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Abstract. In the context of test driven development, tests specify the
behavior of a program before the code that implements it, is actually
written. In addition, they are used as main source of documentation in
XP projects, together with the program code. However, tests alone de-
scribe the properties of a program only in terms of examples and thus are
not sufficient to completely describe the behavior of a program. In con-
trast, formal specifications allow to generalize these example properties
to more general properties, which leads to a more complete description
of the behavior of a program. Specifications add another main artifact
to XP in addition to the already existent ones, i.e. code and tests. The
interaction between these three artifacts further improves the quality of
both software and documentation. The goal of this paper is to show that
it is possible, with appropriate tool support, to combine formal specifi-
cations with test driven development without loosing the agility of test
driven development.

1 Introduction

Extreme Programming advocates test driven development where tests are used
to specify the behavior of a program before the program code is actually written.
Together with using the simplest design possible and intention revealing program
code, tests are additionally used as a documentation of the program. However,
tests are not sufficient to completely define the behavior of a program because
they are only able to test properties of a program by example and do not allow to
state general properties. The latter can be achieved using formal specifications,
e.g. using Meyer’s design by contract [21].

As an example we consider the function primes, that computes for a given
natural number n a list containing all prime numbers up to and including n.
Tests can only be written for special arguments of the primes function, e.g. that
primes(2) should produce the list with the number 2 as its only element, and
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that primes(1553) is supposed to yield the list of prime numbers from 2 up to
1533. Actually, a program that behaves correctly w.r.t. these tests could have the
set of prime numbers hard coded for these particular inputs and return arbitrary
lists for all other arguments. One solution is to move from tests to specifications,
which allow to generalize the tested properties. For example, the behavior of
primes would be expressed by a formal specification stating that the result of
the function primes(n) contains exactly the prime numbers from 2 up to n, for
all natural numbers n.

This example shows that formal specifications provide a more complete view
on the behavior of programs than tests alone. However, while it is easy to run
tests to check that a program complies with the tests, the task of showing that
a program satisfies a given specification is in general more complex. To at least
validate a program w.r.t. a specification, one can use the specification to generate
run-time assertions and use these to check that the program behaves correctly.

The study of formal methods for program specification and verification has
a long history. Hoare and Floyd pioneered the development of formal methods
in the 1960s by introducing the Hoare calculus for proving program correctness
as well as the notions of pre-/postconditions, invariants, and assertions [13, 10].
Their ideas were gradually developed into fully fledged formal methods geared
towards industrial software engineering, e.g. the Vienna Development Method
(VDM) developed at IBM [17], Z [23], the Java Modeling Language (JML) [19]
and, more recently, the Object Constraint Language (OCL) [25]—which again
originated at IBM—used to specify contraints on objects in UML diagrams. For
an overview of formal methods and their applications refer to the WWW virtual
library on formal methods [5].

An important use of formal specifications is the documentation of program
behavior without making reference to an implementation. This is often needed
for frameworks and libraries, where the source code is not available in most cases
and the behavior is only informally described. In general, the documentation pro-
vided by a formal specification is both more precise and more concise compared
to the implementation code because the implementation only describes the al-
gorithm used by a method and not what it achieves. Not only the literature on
formals methods, but also in the literature on the pragmatics of programming,
e.g. [15, 20], recommends to make explicit the assumptions on the code using
specifications because this improves the software quality.

The goal of this paper is to show that it is possible, with appropriate tool
support, to combine formal specifications with test driven development without
loosing the agility of the latter. This is done by using the tests, that drive the de-
velopment of the code, also to drive the development of the formal specification.
By generating runtime assertions from the specification it is possible to check
for inconsistencies between code, specifications, and tests. Each of the three ar-
tifacts improves the quality of the other two, yielding better code quality and
better program documentation in the form of a validated formal specification of
the program.
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Our method is exemplified by using the primes example with Java as the
programming language, JUnit1 as the testing framework, and the Java Model-
ing Language (JML) [19] for the formulation of class invariants and pre- and
postconditions for methods. We use JML since JML specifications are easily
understood by programmers, and because it comes with a runtime assertion
checker, [6], which allows to check invariants and pre- and postconditions of
methods at runtime.

