
OCL 2.0 - UML 2003 Preliminary Version

Semantics of OCL Operation Specifications

Rolf Hennicker and Alexander Knapp and Hubert Baumeister

Ludwig-Maximilians-Universiẗat München
Institut für Informatik, Oettingenstraße 67, 80 538 München, Germany

+(49) 89 2180 9184
{hennicke,knapp,baumeist}@pst.informatik.uni-muenchen.de

Abstract

The semantics of OCL operation specifications is discussed from a model theoretic perspec-
tive. It is argued that the semantics of operation specifications as defined in the OCL 2.0
proposal is not compatible with the view of operation specifications as contracts between a
client and a supplier. As a solution, a semantics of OCL operation specifications based on
standard model theory is presented. This semantics introduces the concept of a model over
a UML class signature — which is a labelled transition system with output — together
with a notion of the satisfiability of an OCL operation specification w.r.t. a model. The
models respect the OCL features for methods with and without results, constructors, and
queries. Regarding inheritance, the combination of several OCL operation specifications is
introduced based on a lattice structure on models with respect to generalisation and refine-
ment. Satisfiability is parametric in the underlying signature, and thus the notion can be
transferred from UML class signatures to signatures including invariants.

1 Introduction

An important application area of the “Object Constraint Language” (OCL [13])
is the specification of preconditions and postconditions of operations occurring in
UML static structure diagrams. Although much work has been done to formalise
the semantics of the OCL expression language (see, e.g., [17,18,4]), much less ef-
fort is still spent on a detailed semantics of operation specifications which is needed
for an unambiguous interpretation of precondition and postcondition constraints.
Important questions that arise here concern the meaning of operation specifications
in the context of local and global invariants, the combination of constraints, the
inheritance of constraints, and the meaning of constructor and query specifications.

? This research has been partially supported by the GLOWA-Danube project (07GWK04) spon-
sored by the German Federal Ministry of Education and Research and the EC 5th Framework project
AGILE: Architectures for Mobility (IST-2001-32747).

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:hennicke@informatik.uni-muenchen.de
mailto:knapp@informatik.uni-muenchen.de
mailto:baumeist@informatik.uni-muenchen.de

Hennicker, Knapp, Baumeister

Suggestions for the semantics of OCL operation specifications have been pro-
vided by Bickford and Guaspari [2], Richters and Gogolla [15], Hennicker, Huß-
mann, and Bidoit [9], Brucker and Wolff [3], and the OCL 2.0 specification it-
self [13] based on Richters [14]. Given a constraint of the formC:: op(. . .)
pre: P post: Q, these approaches can be classified by two styles of interpreta-
tion, in the following called the “P⇒Q” style and the “P ∧Q” style (see also [3]).
TheP ⇒Q style ([2,15,9]) basically requires that if the preconditionP is satisfied
in the stateσ before the operation is performed then the postcondition is satisfied in
the stateσ′ after the execution of the operation. If the precondition is not satisfied
in σ then the operation yields an arbitrary result. On the other hand, theP ∧ Q
style ([3,13,14]) considers relations (or state transitions) between pre- and post-
states which simply do not contain any pair(σ, σ′) where the precondition is not
satisfied in the prestateσ. (For the time being, we deliberately neglect the issue of
termination and the semantic variants considered in [9].)

To discuss which approach is more appropriate, one needs a simple, intuitive
background which we believe is provided by the notion of acontractas described
by Meyer [12]. The contract principle assumes two actors, a client who uses (i.e.
calls) an operation and an implementor who realises the operation. Both actors
have responsibilities. The client has the responsibility to call an operation only in
a state where its precondition is satisfied. On the other hand, an implementor can
assume that the precondition is valid and must ensure that after execution of the
operation its postcondition is satisfied. If both actors fulfill their responsibilities it
is guaranteed that the system is executing correctly. Both views on a system, the
client’s view and the implementor’s view should be reflected by the semantics of
an operation specification which should characterise the correct system runs.

Indeed, it turns out that theP ⇒ Q style fits perfectly with the implementor’s
view, but does not take into account the obligations of the client because (arbitrary)
state transitions are possible if the precondition of the operation is not satisfied.
Hence this kind of semantics subsumes also incorrect system runs which can never
occur if the client fulfils his responsibilities. Such incorrect transitions are excluded
in theP ∧Q style to the semantics of operation specifications, which is adopted by
the OCL 2.0 specification. In this semantics, the following two specificationsSpec1

andSpec2 are semantically equivalent since they describe the same state transitions
(given by state pairs(σ, σ′) such thatσ satisfiesP and(σ, σ′) satisfiesQ):

Spec1 = context C:: op(. . .) pre: P post: Q

Spec2 = context C:: op(. . .) pre: true post: P@pre and Q

whereP@pre denotes the expression obtained fromP by replacing each property
namea occurring inP by a@pre.

However, when viewed as contracts, both specifications yield different obliga-
tions for the client and the implementor of the specifications. In the case ofSpec1

the client has to establish the preconditionP while the implementor has to establish
the postconditionQ under the assumption thatP holds. In the case ofSpec2 the
client has no obligation since the precondition istrue . The implementor, how-

2

Hennicker, Knapp, Baumeister

ever, must in any situation satisfy the postcondition ofSpec2 which may well be
impossible ifP is a proper precondition different fromtrue . Then the imple-
mentor can not fulfil his responsibility which means thatSpec2 is not satisfiable.
In practice, satisfiability is particularly important in the connection with invariants
which impose further constraints on correct realisations. The semantics according
to theP ∧ Q style does not reflect the important notion of satisfiability because it
is simple to construct specificationsSpec1 andSpec2 such thatSpec1 is satisfiable
butSpec2 is not, but nevertheless both specifications are equivalent according to the
P ∧Q style.

In this paper we present a semantics of OCL operation specifications that has
the benefits of theP ∧Q style and incorporates the view of pre- and postcondition
specifications as contracts, which allows us to distinguishSpec1 andSpec2. The
solution is based on model theory and mathematical logic where satisfiability is a
standard notion. Satisfiability of a formulaϕ means that there is a model ofϕ,
i.e. a structure for the chosen logic which satisfiesϕ. Hence we have to investi-
gate in the context of OCL appropriate notions of formula, model, and satisfaction
relation: Formulas are OCL operation specifications over a UML class signature;
models are a special class of labelled transition systems with output that respect the
contract view. Furthermore, we investigate the concept of correct realisations of
operation specifications and relate them to the notion of models (Sect. 3). The class
of models shows a lattice structure with respect to a generalisation ordering which
provides the means for combining operation specification, in particular in view of
inheritance of operation specifications (Sect. 4). Incidentally, the satisfaction rela-
tion following from the notion of models can be taken to be parameterised in the
class of signatures. Extending UML class signatures with invariant specifications,
the notion of formulas and models can be reused to include invariants (Sect. 5).

