
�ACTL
+
: A temporal logic for UML statecharts

diagrams

S. Gnesi1, F. Mazzanti1

Istituto di Scienza e Tecnologie dell'Informazione - ISTI - C.N.R., Pisa

1 Introduction

We present here the use UML statecharts for the design and the speci�cation of
the dynamic behavior of the airport system. A statechart diagram is de�ned for
each class of the model, providing a complete operational description of the be-
havior of all the objects of the class. The full system is then represented by a set
of class objects. The UML semantics [?,1,9, 11] associates to each active object
a state machine, and the possible system behaviours are de�ned by the possible
evolutions of these communicating state machines. All the possible system evo-
lutions can be formally represented as a Doubly Labelled Transition Systems [3]
in which the states represent the variuos system con�gurations and the edges
the possible evolutions of a system con�guration. The topology of the system
is modelled by an \atLoc" attribute, associated to each class, which represents
its locality. Mobility is realized by all the operations which update the atLoc
attribute of an object (the <<move>> operations).

The veri�cation of the system is done with a prototypal \on-the-y" model
checker (UMC) (cf. [7]) for UML statecharts. On-the-y veri�cation means in-
tuitively that, when the model checker has to verify the validity of a certain
temporal logic formula on one state, it tries to give an answer by observing the
internal state properties (e.g. the values of its attributes) and than by check-
ing recursively the validity of the necessary subformulas on the necessary next
states. In this way (depending on the formula) only a fragment of the overall
state space might need to be generated and analysed to be able to produce the
correct result (cf. [2, 4]). The logic supported by UMC, �ACTL+ (cf. [7]) is an
extension of the temporal logic �ACTL, (cf. [5]) which has the full power of
�-calculus (cf. [8]). This logic allows both to specify the basic properties that a
state should satisfy, and to combine these basic predicates with advanced logic
or temporal operators.

2 �ACTL
+

In this Section we describe the �ACTL+ logic. Before to introduce it we give a
slightly di�erent de�nition of Labelled Transition Systems [10], and of Doubly
Labelled Transition Systems [3]. The latter will be used as semantic models for
�ACTL

+ formulae.

De�nition 1 (Labelled Transition System) A Labelled Transition System
(LTS in short) is a 4-tuple (Q; q0; Act

� [ftaug; R), where:

{ Q is a set of states;
{ q0 is the initial state;
{ Act is a �nite set of observable events. tau is the unobservable event.
e ranges over Act, observable events have the form 00target:event(args)00;

{ Act� is a set of �nite sequences of observable events.
es ranges over Act� and es is equal to e1; : : : ; en;

{ Act� [tau is the set of evolution labels.
� ranges over Act� [tau. � denotes or a sequence es of observable events
or tau;

{ R � Q�(Act�[ftaug)�Q is the transition relation. Whenever (q; �; q0) 2 R

we will write q
�
�! q0.

De�nition 2 (Doubly Labelled Transition System) A Doubly Labelled Tran-
sition System (L2TS in short) is a 5-tuple (Q; q0; Act

� [ftaug; R;L), where
(Q; q0; Act

� [ftaug; R) is an LTS and L : Q�!2AP is a labelling function that
associates a set of atomic propositions AP to each state of the LTS.

Atomic propositions AP will typically have the form of VAR=value.

Before de�ning the syntax of �ACTL+ we introduce an auxiliary logic of
events.

De�nition 3 (Evolution formulae) Given a set of observable events Act, the
language EF of the evolution formulae on Act[ftaug is de�ned as follows (here
square parenthesis are used to denote optional parts):

� ::= tt j [target:]event[(args)] j � j :� j � ^ �

De�nition 4 (Evolution formulae semantics) The satisfaction relation j=
for evolution formulae (� j= �) is de�ned as follows:

{ � j= tt always
{ � j= [target:]event[(args)] i� � = e1; : : : ; en and exists i in 1 : : :n such that
e
i = target:event:(args)

{ � j= � i� � = tau

{ � j=� � i� not � j= �

{ � j= � ^ �
0 i� � j= � and � j= �

0

As usual, � abbreviates � tt and � _ �0 abbreviates � (� �^ � �0).
�ACTL+ is a branching time temporal logic of state formulae (denoted in

the following by �),

De�nition 5 (�ACTL+ syntax)

� ::= true j �1 ^ �2 j :� jASSERT (V AR = value) jAX�� jEX�� jEF�] jEF�� j �Y:�(Y) j Y

where Y ranges over a set of variables, state formulae are ranged over by �,
EX� is the indexed existential next operator and EF is the eventually operator.