2 Formal Specifications and Tests

As with test driven development, in our proposed methodology, tests are written
before the code. Either now or after several iterations of test and code devel-
opment, the properties that underly the tests are generalized into formal JML-
specifications. We then generate assertions from these specifications using the
JML runtime assertion checker. The invariants and pre- and postconditions are
finally validated during test runs. Any inconsistency between code, tests, and
formal specification will result in an exception. This leads to additional con-
fidence in the code, the tests, and the specification. Making the specification
underlying a set of tests explicit may reveal that some tests are still missing. On
the other hand, an exception thrown by the assertion checker is the result of an
error either in the code or in the specification. The method we propose has 5
steps:

1. Write the test
2. Implement the code
3. Refactor the code
4. Generalize the tests to a specification, and
5. Refactor the specification

Each of the steps is performed as needed, therefore not all the steps need to
appear in each iteration of our method.

2.1 Example

We continue the primes examples, introduced in Section 1, with Java as imple-
mentation language and the JUnit test framework. The goal is to implement a
static member function primes(int n) in class Primes that returns a list con-
taining an integer object if, and only if it is a prime number in the range from
2 up to and including n. The sequence of tests used in this paper follows closely
that of Beck and Newkirk [3], which uses the primes function as an example for
refactoring.

Step 1: Write the test. A first test for the primes function is to assert that
primes(0) returns the empty list.

1 www.junit.org
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public void testZero() {

List primes = Primes.primes(0);

assertTrue(primes.isEmpty());

}

Step 2: Implement the code. The obvious implementation just returns the empty
list.

public static List primes(int n) {

return new LinkedList();

}

Step 3: Refactor the code. Since the above code does not suggest any refactorings,
we omit the code refactoring step.

Step 4: Generalize the tests to a specification. The following JML specification
states that if n is 0 then the result should be the empty list.

public behavior

requires n == 0;

ensures \result.isEmpty();

The precondition is n == 0 and is given by the requires clause, and the postcon-
dition is \result.isEmpty() and is given by the ensures clause. The keyword
\result represents the result of the method. The keywords public behavior in-
dicate that the following is a public specification for the method primes(int n).
Note that the precondition n == 0 makes it obvious that we are not yet done
with specifying and implementing the primes method as we want our method to
work also with other inputs than 0.

Using the JML assertion generator, assertions for the pre- and postcondi-
tions of the JML specification are generated and integrated in the class file of
class Primes. Now the tests are run again and a JML exception is thrown if a
precondition or a postcondition is violated.

Step 5: Refactor the specification. In the next step we generalize the precondition
to n ≤ 1.

public behavior

requires n <= 1;

ensures \result.isEmpty();

This generalization step shows that a test is missing, i.e., primes(1).isEmpty().
However, we choose not to add a new test because this new test would not fail
and thus does not force us to change existing code [2].

This finishes the first iteration of our method. Since we are not done with
the implementation of the primes method, we proceed with the next iteration of
writing tests, code, and specifications.

Step 1: Write the test. The next test case tests that primes(2) returns the list
that contains as its only element an integer object with value 2.
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public void testTwo() {

List primes = Primes.primes(2);

assertEquals(1, primes.size());

assertTrue(primes.contains(new Integer(2)));

}

Step 2: Implement the code. The following implementation validates this test:

public static List primes(int n) {

List primes = new LinkedList();

if (n == 2) primes.add(new Integer(2));

return primes;

}

Step 4: Generalize the tests to a specification. The corresponding specification
looks as follows.

public behavior

requires n <= 1;

ensures \result.isEmpty();

also

requires n == 2;

ensures \result.size() == 1 &&

\result.contains(new Integer(2));

We use the also keyword to add a new pre- and postcondition specification to
an existent one. In this case, either n <= 1 is true, then \result.isEmpty()
has to be true, or n == 2 is true and then

\result.size() == 1 && \result.contains(newInteger(2))

has to hold. In the above case, both preconditions are disjoint; however, if both
preconditions are satisfied, then both postconditions also have to hold. As in the
first iteration, running the tests with generated assertions for the JML specifi-
cation yields no error.