Besides employing Meyer’s contract paradigm, our approach combines several
well-known principles and results for operation specifications from formal specifi-
cation languages like Z, Object-Z, or VDM with OCL. Jones [10] makes the case
of implicit preconditions that may render a postcondition not satisfiable for some
states allowed in the explicit precondition, which has become known as the sat-
isfiability principle (cf. also [11]). The notion of generalisation between models
corresponds to the refinement relation as discussed by Derrick and Boiten [6].

2 Preliminaries

We briefly sketch the necessary prerequisites for interpreting OCL expressions.
More detailed accounts of a formal semantics for OCL’s navigational expression
language have been given by, e.g., Gogolla and Richters [17], Schmitt [18], Cen-
garle and Knapp [4], and the OCL 2.0 proposal [13] itself. However, we pay special
attention to undefined andnull values and their semantics in connection with at-
tributes and queries. This is to ensure that attribute and query valuations in states
may only mention objects that are indeed part of the state. Moreover, we distinguish
between attributes and queries in states, treating states as being uniquely defined by

3

Hennicker, Knapp, Baumeister

their instances and attribute valuations, but assigning queries a derived status.
OCL expressions are built inductively over a class signature and variables. An

OCL expression is evaluated over an environment, binding the expression’s free
variables; a prestate and a poststate that are used to retrieve the values of attributes
and opposite association ends; and a query interpretation.

Syntax. A class signatureΣ is defined over a UML static structure diagram. It
contains sort symbolsT for all classesT of the UML diagram, the predefined OCL
basic types likeInteger , the OCL collection types likeSet(T) , and the OCL
tuple types. The OCL type conformance rules are represented by a partial order
≤, the type subsumptionrelation, on the sort symbols. Finally, a class signature
containsoperations. These operations comprise the predefined OCL standard op-
erations, like_->includes(_) : Collection(T) × T → Boolean , and
operations induced by attributes, opposite association ends, and queries from the
UML static structure diagram. For example, ifa is an attribute of classC with type
D and multiplicity1, then the class signature contains an operation_. a : C → D.

Semantic domains. Each sort symbolT of a class signatureΣ is mapped into a
semantic domain ofvaluesJT K. The semantic domain of values over a class signa-
tureΣ is denoted byValueΣ and it is required that the domainsJT K are included
in ValueΣ. Every such domainJT K contains the special value⊥ for undefined.
For sort symbols induced by classes, we assume infinite sets ofobject identifiersas
semantic domains together with a constantnull denotingnull . We require that
T ≤ T ′ impliesJT K ⊆ JT ′K. In particular, this means that an object identifier for a
classD is also an object identifier for classC if D is a subclass ofC.

A statedefines a finite set of existing instances, or objects, for each class type
and the valuation of object attributes and association ends. The semantic domain
of states over a given class signatureΣ is written asStateΣ. Given a class typeC,
we writeJCKσ for the finite set of instances ofC that exist in stateσ together with
thenull constant; in particular⊥ /∈ JCKσ, butnull ∈ JCKσ. For an OCL basic type
T we setJT Kσ = JT K \ {⊥}. These definitions on class and OCL basic types are
extended canonically to OCL collection and tuple types. An attribute_. a : C → T
is evaluated on an object (identifier)o ∈ JCK, written asσ(o.a), yielding a value in
JT Kσ. We additionally requireσ(o.a) = ⊥ if, and only if o /∈ JCKσ \ {null}.

Evaluation. We assume suitable interpretationsJ. . .K for the OCL predefined op-
erations and term formers, like_->iterate(. . .) or _->exists(. . .) . These
operations do not depend on a state. Their interpretation has to be strict, i.e. when-
ever an argument is undefined then the result is undefined. The only exceptions
to this general rule are the boolean connectives_and_ , _or_ , and_implies_ ,
such that, for instance,J_and_ K(⊥, false) = false (see e.g. [17,4]).

An environmentover a class signatureΣ maps variables into values of the
semantic domain corresponding to the variable’s type, they are written as[x 7→
v, y 7→ v′] wherex, y are variables andv, v′ are values.

A query interpretationover a class signatureΣ is a function that maps each

4

Hennicker, Knapp, Baumeister

query operation symbol to a function on a state and the query arguments yielding a
value. Ifq : C × T1 × · · · × Tn → T0 is an operation symbol in a class signatureΣ
induced by a query of the UML static structure diagram, then a query interpretation
I mapsq to a function inStateΣ × JCK × JT1K × · · · × JTnK → JT0K such that
I(q)(σ, o, v1, . . . , vn) = ⊥ if (o, v1, . . . , vn) /∈ ((JCKσ \ {null}) × JT1Kσ × · · · ×
JTnKσ) andI(q)(σ, o, v1, . . . , vn) ∈ JT0Kσ ∪ {⊥} otherwise. By abuse of notation,
we writeqI(σ, o, v1, . . . , vn) instead ofI(q)(σ, o, v1, . . . , vn).

The evaluationof an OCL expressione over a class signatureΣ is written as
JeKβ,σ,σ′,I whereβ is an environment,σ andσ′ are states overΣ, andI is a query
interpretation overΣ. Note that the selection of the appropriate query interpreta-
tion for a query call on an object depends on the dynamic type of an object. For
example, ifx is a variable of typeInteger , Jx = 0 K[x 7→0],σ,σ′,I = true for all
statesσ, σ′ and for all query interpretationsI; and ifq : C → Integer is a query,
Jself.q@pre() + self.q() Kβ,σ,σ′,I = qI(σ, β(self)) + qI(σ′, β(self)).

3 Semantics of OCL Operation Specifications

The semantics of OCL operation specifications is modelled on Meyer’s contract
view of operation specifications [12]: The user, or client, of an operation has to
meet the operation’s precondition, the implementor, or supplier, of an operation
has to meet the operation’s postcondition, if the precondition has been satisfied.
More concretely, we take operation calls to induce transitions between states of a
system. In the semantics, a transition between states may only exist if both the
client and the supplier of the operation specification corresponding to the operation
call have met their respective duties, i.e., in the source state the precondition holds
and in the target state the postcondition holds. In fact, the postcondition may refer
both to the source and the target state. However, it may well be impossible to find
a state satisfying the postcondition depending on the source state. We are thus lead
to conditions on the satisfiability of OCL operation specifications when viewed as
contracts: On the one hand, the client should be able to call the operation. On
the other hand, the supplier must be able to reach a state where the postcondition
is satisfied, whenever the precondition holds. The latter condition corresponds to
the well-knownsatisfiabilityor feasibilityprinciple for operation specifications as
advocated by Jones [10].