2.1 �ACTL
+
semantics

The formal semantic of �ACTL+ is given over Doubly Labelled Transition Sys-
tems. Informally, a formula is true on an L2TS, if the set of evolutions of the
L2TS veri�es what the formula states. We hence say that the basic predicate
ASSERT (V AR = value)is true if and only if in the current con�guration (state)
the attribute V AR has value equal to value. The formula EX�� holds if there
is a successor of the current con�guration (state) which is reachable with an
evolution satisfying � and in which the formula � holds.

De�nition 6 (�ACTL+ semantics) The satisfaction relation for �ACTL+

formulae is de�ned in the following way:

{ q j= ASSERT (V AR = value) if and only if (V AR = value) 2 L(q);
{ q j= tt holds always;
{ q j= :� if and only if not q j= �;
{ q j= � ^ �0 if and only if q j= � and q j= �0;

{ q j= EXf�g� if and only if there exists q0 such that q
�
�! q0, q0 j= � and

� j= �;

{ q j= AXf�g� if and only if for all successor states qi of q, q
�

�! qi, qi j= �,
� j= � and q is not a �nal states;

{ q j= EF � if and only if there exist a sequence of states q0; : : : ; qn and

�1; : : : ; �n, with n � 0, such that q = q0
�1
�! q1 : : :

�n
�! qn and qn j= �.

{ q j= EFf�g� if and only if there exist q0; : : : ; qn with n � 0, such that:

q = q0
�1
�! q1 : : :

�n
�! qn and qn j= � and for each i �i j= �;

{ q j= �Y:�(Y) if and only if q j=
_

n�0

�
n(false), where �

0(Y) = Y and

�n+1(Y) = �(�n(Y)).

Several useful derived modalities can be de�ned, starting from the basic ones.
In particular, we will write AG� for :EF:�; the "forall" temporal operator. It
holds if and only if the formula � holds in all the con�gurations reachable from
the current state. �Y:�(Y) for :�Y::�(:Y); � is called the maximal �xpoint
operator. Note that having the �xed point operator de�ned in �ACTL

+
EF

and EF� could be de�ned from it. We have preferred to directly introduce them
to make easier the use of the logic to express properties of systems.

Following the above syntax we will write using �ACTL+ formulae such as:

EX {Chart.my_event} true

that means: in the current con�guration the system can perform an evolution in
which a state machine sends the signal myevent to the state machine Chart. Or
the formula:

AG ((EX {my_event}true) -> ASSERT(object.attribute=v))

meaning that the signal myevent can be sent, only when the object attribute
has value v.

2.2 Model checking of �ACTL
+

Coming back to the airport example, let us consider an extremely simpli�ed
version of the system composed of two airports, two passengers (one at each
airport), and one plane. The plane is supposed to carry exaclty one passenger
and yes (if it has passengers) between the two airports. Departing passengers
try to check in at the airport and than board the plane. We contemplate only
one observable action performed by the passengers during the ight, namely
the consumption of a meal. The complete dynamic behaviour of the objects of
classes Passenger, Airport and Plane, is shown in Fig. 1, and Fig. 2, in the form
of statecharts diagrams.

created

- [MyPlane /= null]
landing_request(P) /
 P.landing_delayed

checkin(D,T) [D=MyLink] /
 T.checkin_ok;
 MyPlane.allow_boarding(T,D)

HANDLING
BOARDING

landing_request(P) /
 P.landing_delayed

 checkin(D,T) /
 T.checkin_closed

HANDLING
CHECKIN

boarding_done /
 MyPlane.allow_takeoff

landing_request(P) /
 P.allow_landing

- [MyPlane = null]

landing_done(P)/
 MyPlane := P;

takeoff_done /
 MyPlane := null;

HANDLING
TAKEOFF

landing_request(P) /
 P.landing_delayed

 checkin(D,T) /
 T.checkin_closed

HANDLING
LANDING

HANDLING
ARRIVALS

 checkin(D,T) /
 T.checkin_closed

 checkin(D,T) /
 T.checkin_closed

landing_request(P) /
 P.landing_delayed

Fig. 1. Airport statemachine

The initial deployment of the system is de�ned by the following declarations

OBJECT CLASS INITIAL VALUE FOR ATTRIBUTES

Airport1 : Airport (MyLink => Airport2, MyPlane => Plane1)