Step 1: Write the test. After having dealt with the simple cases, we now deal
with more complex situations: we write a test that ensures that all the prime
numbers from 2 to 1000 are contained in the result of primes(1000).

public void testLots1() {

int n = 1000;

List primes = Primes.primes(n);

for (int i = 1; i <= n; i++) {

if (isPrime(i))

assertTrue(primes.contains(new Integer(i)));

}

}

The boolean function isPrime(int i) is an auxiliary function that returns true
if the argument is a prime number and false otherwise. It is given by the following
specification, which directly reflects the definition of prime numbers.
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public behavior

ensures

\result <==> (n > 1 && (\forall int i; i > 1 && i < n; n % i != 0));

The expression \forall var-decl; range-pred; pred; asserts that for all
values of the variables occurring in var-decl which satisfy range-pred, the
predicate pred has to hold. The range predicate range-pred and the predicate
pred may contain boolean expressions which in turn may contain Java methods
of type boolean which do not modify the state (called pure methods in JML).
Logical equivalence is written <==>.

An implementation satisfying the specification of isPrime is the following
(validated using the method presented in this paper):

public static boolean isPrime(int n) {

if (n < 2) return false;

for (int i = 2; i <= n/2; i++) {

if (n % i == 0) return false;

}

return true;

};

Step 2: Implement the code. The simplest implementation that passes testLots1
just returns a list with integer objects representing the integers from 2 to n.

public static List primes(int n) {

List primes = new LinkedList();

for (int i = 2; i <= n; i++) primes.add(new Integer(i));

return primes;

}

Step 4: Generalize the tests to a specification. Instead of writing a specification
for a fixed number (in our case 1000), we directly express the desired property
for arbitrary integers n.

public behavior

requires n <= 1;

ensures \result.isEmpty();

also

requires n == 2;

ensures \result.size() == 1 &&

\result.contains(new Integer(2));

also

requires n > 2;

ensures (\forall int i; i >= 2 && i <= n;

isPrime(i) ==>

\result.contains(new Integer(i)));

In the above, the symbol ==> denotes logical implication.
Looking at the specification we see that the implementation of the primes

function is not yet complete. We have checked that all prime numbers occur in
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the result of primes(n), but not that each number in the result of primes(n)
is a prime number. Therefore, we need an additional test.

Step 1: Write the test.

public void testLots2() {

int n = 1000;

List primes = Primes.primes(n);

for (Iterator e = primes.iterator(); e.hasNext();) {

int prime = ((Integer) e.next()).intValue();

assertTrue(isPrime(prime));

assertTrue(prime <= n);

}

}

Step 2: Implement the code. This test forces us to implement a more sophisticated
primes function. In our example, we use the sieve of Eratosthenes to compute
prime numbers. The idea is to remove all numbers k in the list from 2 to n which
are dividable by some number occurring before k. The following is a possible
implementation:

public static List primes(int n) {

List primes = new LinkedList();

for (int i = 2; i <= n; i++)

primes.add(new Integer(i));

for (int i = 0; i < primes.size(); i++) {

int prime = ((Integer) primes.get(i)).intValue();

for (int j = i + 1; j < primes.size(); j++) {

int value = ((Integer) primes.get(j)).intValue();

if (value % prime == 0)

primes.remove(j);

}

}

return primes;

}

Step 4: Generalize the tests to a specification. Again, the corresponding part of
the specification allows to abstract from the number 1000 to an arbitrary integer
n. Accordingly, our specification expresses that each element in the result is a
prime number.