Consider the (simple) example of an account specification in Fig. 1. In fact, the
operation specification ofwithdraw violates the feasibility principle, as subtract-
ing an arbitrary amount frombalance may make it impossible to satisfybalance
>= limit. According to the contract view, no transition system should be a model
of this operation specification. When, however, the precondition ofwithdraw is
strengthened tobalance >= limit and balance-a >= limit, the operation specifica-
tion becomes satisfiable.

We first define the particular notion of labelled transitions with output that forms
the general semantic domain of the semantics of OCL operation specifications.
Then we define the sets of states where a given precondition or postcondition is

5

Hennicker, Knapp, Baumeister

Account

−limit : Real
−balance : Real

withdraw(a : Real)

context Account:: withdraw(a : Real)
pre: balance >= limit
post: balance = balance@pre-a and balance >= limit

Fig. 1. UML/OCL specification for account example

satisfied. With these tools, we define the models of an operation specification and
the notion of satisfiability of an operation specification. The models of an operation
specification allow the precondition to be weakened and the postcondition to be
strengthened. However, we prove that a canonical model can be chosen as the
semantics of a satisfiable operation specification. This canonical model exactly
reflects the contract view. Finally, we define the possible implementations of a
satisfiable operation specification.

3.1 Labelled Transition Systems with Output

A labelled transition system with output over a class signatureΣ describes transi-
tions between states in a system. The states are given byStateΣ. The transitions
represent the possible changes of state induced by a call to an operation. Each tran-
sition is labelled by the operation name, the callee, and the actual arguments. As
operation calls may return a result, these outcomes are recorded in an additional
field of the labelled transition system.

For OCL, actually, the labels may take different forms, depending on which
kind of behavioural feature is called. We define the setLabelΣ to comprise the
following: For each method (with or without a result) or query of classC with
parameter typesT1, . . . , Tn the labelso.op(v1, . . . , vn) with o ∈ JCK and v1 ∈
JT1K, . . . , vn ∈ JTnK. For each constructor of classC with parameter typesT1, . . . , Tn
the labelsC(v1, . . . , vn) with v1 ∈ JT1K, . . . , vn ∈ JTnK. Analogously, result kinds
may differ. We define the setResultΣ to compriseValueΣ and a special result∗
that is used for methods without an explicit result.

Formally, alabelled transition system with output(ltso) over the class signature
Σ is a subset ofStateΣ × LabelΣ × StateΣ × ResultΣ. The domainof a Σ-ltso
S is given bydom(S) = {(σ, l) | ∃(σ′, r) . (σ, l, σ′, r) ∈ S}. Thecodomainof a
Σ-ltsoS for a setM ⊆ StateΣ × LabelΣ is given byS(M) = {(σ′, r) | ∃(σ, l) ∈
M . (σ, l, σ′, r) ∈ S}. We also writeS(σ, l) for S({(σ, l)}).

We define ageneralisationrelationv betweenΣ-ltsosS, S ′ as follows:S v S ′

if

(i) dom(S ′) ⊆ dom(S)

(ii) S(σ, l) ⊆ S ′(σ, l) for all (σ, l) ∈ dom(S ′).

6

Hennicker, Knapp, Baumeister

The generalisation relation corresponds to therefinementrelation for Z specifica-
tions (cf. [6]) and is a partial order onΣ-ltsos. Moreover, the ordering induces
universal meet (conjunction) and join (disjunction) operationsu andt for Σ-ltsos:
The meet of a family ofΣ-ltsos is aΣ-ltso that is less or equal than every single
member and the largestΣ-ltso fulfilling this condition, the join ofΣ-ltsos affords
the dual construction. Meet and join of a family ofΣ-ltsos(Sj)j∈J are explicitly
given by

d
j∈J Sj = {(σ, l, σ′, r) | (σ, l) ∈

⋃
j∈J dom(Sj),

(σ′, r) ∈
⋂
k∈{k∈J |(σ,l)∈dom(Sk)} Sk(σ, l)} ,⊔

j∈J Sj = {(σ, l, σ′, r) | (σ, l) ∈
⋂
j∈J dom(Sj),

(σ′, r) ∈
⋃
k∈{k∈J |(σ,l)∈dom(Sk)} Sk(σ, l)} .

As it stands, the notion ofΣ-ltsos does not include the interpretation of queries.
A query interpretation, in fact, presents a direct, functional way of expressing pos-
sible transitions in a system. The functional interpretation of query operations in
Σ must therefore becompatiblewith the transitions of aΣ-ltso, when both are ap-
plicable. We thus define asystemover a class signatureΣ as a pair(S, I) of a
Σ-ltso and a query interpretationI over Σ such that ifqI(σ, o, v1, . . . , vn) = v0

then (σ, o.q(v1, . . . , vn), σ, v0) ∈ S. The partial orderv on Σ-ltsos is extended
canonically to a partial orderv on Σ-systems:(S, I) v (S ′, I ′), if S v S ′ and
I andI ′ coincide. Note that for a fixed query interpretationI, meet and join of
families of systems(Sj, I)j∈J are well-defined by

d
j∈J(Sj, I) = (

d
j∈J Sj, I) and⊔

j∈J(Sj, I) = (
⊔
j∈J Sj, I), respectively.

3.2 Precondition and Postcondition Domains

The precondition and postcondition domains of an operation specification yield the
set of states or pairs of states where the precondition or postcondition of the oper-
ation specification holds. The definition of the precondition and the postcondition
domain is by case analysis on the form of the operation specification. The dif-
ferences between OCL operation specifications for methods with result, methods
without result, constructors, and queries are marginal, but warrant separate consid-
eration for a complete treatment. In the following, we detail the precondition and
the postcondition domain for operations specifications for methods with result; the
remaining cases are summarised in Table 1.