Airport2 : Airport (MyLink => Airport1)

Traveler1: Passenger (atLoc => Airport1, Destination => Airport2)

Traveler2: Passenger (atLoc => Airport2, Destination => Airport1)

Plane1 : Plane (atLoc => Airport1)

BOARDING

LEAVING

LANDING

allow_takeoff /
 atLoc.takeoff_done;
 atLoc := null;
 T1.take_tray

allow_boarding(T,D) /
 T1 := T; MyDest:=D;
 T1.onboard(Self);
 atLoc.boarding_done

takeback_tray /
 MyDest.landing_request(Self)

allow_landing /
 MyDest.landing_done(Self);
 atLoc := MyDest;
 T1.deboard

landing_delayed /
 MyDest.landing_request(Self);

FLYING

BOARDING

- /
 atLoc.checkin(Destination,Self)

checkin_closed /
atLoc.checkin(Destination,Self)

EATING

DEPLANING

checkin_ok

onboard (Plane)/
 atLoc := Plane

take_tray /
 OUT. eating (Self);
 atLoc.takeback_tray

deboard /
 atLoc := Destination

STARTING

TRYING
CHECKIN

PASSENGER STATECHART PLANE STATECHART

Fig. 2. Plane and passenger statemachines

An example of property which can be veri�ed over this syestem is the fol-
lowing: It is always true that Traveler1 can eat only while he/she is ying on
Plane1. This property can be written in �ACTL+ as:

AG ((EX {eating(Traveler1} true) ->

(ASSERT (Traveler1.atLoc=Plane1) & ASSERT (Plane1.atLoc=null))

We whish to point out that that the development activity of UMC is still in
progress and we have reported here some preliminary results on its aplication
to the airport case study. Indeed several aspects of UML statcharts are not
currently supported (e.g. the execution of \synchronous call" operarations, the
use of \deferred events", the use of \history states"), and the logic itself needs
to be better investigated, (e.g. its relation with localities). Work in this direction
is planned in the next future.

References

1. M. von der Beeck, Formalization of UML-Statecharts, UML 2001 Confrence, LNCS
2185, Springer-Verlag, pp. 406-421, 2001.

2. G. Bhat, R. Cleaveland, O. Grumberg, E�cient on-the-y Model checking for

CTL*, in Proceedings of Symposium on Logics in Computer Science,pp. 388-397,

IEEE, 1995.

3. R. De Nicola, F. W. Vaandrager. Three logics for branching bisimulation Journal

of ACM. Vol.42 No.2,pp458-487,ACM, 1995.
4. J.-C. Fernandez, C. Jard, T. Jron, C. Viho, Using on-the-y veri�cation techniques

for the generation of test suites , in Proceedings of Conference on Computer-Aided

Veri�cation (CAV '96), LNCS 1102, pp. 348-359, Springer, 1996.

5. A. Fantechi, S. Gnesi, F. Mazzanti, R.Pugliese, E. Tronci, A Symbolic Model

Checker for ACTL, International Workshop on Current Trends in Applied For-

mal Methods, LNCS 1641, Springer - Verlag, 1999.

6. S.Gnesi and F.Mazzanti, On the y Veri�cation of Networks of Automata, in Pro-

ceedings of International Conference on Parallel and Distributed Processing Tech-

niques and Applications (PDPTA'99), CSREA Press, 1999.

7. S.Gnesi and F.Mazzanti, On the y model checking of communicating UML State

Machines, Isti Tecnical Report, 2003.

8. D.Kozen, Results on the propositional ��calculus, Theoretical Computer Science,
27:333-354, 1983.

9. D. Latella, I. Majzik, and M. Massink. Towards a formal operational semantics

of UML statechart diagrams, in Proceedings of IFIP TC6/WG6.1 FMOODS 99,
pages 331{347. Kluwer Academic Publishers, 1999.

10. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

11. R. Wieringa and J. Broersen. A minimal transition system semantics for lightweight
class and behavioral diagrams. ICSE98 Workshop on Precise Semantics for Soft-

ware Modeling Techniques, 1998