public behavior

requires n <= 1;

ensures \result.isEmpty();

also

requires n == 2;

ensures \result.size() == 1 &&

\result.contains(new Integer(2));

also

requires n > 2;
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ensures (\forall int i; i >= 2 && i <= n;

isPrime(i) ==>

\result.contains(new Integer(i)));

also

requires n > 2;

ensures (\forall Integer i; \result.contains(i);

isPrime(i.intValue()));

After generating the assertions into the Primes class-file and running all the
tests, we see that no pre-/postcondition pair is violated.

Step 5: Refactor the specification. In contrast to Beck [1], who argues that tests
should not be refactored, we want to refactor specifications because we want to
use specifications also as program documentation. The result of the refactoring
yields a more concise specification as several pre- and postcondition pairs can be
eliminated: We can delete all those pairs that are logical consequences of other,
remaining pre/post pairs.

public behavior

ensures

(\forall int i; i >= 2 && i <= n;

isPrime(i) ==>

\result.contains(new Integer(i)));

&&

(\forall Integer i; \result.contains(i);

isPrime(i.intValue()));

By running the JUnit tests instrumented with the corresponding run-time asser-
tions generated from the JML specifications, we can be certain that we have not
produced a specification that conflicts with the code. However, we have over-
simplified the specification. This is not detectable by the tests. In this case the
specification does not ensures that primes(0).isEmpty() holds, as the list con-
taining new Integer(2) is in compliance with the specification. Considering this
case reveals a missing assertion in the specification and the tests: primes(n) may
contain prime numbers greater than n. It is questionable if we should modify
the tests as with the above implementation the tests would not reveal a failure.
Modifying the tests would therefore be in violation of the principle that test
should only be written if they fail first [2]. On the other hand, it would make
sense to include this condition in testLot2 to document this condition. In any
case, the condition needs to be added to the JML specification.

public behavior

ensures

(\forall int i; i >= 2 && i <= n;

isPrime(i) ==>

\result.contains(new Integer(i)))

&&

(\forall Integer i; \result.contains(i);

isPrime(i.intValue()) && i.intValue() <= n);
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The result of the presented process is a set of tests, code, and a specification
which ensure that the code implements the desired behavior, which is docu-
mented by the specification. We can now use this specification of primes to
describe its behavior without making reference to all the test cases and/or the
code. Note that the resulting primes specification is both much shorter and much
easier to understand than the tests and the code alone.

2.2 Advantages of Using Specifications

The advantage of specifications is that they provide an additional view on the
software which complements the test and implementation view. While the test
view describes the properties of a software in terms of examples, specifications
distill specific examples into more general properties. The description of the
behavior of a program using a formal specification is more abstract than the
tests and the implementation (which, in addition, is not always available) and
more precise than an informal textual description. A precise description of the
behavior of a program which is given independently from its implementation is
important, e.g., in the documentation of libraries or frameworks.

When the behavior of a program is given formally, that is, in computer under-
standable form, it is easy to derive properties of programs from the specification
or to use the specification to generate black-box tests that can be used by a
quality assurance team either automatically or at least semi-automatically. In
contrast to tests written by the developer during test driven development, the
generated tests are not biased by the programmer who has written the code.
Furthermore, we can also use these specifications as input to tools which allow
to verify that the code implements the specifications is actually correct, as we
will demonstrate below.