An operation specificationϕ over a class signatureΣ for a methodop with
result takes the general form

context T :: op(x1 : T1, ..., xn : Tn) : T0

pre: P
post: Q

where the OCL expressionP may contain as free variablesfv(P) only self and
x1, . . . , xn, the OCL expressionQ may contain as free variablesfv(Q) only self ,

7

Hennicker, Knapp, Baumeister

Method without resultϕ = context C:: op(x1 : T1, . . . , xn : Tn)
pre: P post: Q

Side condition:fv(P) ⊆ {self , x1, . . . , xn}, fv(Q) ⊆ {self , x1, . . . , xn}

preIΣ(ϕ) = {(σ, o.op(v1, . . . , vn)) | σ ∈ StateΣ, o ∈ JCKσ \ {null},
v1 ∈ JT1Kσ, . . . , vn ∈ JTnKσ,
JP K[self 7→o,x1 7→v1,...,xn 7→vn],σ,σ,I = true}

postIΣ(ϕ) = {(σ, o.op(v1, . . . , vn), σ
′, ∗) | σ, σ′ ∈ StateΣ, o ∈ JCKσ \ {null},

v1 ∈ JT1Kσ, . . . , vn ∈ JTnKσ,
JQK[self 7→o,x1 7→v1,...,xn 7→vn],σ,σ′,I = true}

Constructor ϕ = context C(x1 : T1, . . . , xn : Tn)
pre: P post: Q

Side condition:fv(P) ⊆ {x1, . . . , xn}, fv(Q) ⊆ {self , x1, . . . , xn}

preIΣ(ϕ) = {(σ,C(v1, . . . , vn)) | σ ∈ StateΣ,

v1 ∈ JT1Kσ, . . . , vn ∈ JTnKσ,
JP K[x1 7→v1,...,xn 7→vn],σ,σ,I = true}

postIΣ(ϕ) = {(σ,C(v1, . . . , vn), σ
′, r) | σ, σ′ ∈ StateΣ,

v1 ∈ JT1Kσ, . . . , vn ∈ JTnKσ, r ∈ JCKσ′ \ {null}, r /∈ JCKσ,
JQK[self 7→r,x1 7→v1,...,xn 7→vn],σ,σ′,I = true}

Query ϕ = context C:: op(x1 : T1, . . . , xn : Tn) : T0

pre: P post: Q

Side condition:fv(P) ⊆ {self , x1, . . . , xn},
fv(Q) ⊆ {self , x1, . . . , xn, result }

preIΣ(ϕ) = {(σ, o.op(v1, . . . , vn)) | σ ∈ StateΣ, o ∈ JCKσ \ {null},
v1 ∈ JT1Kσ, . . . , vn ∈ JTnKσ,
JP K[self 7→o,x1 7→v1,...,xn 7→vn],σ,σ,I = true}

postIΣ(ϕ) = {(σ, o.op(v1, . . . , vn), σ, r) | σ ∈ StateΣ, o ∈ JCKσ \ {null},
v1 ∈ JT1Kσ, . . . , vn ∈ JTnKσ, r ∈ JT0Kσ,
JQK[self 7→o,x1 7→v1,...,xn 7→vn,result 7→r],σ,σ,I = true}

Table 1
Precondition and postcondition domains

8

Hennicker, Knapp, Baumeister

result , andx1, . . . , xn. The reserved variableresult is used to refer to the
result value of a method call. (This is in contrast to constructors whereself
denotes the newly constructed object and thus the result of a constructor call.)

The precondition domain ofϕ w.r.t. a query interpretationI defines a set of
states and labels that satisfy the preconditionP of ϕ as follows:

preIΣ(ϕ) = {(σ, o.op(v1, . . . , vn)) | σ ∈ StateΣ, o ∈ JT Kσ \ {null},
v1 ∈ JT1Kσ, . . . , vn ∈ JTnKσ,
JP K[self 7→o,x1 7→v1,...,xn 7→vn],σ,σ,I = true}

In particular, the precondition domain only takes into account such values that in-
deed exist in the current stateσ (where for the sake of simplicity the valuenull is
assumed to exist in every state). For evaluating the preconditionP the single state
σ is used as prestate and poststate.

The postcondition domain ofϕ w.r.t. I likewise defines a set of pairs of states,
labels, and results that satisfy the postcondition ofϕ:

postIΣ(ϕ) = {(σ, o.op(v1, . . . , vn), σ
′, r) | σ, σ′ ∈ StateΣ, o ∈ JT Kσ \ {null},

v1 ∈ JT1Kσ, . . . , vn ∈ JTnKσ, r ∈ JT0Kσ′ ,

JQK[self 7→o,x1 7→v1,...,xn 7→vn,result 7→r],σ,σ′,I = true}

This definition and its companions in Table 1 do not cover all possible param-
eter kinds for operation specifications that could occur in the UML. We restrict
ourselves to in-parameters and a single return-parameter. The treatment of in-out-
parameters and out-parameters would call for reference types and locations; several
return-parameters can be handled by the OCL tuple types.

3.3 Models of OCL Operation Specifications

A model of an OCL operation specification over a class signatureΣ is aΣ-system
that respects the contract view of the operation specification: The precondition
domain using theΣ-system’s query interpretation must not be empty, in order to
ensure that the operation isusablefrom the client’s point of view. The precondition
domain must be included in the domain of theΣ-system’s ltso, in order to ensure
that when the operation is called within its precondition domain the operation is
realisablefrom the implementor’s point of view. Finally, all possible transitions in
theΣ-system’s ltso from the precondition domain must be covered by the postcon-
dition domain, in order to ensure that the postcondition indeed has been established
when the operation has been executed.

Let Σ be a class signature and letϕ be an operation specification overΣ. A
Σ-system(S, I) is aΣ-modelof ϕ, written as(S, I) |=Σ ϕ, if

(i) preIΣ(ϕ) 6= ∅;
(ii) preIΣ(ϕ) ⊆ dom(S);

(iii) {(σ, l, σ′, r) ∈ S | (σ, l) ∈ preIΣ(ϕ)} ⊆ postIΣ(ϕ).

9

Hennicker, Knapp, Baumeister

In accordance with general model theory we call an operation specificationϕ Σ-
satisfiable, if ϕ has aΣ-model.

Note that an operation specification is not only unsatisfiable due to unsatisfi-
able pre- or postconditions, but also when the postcondition implicitly restricts the
domain of the operation specification. Consider

ϕ = context C:: op() pre: P post: Q .

The implicit precondition domain of the operation specificationϕ is given by the
set {(σ, l) | ∃(σ′, r) . (σ, l, σ′, r) ∈ postIΣ(ϕ)}. A necessary condition forϕ to
be satisfiable is that the precondition domainpreIΣ(ϕ) is a subset of the implicit
precondition domain. For instance, taking up the account example in Fig. 1, the
operation specification forwithdraw indeed is not satisfiable due to the implicit
preconditionbalance - a >= limit.

