stack)
 for each sub-formula F’and
 next state S' which needs to be evaluated loop
 call recursively Evaluate (F' S');
 if the result of Evaluate (F' S') is sufficient
 to establish the result of evaluate (F,S) then
 exit from the loop;
 end if
 end loop
 -- (at this point we have in any case a final
 result)
 Keep track of the fact that we are
 no longer trying to evaluate F in S;
 (e.g. pop the pair (F,S) from the stack)
 Possibly keep track of the performed evaluation and result (e.g. push the triple (F, S, result) in a hash table)
 return the final result
 end if
end Evaluate;

On the fly model checking

46

CAFÉ - 91

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F UMC assumptions

The whole sequence of actions constituting the actions part of statechart transition,
 is supposed to be executed as an indivisible atomic activity.

Given a model constituted by more than one state machine, a system evolution is
 constituted by any single evolution of any single state machine.

The propagation of signals inside a state machine and among state machines is
considered instantaneous, and loss free.

The events queue associated with a state machine handles its events in a FIFO way.

The relative priority of a join transition is always well defined and statically fixed.

CAFÉ - 92

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

47

CAFÉ - 93

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

CAFÉ - 94

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F UMC and the airport case study

48

CAFÉ - 95

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F UMC and the airport case study

CAFÉ - 96

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F UMC and the airport case study

49

CAFÉ - 97

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

We want to check if it is true that passengers can eat, only when their
plane is flying
(we have only one plane in the model "Plane1").
This can be done by checking the following formula:

AG ((EX { eating } true) ->
ASSERT(Plane1.Status=1))

The formula:

 max Z : < (~ eating) & ~ checkin_closed > Z

The above formula,, is true. I.e. there is some infinite path in which
nobody ever eats, and no check-in request are denied.

Proving properties

CAFÉ - 98

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F

Let us consider one of the simplest scenarios, constituted by
two airports (Airport1, Airport2), two Passenger (Traveler1,
initially located at Airport1, and Traveler2, initially located at
Airport2), and a single Plane (Plane1) traveling between
Airport1 and Airport2.

The system is composed by 5 objects, and originates a LTS
containing 18131 states and 55379 transitions.

Airport case study

50

CAFÉ - 99

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F
Open research issues

Another interesting research issue is the study of
counterexamples: one area of interest about
counterexamples is given by the possibility of
generating test cases from them; due to the common
practice that sees verification of hardware and software
ecomponents often effectively carried on by testing, can
we use counterexample to enhance testing coverage?

Particularly interesting in this sense is the possibility to
abandon simple linear counterexample in favour of
tree-like counterexamples or counterexample
autoamata.

CAFÉ - 100

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F References – Model checking
classics

E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for
branching time temporal logic. In Logic of programs: workshop, Yorktown
Heights, NY, May 1981, volume 131 of Lecture Notes in Computer Science.
Springer-Verlag,

J.P. Quielle and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proceedings of the Fifth International Symposium in
Programming, volume 137 of Lecture Notes in Computer Science. Springer-
Verlag, 1981.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Trans.
Programming Languages and Systems, 8(2):pages 244–263, 1986.

E. M Clarke, O. Grunberg, D. A. Pele, Model Checking, MIT Press, 1999
J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic

model checking: 1020 states and beyond. Information and Computation,
98(2):pages 142–170, 1992. K. L. McMillan. Symbolic Model Checking.
Kluwer Academic Publishers, 1993.

51

CAFÉ - 101

November 3, 03F M&&T
Formal Methods && Tools Group - ISTI CNR

F References – Action based Model
checking

De Nicola R, Vaandrager F.W. Actions versus State Based Logics for Transition Systems. Proc. Ecole de Printemps on Semantics of
Concurrency, Lecture Notes in Computer Science vol. 469, 1990, 407-419.

R. De Nicola, A. Fantechi, S. Gnesi, G. Ristori, "An action based framework for verifying logical and behavioural properties of
concurrent systems", Computer Networks and ISDN Systems, Vol. 25, N. 7, pp. 761-778, North Holland, Febbraio1993.

C. Bernardeschi, A. Fantechi, S. Gnesi, S. Larosa, G. Mongardi, D. Romano, "Formal Verification Environment for Railway
Signalling System Design", Formal Methods in System Design, Vol. 12, pp.139-161, 1998.

S. Gnesi, G.Ristori. A Model Checking Algorithm for p-calculus agents. In Advances in Temporal Logic, H. Barringer, M. Fisher, D.
Gabbay, G. Gough eds., Applied Logic Series, Vol. 16, Kluwer Academic Publishers, 2000, pp.339-358.

A. Fantechi, S. Gnesi, F. Mazzanti, R. Pugliese, E. Tronci A Symbolic Model Checker for ACTL, Applied Formal Methods -- FM-
Trends 98, LNCS 1641, Springer - Verlag, 1999.

S. Gnesi and F. Mazzanti, On the Fly Verification of Networks of Automata, International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA'99), special session on Current limits to automated verification for distributed
systems, CSREA Press, 1999 (Invited paper).

G. Ferrari, S. Gnesi, U. Montanari, M. Pistore, G. Ristori Verifying Mobile Processes in the HAL Environment, CAV’98, LNCS 1427,
Springer - Verlag, 1998.

C. Bernardeschi, A. Fantechi, S. Gnesi, "Formal Validation of Fault-tolerance Mechanisms inside GUARDS", Journal of Reliability
Engineering and System Safety, Vol. 71, n.3, Feb. 2001, pp. 261-270.

N. De Francesco, A. Fantechi, S. Gnesi, P. Inverardi, "Finite Approximations for Model Checking Non-finite-state Processes" , The
Computer Journal, vol 44 n. 2, 2001.

R. Meolic, T. Kapus, Z. Brezocnik, "An Action Computation Tree Logic With Unless Operator", SEEFM 2003, Thessaloniki, Greece,
November 20, 2003.

M. Hennessy, R. Milner, "Algebraic Laws for Nondeterminism and Concurrency", Journal of ACM, vol. 32, n. 1, January 1985, pp.
137-161.

R. Mateescu,M. Sighireanu Efficient On-the-Fly Model-Checking for Regular Alternation-Free Mu-Calculus Proceedings of the 5th
International Workshop on Formal Methods for Industrial Critical Systems FMICS'2000 (Berlin, Germany), April 2000

A, Bouali, S, Gnesi, S. Larosa S. The integration Project for the JACK Environment. Bulletin of the EATCS, 54, 1994, 207-223.