One problem with test driven development is that it is possible to write non-
tested code. This risk is minimized by the XP practices. With pair programming,
four eyes are looking at the code, and a rule of thumb with test driven develop-
ment is that each line of the production code has to be justified by tests. Our
method poses a similar problem: it may happen that a specification, consisting of
class invariants, pre- and postconditions, is not strong enough to logically imply
the tests. That is, a specification might not express everything that is covered by
the tests. The programmers who design the tests and the specification therefore
have to make sure that the tests are actually implied by the specification. This
is usually done by instantiating the abstract specification to concrete examples.
E.g. the test that primes(2) returns the list with 2 as its only element can be
obtained by instantiating n with 2 in our last specification of the primes method.
On the other hand, the specification may be too strong, that is, it could impose
stronger conditions than the tests. This case usually leads to failed assertions,
i.e. a violated pre-/postconditions or invariant, in the present or a later iteration.
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2.3 Validation vs Verification

The basic idea of the presented method is to annotate code with assertions
generated from a specification. During test runs, inconsistencies between tests,
specification, and code are detected, in which case an exception is thrown. Note,
that this method is only able to increase the confidence in the correctness of the
code and the specification, but does not guarantee that the code satisfies the
specification. As with tests, this method helps finding bugs but does not prove
the absence of errors. Still, it leads to more complete specifications and more
correct code compared to just separating the process of writing the specification
and of implementing the code. In addition, our method can be accompanied with
other tools, for example ESC/Java [9] for extended static type checking using a
sublanguage of JML, and Krakatoa [7] and the LOOP tool [24] for verifying that
the implementation meets its specification (cf. [16] for a more complete overview
of available tools for Java). Of course the effort to prove code correct with these
tools is considerably higher than the effort of validating the specification.

3 Conclusion

The method in this paper describes a practical way of combining formal spec-
ifications with test driven development which is geared towards XP. There are
already several approaches (cf. [12, 8, 11]) combining XP and design by contract.
These approaches try to replace tests by formal specifications by considering
tests as special kinds of specifications. The problem with these approaches is
that they need some means to either prove the code correct with respect to
the specification (which requires a considerable effort), or to generate test cases
from the specification. In our method, the test cases are designed in the usual
way within test driven development. This accounts for the observation that it is
easier to start with concrete examples and scenarios first and then generalize the
examples into specifications in a second step. In addition, we get a third view,
the specification view, on the software that complements the implementation
and the test view. Our method hence improves the quality of all three views.
A similar line of reasoning to the one presented here has been independently
developed by Ostroff et al. in the context of Eiffel [22].

For applications where security is relevant the specification view helps, on the
one hand, to develop more complete test suites than one usually gets with test
driven development. For example, one can generate tests from the specification
and the code (white-box and black-box tests), e.g. [4]. This is because the test
generation strives for a complete set of tests while the goal of tests in test driven
development is to drive the process of writing the program code. On the other
hand, the specification view is a prerequisite for proving programs correct. This
has been done, for example, in the context of smart cards using the JavaCard
API and JML, e.g. [14].

The presented method was used in the EU-project AGILE2 to develop a
multi-user dungeon (MUD) game played by several players using their mobile
2 Architectures for Mobility; www.pst.ifi.lmu.de/projekte/agile.
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phones. Players can interact with each other when they are in the same virtual
room. They can, for example, trade objects, fight, or talk. Writing the specifi-
cation revealed bugs in the code that were not detected by just using the tests
alone and also helped to find new tests because the specification provides a
more abstract view on the methods to be implemented. Vice versa, the use of
tests showed that often the first attempt on writing a specification fails, usually
because some specific cases are omitted.

The presentation of our method in this paper uses Java as the programming
language and the Java Modeling Language (JML) as the specification language.
However, the method is not restricted to the use of JML, Java, or even design
by contract. In the MUD game, for example, the Hugo model-checker [18] was
used in addition to JML to verify liveness and safety properties, e.g., that the
protocol for trading objects among players is deadlock free and that both players
agree on the outcome of a trade (i.e. successful or not successful).

Note that it does not always warrant the effort to maintain a specification
view on the code. One has to balance the quality of the software with the work
of maintaining the specification view. In situations where a concise and pre-
cise documentation of the behavior of a program independent from the code is
needed, or where an improved software quality is needed, e.g. in applications
where security is critical, the gain is worth the effort.
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