3.4 Semantics of OCL Operation Specifications

The class ofΣ-models satisfying an operation specification, if non-empty, enjoys
the property that there is amaximalmodel with respect to a given query interpre-
tation. This distinguished model can be used to define the semantics of satisfiable
operation specifications and the equivalence of operation specifications.

In the maximal model, the application domain of an operation meets its precon-
dition domain and the application range includes all possible outcomes of the op-
eration as defined by its postcondition domain, representing full non-determinism.

Lemma 3.1 LetΣ be a class signature and letϕ be a satisfiable operation specifi-
cation overΣ, i.e. there exists aΣ-system(S, I) such that(S, I) |=Σ ϕ. Then

S = {(σ, l, σ′, r) ∈ postIΣ(ϕ) | (σ, l) ∈ preIΣ(ϕ)}

is the uniqueΣ-ltso such that(S, I) |=Σ ϕ and (S ′, I) v (S, I) for all Σ-systems
(S ′, I) with (S ′, I) |=Σ ϕ.

Proof. First of all, note that∅ 6= preIΣ(ϕ) by the satisfiability ofϕ. Furthermore,
preIΣ(ϕ) = dom(S) since for every(σ, l) ∈ preIΣ(ϕ) there areσ′ andr such that
(σ, l, σ′, r) ∈ postIΣ(ϕ), again by the satisfiability ofϕ, anddom(S) ⊆ preIΣ(ϕ) by
definition ofS. In particular,(S, I) |=Σ ϕ.

In order to prove that(S, I) is maximal, let(S ′, I) be someΣ-system with
(S ′, I) |=Σ ϕ. Thendom(S) = preIΣ(ϕ) ⊆ dom(S ′). Furthermore, if(σ, l) ∈
dom(S), thenS ′(σ, l) ⊆ postIΣ(ϕ)(σ, l) = S(σ, l). Thus(S ′, I) v (S, I). The
uniqueness ofS follows fromv being a partial order onΣ-systems. 2

In fact, the construction of the lemma coincides with
⊔
{(S, I) | (S, I) |=Σ ϕ}

with respect to a fixed query interpretationI. However, theΣ-satisfiability ofϕ
is crucial, as the disjunction over the empty family does not constitute aΣ-model
of ϕ.

10

Hennicker, Knapp, Baumeister

For a given query interpretationI, we thus define thesemanticsJϕKIΣ of a Σ-
satisfiable operation specificationϕ as the maximalΣ-model(S, I) with (S, I) |=Σ

ϕ. Two operation specificationsϕ1, ϕ2 areequivalentwith respect to a query in-
terpretationI, written asϕ1 'I

Σ ϕ2, if both areΣ-satisfiable andJϕ1KIΣ = Jϕ2KIΣ.
Note that the precondition domains of equivalent, satisfiable operation specifica-
tions coincide by construction of the maximal model.

Provided that the operation specificationϕ is satisfiable, our definition of the
semantics of an operation specification coincides with the semantics of the OCL 2.0
proposal [13] and Brucker and Wolff [3]. However, ifϕ is not satisfiable, our
semantics ofϕ is undefined while the OCL 2.0 semantics is still defined. Consider
again the two operation specifications from the introduction (Sect. 1):

ϕ1 = context C:: op() pre: P post: Q and
ϕ2 = context C:: op() pre: true post: P@pre and Q

On the one hand, ifϕ1 is satisfiable thenJϕ1KIΣ is defined and yields the same
relation between pre- and poststates as in theP ∧ Q style. On the other hand,
satisfiability ofϕ1 does not imply satisfiability ofϕ2 as, in general, condition (ii) in
Sect. 3.3 cannot be fulfilled, thus makingJϕ2KIΣ undefined.

3.5 Correct Realisations of OCL Operation Specifications

An implementor of a class signatureΣ provides for each operationop in Σ an
interpretation ofop in terms of a state transition function (possibly with result) for
a non-query method and a function on states for a query operation. This gives rise
to the notion of aΣ-interpretation extending the notion of a query interpretation
overΣ given in Sect. 2. To answer the question, when an implementor of a class
signatureΣ has correctly implemented an operation specificationsϕ, i.e. provided
a correctΣ-interpretation, we first define theΣ-system(SZ , IZ) induced by aΣ-
interpretationZ. ThenZ is considered a correct realization ofϕ if (SZ , IZ) is a
Σ-model forϕ.

A Σ-interpretationZ of a class signatureΣ is given by a query interpretation
IZ of the query operations together with a set of state transition functions for the
operations and constructors inΣ. Let op : C × T1 × · · · × Tn → T be an operation
with result inΣ. An interpretation ofop is a function:

opZC : StateΣ × JCK× JT1K× · · · × JTnK → (StateΣ × JT K) ∪ {⊥}

such that for allσ ∈ StateΣ, o ∈ JCK, v1 ∈ JT1K, . . . , vn ∈ JTnK:

opZC(σ, o, v1, . . . , vn) = ⊥

if (o, v1, . . . , vn) 6∈ JCKσ×JT1Kσ×· · ·×JTnKσ, o = null , oropZC(σ, o, v1, . . . , vn) 6∈
JT Kσ′ ∪ {⊥} otherwise. Similarly, an operation without a result(op : C × T1 ×

11

Hennicker, Knapp, Baumeister

· · · × Tn) and a constructorC : T1 × · · · × Tn → C are interpreted as functions

opZC : StateΣ × JCK× JT1K× · · · × JTnK → StateΣ ∪ {⊥}

and

CZ
C : StateΣ × JT1K× · · · × JTnK → (StateΣ × JCK) ∪ {⊥} ,

respectively. Non-termination and exceptions are modelled by the value⊥.
A Σ-interpretationZ gives rise to theΣ-system(SZ , IZ) defined by:

(σ, o.op(v1, . . . , vn), σ
′, r) ∈ SZ iff opZC(σ, o, v1, . . . , vn) = (σ′, r) 6= ⊥

for all operation symbols with result fromΣ and for allσ, σ′ ∈ StateΣ, v1 ∈ JT1Kσ,
. . . , vn ∈ JTnKσ, andr ∈ JT Kσ′. The labels for operation symbols without result,
constructors, and query operations are defined in a similar way (cf. Sect. 2 for query
operations).

Note that there is a one-to-one correspondence betweenΣ-interpretations and
deterministicΣ-systems. A deterministicΣ-system is aΣ-system where for each
stateσ all outgoing transitions have different labels.

A Σ-interpretationZ is a correct realisationof an operation specificationϕ
if (SZ , IZ) |= ϕ or, equivalently, if(SZ , IZ) v JϕKIZΣ for the Σ-system(SZ , IZ)
induced byZ.

Note that with our definition of a correct realisation, an implementation cor-
rectly realising an operation specification may be defined on more states and ar-
guments than on the states and arguments for which the precondition holds. This
is in accordance with the implementor’s view of the contract principle and corre-
sponds to theP⇒Q style (as has been observed by Brucker and Wolff [3]). Hence
our definition of a correct realisation differs from the corresponding definition in
the OCL 2.0 proposal where the domain of a correct operation realisation has to
coincide with the precondition domain of the operation specification.

4 Sets of OCL Operation Specifications and Inheritance

Operations may be specified not by a single OCL operation specification only, but
by several operation specifications. The contract view can be extended to include
sets of operation specifications for a single operation by the following reasoning:
As every single operation specification forms a contract, the client may choose to
fulfil the precondition of some operation specification out of the set in order to meet
his duties and may expect the postcondition of the chosen contract. The supplier,
however, is bound by all contracts simultaneously, i.e., when the operation is called
in a state of the precondition domain of some contract, he has to establish all post-
conditions of the contracts whose preconditions the state satisfies. Inheritance of
operations forms a special case of sets of operation specifications, if both the su-
perclass and the subclass define an operation specification for an operation. The

12

Hennicker, Knapp, Baumeister

SavingsAccount

Account

CheckingAccount

−interestRate : Real

−limit : Real
−balance : Real

withdraw(a : Real)

−count : Integer
−charge : Real

withdraw(a : Real)
addInterest()

payCharge()

context Account:: withdraw(a : Real)
pre: balance-a >= limit
post: balance = balance@pre-a and balance >= limit

context CheckingAccount:: withdraw(a : Real)
pre: balance-a >= limit
post: count = count@pre+1

context CheckingAccount:: payCharge()
pre: balance- count* charge >= limit
post: balance = balance@pre- count* charge and count = 0

Fig. 2. UML/OCL specification for extended account example

operation specification of the superclass yields a contract for the operation in the
subclass, too, since all instances of the subclass are also instances of the superclass.

Consider the extended example of an account specification in Fig. 2. When
calling withdraw on an instance ofCheckingAccount with an argument such that
both, identical, preconditions are satisfied, both postconditions, changing the bal-
ance and increasing the withdraw counter have to be established. If we replaced
the precondition ofwithdraw in CheckingAccount by true , the withdraw counter
would have to be increased on every call ofwithdraw on an instance ofCheckingAc-
count, independently of changing the balance. For calls ofwithdraw on instances of
SavingsAccount only the contract inherited fromAccount is in force.

4.1 Models of Sets of OCL Operation Specifications

In line with the model-theoretic view of operation specifications, a set of operation
specifications is considered as the conjunction of the single operation specifica-
tions. In particular, a set of operation specifications is considered satisfiable if all
operation specifications in the set are satisfiable simultaneously.

Let Σ be a class signature, and letΦ = {ϕ1, . . . , ϕn} be a set of operation
specifications overΣ. A Σ-system(S, I) is aΣ-modelof ϕ, written as(S, I) |=Σ Φ,
if (S, I) |=Σ ϕi for all 1 ≤ i ≤ n. Accordingly,Φ is calledΣ-satisfiable, if Φ has a

13

Hennicker, Knapp, Baumeister

Σ-model.
Necessarily, if a set of operation specifications is satisfiable, all elements of the

set are satisfiable as there is a common model. The reverse direction, however, does
not hold: Even if both

ϕ1 = context C:: op() pre: P post: Q and
ϕ2 = context C:: op() pre: P post: not Q

are satisfiable, there is, in general, no common model for{ϕ1, ϕ2} since there will
be no postcondition state satisfying bothQ andnot Q.

4.2 Semantics of Sets of OCL Operation Specifications

As for a single satisfiable operation specification, a satisfiable set of operation spec-
ification has a maximal model that we will use as its semantics.

Lemma 4.1 Let Σ be a class signature and letΦ = {ϕ1, . . . , ϕn} be a set of
operation specifications overΣ such that(S, I) |=Σ Φ for a Σ-system(S, I). Then

S = {(σ, l, σ′, r) | (σ, l) ∈
⋃

1≤i≤n preIΣ(ϕi),

(σ′, r) ∈
⋂
{postIΣ(ϕi)(σ, l) | (σ, l) ∈ preIΣ(ϕi), 1 ≤ i ≤ n}}

is the uniqueΣ-ltso such that(S, I) |=Σ Φ and(S ′, I) v (S, I) for all Σ-systems
(S ′, I) with (S ′, I) |=Σ Φ.

Proof. We first show that(S, I) |=Σ ϕi for all 1 ≤ i ≤ n. Indeed,preIΣ(ϕi) 6= ∅
by the satisfiability ofΦ and thus the satisfiability ofϕi. Furthermore, for every
(σ, l) ∈ preIΣ(ϕi) there is aσ′ and anr such that(σ′, r) ∈ S(σ, l) ⊆ postIΣ(σ, l).
By the satisfiability ofΦ, we have, in fact,S(σ, l) ⊆

⋂
j∈J(σ,l)

postIΣ(ϕj)(σ, l)

with J(σ,l) = {j | (σ, l) ∈ preIΣ(ϕj)}. Thus,
⋃

1≤i≤n preIΣ(ϕi) = dom(S). As⋂
j∈J(σ,l)

postIΣ(ϕj)(σ, l) = S(σ, l) for all (σ, l) ∈
⋃

1≤i≤n preIΣ(ϕi), consequently

(S, I) |=Σ Φ.
With the same reasoning, but replacing(S, I) by an arbitraryΣ-system(S ′, I)

with (S ′, I) |=Σ Φ, it follows that dom(S) =
⋃

1≤i≤n preIΣ(ϕ) ⊆ dom(S ′) and
S ′(σ, l) ⊆

⋂
j∈J(σ,l)

postIΣ(ϕj)(σ, l) = S(σ, l) for all (σ, l) ∈ dom(S) and thus

(S ′, I) v (S, I). 2

Extending the definition for a single operation specification, we define these-
manticsJΦKIΣ of a Σ-satisfiable set of operation specificationsΦ with respect to a
query interpretationI as the maximalΣ-model(S, I) with (S, I) |=Σ Φ. Two sets
of operation specificationsΦ1,Φ2 areequivalentwith respect to a query interpreta-
tion I, written asΦ1 'I

Σ Φ2, if both areΣ-satisfiable andJΦ1KIΣ = JΦ2KIΣ.
By the construction of the lemma, the semantics of aΣ-satisfiable set of opera-

tion specifications is

J{ϕ1, . . . , ϕn}KIΣ =
d

1≤i≤nJϕiK
I
Σ

14

Hennicker, Knapp, Baumeister

for a fixed query interpretationI. The semantics thus induces anormal formϕ for
theΣ-satisfiable set of operation specifications{ϕ1, . . . , ϕn} given by

ϕi = context C:: op() pre: Pi post: Qi

such that{ϕ} 'I
Σ {ϕ1, . . . , ϕn}: The preconditions are combined disjunctively,

while the postconditions are combined conjunctively for those preconditions which
are fulfilled simultaneously:

ϕ = context C:: op()
pre: P1 or . . . or Pn
post: P1@pre implies Q1

and . . . and
Pn@pre implies Qn

For instance, in the extended account example in Fig. 2, the normal form for
the operationwithdraw in the context ofCheckingAccount becomes:

context CheckingAccount:: withdraw(a : Real)
pre: balance-a >= limit
post: (balance@pre-a >= limit@pre) implies

(balance = balance@pre-a and balance >= limit and
count = count@pre+1)

as the contract forwithdraw in the context ofAccount is inherited toCheckingAc-
count.

5 Combining OCL Operation Specifications with Invariants

Class invariants constrain the possible states under which objects of a class can
be viewed from other objects. These state constraints also influence the satisfac-
tion of operation specifications, as both the preconditions and the postcondition are
implicitly strengthened by the class invariants.

Consider the example of a seminar specification in Fig. 3, see also [7,8]. The
invariant ofInstructor requires an instructor to be qualified for all assigned courses.
When callingchangeCourse on a session that has already been assigned to an in-
structor but using a course which the instructor is not qualified for, the invariant
would be violated, if only the course is changed. A realisation ofchangeCourse
would not only have to modify its course but also the sessions of the instructor,
removing this session. However, such a solution is hardly viable in the present sys-
tem as the multiplicity1 of the association end atInstructor requires each session
to have anInstructor assigned. A more appropriate solution is to strengthen the
precondition ofchangeCourse into instructor. qualifiedFor->includes(c) .

We take class invariants in a UML static structure diagram to extend the induced
class signatureΣ into a specification(Σ, A) with the class invariants as axiomsA.
This extension leads to a refined notion of precondition and postcondition domains,
as only states have to be considered that satisfy all invariants inA. The notions

15

Hennicker, Knapp, Baumeister

Instructor

Course

Session
*

1

1
sessions*

* sessions

qualifiedFor*

changeCourse(c : Course)

context Session:: changeCourse(c : Course)
pre: true
post: course = c

context Instructor
inv: qualifiedFor->includesAll(sessions. course)

Fig. 3. UML/OCL specification for seminar example

of model and satisfiability defined for plain class signaturesΣ can be transferred
to specifications(Σ, A). All properties, like existence of a maximal model of a
satisfiable operation specification or the combination of sets of operation properties
can be replayed in the extended setting.

5.1 Semantics of OCL Operations Specifications with Invariants

An OCL invariant specificationψ over a class signatureΣ takes the form

context C inv: V

whereC is a class inΣ andV may contain onlyself as a free variable. We define
the invariant domainof ψ with respect to a query interpretationI overΣ as

invIΣ(ψ) = {σ ∈ StateΣ | ∀o ∈ JCKσ \ {null} . JV K[self 7→o],σ,σ,I = true} .

This definition is extended to sets of invariant specificationsA by invIΣ(A) =⋂
ψ∈A invIΣ(ψ).

Given a class signatureΣ, a set of invariant specificationsA, and a query inter-
pretationI overΣ, we define the precondition and the postcondition domain of an
operation specification in the context of the invariant specificationsA by

preI(Σ,A)(ϕ) = preIΣ(ϕ) ∩ (invIΣ(A)× LabelΣ)

postI(Σ,A)(ϕ) = postIΣ(ϕ) ∩ (invIΣ(A)× LabelΣ × invIΣ(A)× ResultΣ)

A Σ-system(S, I) is a(Σ, A)-modelof ϕ, written as(S, I) |=(Σ,A) ϕ, if

(i) preI(Σ,A)(ϕ) 6= ∅;
(ii) preI(Σ,A)(ϕ) ⊆ dom(S);

(iii) {(σ, l, σ′, r) ∈ S | (σ, l) ∈ preI(Σ,A)(ϕ)} ⊆ postI(Σ,A)(ϕ).

16

Hennicker, Knapp, Baumeister

An operation specificationϕ is (Σ, A)-satisfiable, if ϕ has a(Σ, A)-model.
All consequences from the notion ofΣ-satisfiability remain valid for the ex-

tended notion of(Σ, A)-satisfiability. In particular, we define thesemanticsJϕKI(Σ,A)

of a (Σ, A)-satisfiable operation specificationϕ with respect to a query interpreta-
tion I as the maximalΣ-system(S, I) with (S, I) |=(Σ,A) ϕ.

5.2 Hierarchical Invariants

The effect of an invariant of some class on operation specifications requires to check
that all operations, also of remote classes, respect all invariants. An alternative ap-
proach is discussed by Baumeister, Hennicker, Knapp, and Wirsing [8]: Navigating
class invariants, i.e., class invariants using object properties that are not under ex-
clusive control of the class are forbidden. Instead, navigating invariants have to be
attached not to a class but to a higher-level container, called a component. Oper-
ations are classified into being private, component-private, and component-public.
Only component-public operations are visible to the outside of the component, pri-
vate operations are not visible outside their owning class. This classification and
the lifting of navigating invariants to components simplifies the obligations for the
different types of operations: Private operations need not respect any invariants,
component-private operations have to respect the corresponding class invariants,
while only component-public operations have to respect all class invariants and the
component invariants. In the example above, the static structure would be enclosed
in a subsystemSeminar lifting the invariant ofInstructor to Seminar:

context Seminar
inv: Instructor.allInstances()->forAll(i : Instructor |

i. qualifiedFor->includes(i. sessions. course))

If changeCourse is defined to be only component-private, it need not respect
the component invariant ofSeminar, as it can only be called inside the component.

This hierarchical approach to combining invariants with operation specifica-
tions can be modelled in the current setting by extending the signature of opera-
tions with private, component private, and component public tags for operations
and splitting the invariants into class invariants and component invariants. The se-
mantics of operation specifications is now defined by restricting the precondition
and postcondition domains only to those invariants that have to be respected by the
specific operation type.

6 Conclusions and Future Work

We have discussed the semantics of OCL operation specifications from the view-
point of contracts interpreting an operation specification’s precondition and post-
condition as obligations for a client and a supplier. A model of an operation speci-
fication contract is a labelled transition system with output respecting the contract’s
obligations, an operation specification is satisfiable if it has a model. The semantics
of a satisfiable operation specification is defined as the maximal model with respect

17

Hennicker, Knapp, Baumeister

to a general refinement relation. The refinement relation is also used to define cor-
rect realisations for operation specifications as deterministic labelled transition sys-
tems with output. The general model-theoretic treatment of operation specification
entails a seamless integration of the semantics of sets of operation specifications,
the semantics of operation-specification inheritance, and the combination of oper-
ation specifications with invariants.

The semantics of a single satisfiable operation specification coincides with the
transition relation semantics defined in the OCL 2.0 proposal [13] and also by
Brucker and Wolff [3]. However, pursuing the contract view, the notion of a model
of a contract makes use of the explicit OCL precondition and leads to a more fine-
grained distinction between operation specifications based on satisfiability. More-
over, the notion of labelled transition systems with output yields a global view on
the totality of interacting and collaborating objects, whereas the transition rela-
tion semantics is geared towards a single operation. The implementation-oriented
notion of correct realisations of operation specifications loosens the too restricted
definition in the OCL 2.0 [13], allowing implementations to be defined on a wider
domain than required by the precondition.

In our account of the semantics of OCL operation specifications, we have striven
to be precise on at least the essential features and peculiarities of OCL. However,
though the definitions distinguish between methods with and without result, con-
structors, and queries and respect queries as integral part of OCL, we have not
included all different kinds of parameters, like in-out-parameters, and also have ne-
glected feature overloading. Notwithstanding these omissions, an integration into
a formal proof environment like HOL-OCL [3] may seem of interest. More impor-
tantly from a modelling perspective, we have not included a discussion of the proof
obligations that result from operation specifications. Here, integration in the KeY
environment [1] or the USE tool [16] remains future work.

Acknowledgement. We would like to thank Michel Bidoit for useful suggestions
for improvements.

References

[1] Ahrendt, W., T. Baar, B. Beckert, M. Giese, R. Hähnle, W. Menzel, W. Mostowski
and P. H. Schmitt,The KeY System: Integrating Object-Oriented Design and Formal
Methods, in: M. Ojeda-Aciego, I. P. de Guzḿan, G. Brewka and L. M. Pereira, editors,
Europ. Wsh. Logics in Artifical Intelligence, Lect. Notes Artif. Intell.1919(2002), pp.
21–36.

[2] Bickford, M. and D. Guaspari,Lightweight Analysis of UML, Draft NAS1-20335/10,
Odyssey Research Assoc. (1998),http://www.omg.org/cgi-bin/doc?ad/
98-10-01 .

[3] Brucker, A. D. and B. Wolff,HOL-OCL: Experiences, Consequences and Design
Choices, in: J.-M. Jezequel, H. Hussmann and S. Cook, editors,Proc. 5th Int. Conf.
UML, Lect. Notes Comp. Sci.2460(2002), pp. 196–210.

18

http://www.omg.org/cgi-bin/doc?ad/98-10-01
http://www.omg.org/cgi-bin/doc?ad/98-10-01

Hennicker, Knapp, Baumeister

[4] Cengarle, M. V. and A. Knapp,OCL 1.4/5 vs. 2.0 Expressions — Formal Semantics
and Expressiveness, Software and Systems Modelling (2003), to appear.

[5] Clark, T. and J. Warmer, editors, “Advances in Object Modelling with the OCL,” Lect.
Notes Comp. Sci.2263, Springer, Berlin, 2002.

[6] Derrick, J. and E. Boiten, “Refinement in Z and Object-Z — Foundations
and Advanced Applications,” Formal Approaches to Computing and Information
Technology, Springer, London–&c., 2001.

[7] D’Souza, D. F. and A. C. Wills, “Object, Components, Frameworks with UML: The
Catalysis Approach,” Addison-Wesley, Reading, Mass., &c., 1998.

[8] Hennicker, R., H. Baumeister, A. Knapp and M. Wirsing,Specifying Component
Invariants with OCL, in: K. Bauknecht, W. Brauer and T. M̈uck, editors,Proc.
GI/OCG-Jahrestagung, books@ocg.at157/I, ÖGI (Austrian Computer Society),
2001, pp. 600–607.

[9] Hennicker, R., H. Hußmann and M. Bidoit,On the Precise Meaning of OCL
Constraints, in: Clark and Warmer [5] pp. 70–85.

[10] Jones, C. B., “Systematic Software Construction Using VDM,” Prentice Hall, Upper
Saddle River, New Jersey, 1990.

[11] Lano, K., “Formal Object-Oriented Development,” Formal Approaches to Computing
and Information Technology, Springer, London–&c., 1995.

[12] Meyer, B., “Object-Oriented Software Construction,” Prentice-Hall, Upper Saddle
River, New Jersey, 1997.

[13] Response to OMG RfP ad/00-09-03 “UML 2.0 OCL”, 2nd revised submission, OMG
(2003),http://www.omg.org/cgi-bin/doc?ad/03-01-07 .

[14] Richters, M., “A Precise Approach to Validating UML Models and OCL Constraints,”
Ph.D. thesis, Universität Bremen (2001).

[15] Richters, M. and M. Gogolla,A Semantics for OCL Pre- and Postconditions, in:
T. Clark and J. Warmer, editors,Proc. UML’2000 Wsh. UML 2.0 — The Future of
OCL, York, 2000.

[16] Richters, M. and M. Gogolla,Validating UML Models and OCL Constraints, in:
A. Evans, S. Kent and B. Selic, editors,Proc. 3rd Int. Conf. UML, Lect. Notes Comp.
Sci.1939(2000), pp. 265–277.

[17] Richters, M. and M. Gogolla,OCL — Syntax, Semantics and Tools, in: Clark and
Warmer [5] pp. 38–63.

[18] Schmitt, P. H.,A Model Theoretic Semantics of OCL, in: B. Beckert, R. France,
R. Hähnle and B. Jacobs, editors,Proc. Wsh. Precise Modelling and Deduction for
Object-Oriented Software Development, Technical Report DII 07/01 (2001), pp. 43–
57.

19

http://www.omg.org/cgi-bin/doc?ad/03-01-07

