
Modelling Adaptivity with Aspects?

Hubert Baumeister, Alexander Knapp, Nora Koch, and Gefei Zhang

Ludwig-Maximilians-Universiẗat München
{baumeist ,knapp ,kochn , zhangg }@pst.ifi.lmu.de

Abstract. Modelling adaptive Web applications is a difficult and complex task.
Usually, the development of general system functionality and context adaptation
is intertwined. However, adaptivity is a cross-cutting concern of an adaptive Web
application, and thus is naturally viewed as an aspect. Using aspect-oriented mod-
elling techniques from the very beginning in the design of adaptive Web appli-
cations we achieve a systematic separation of general system functionality and
context adaptation. We show the benefits of this approach by making navigation
adaptive.

1 Introduction

Adaptive Web applications are an alternative to the traditional “one-size-fits-all” ap-
proach in the development of Web systems. An adaptive Web application provides more
appropriate pages to the user by being aware of user or context properties. Modelling
adaptive Web applications is a difficult task because general system functionality as-
pects and adaptation aspects are tightly interwoven. We propose to view adaptivity as a
cross-cutting concern and thus to use aspect-oriented modelling techniques to the mod-
elling of adaptive Web applications. The advantages of using aspects when modelling
adaptation are removing redundant modelling information, the increase in maintainabil-
ity of models, and the better modularity of designs by grouping interrelated facets [8]. In
particular, aspects make explicit where and how adaptivity interacts with the functional
features of the Web application.

We demonstrate how aspect-oriented modelling techniques for adaptivity can be
used to specify common types of adaptive navigation. In particular, we present aspects
for adaptive link hiding, adaptive link annotation and adaptive link generation [5]. Con-
tents adaptation and presentation adaptation can be described by similar means. This
demonstration is done in the context of the UML-based Web Engineering (UWE [12])
method and the SmexWeb (Student Modelled Exercising on the Web [1]) framework for
adaptive Web-based systems which has been developed at the University of Munich.1

The remainder of this paper is structured as follows: We first provide an overview
of UWE and of adaptivity in Web applications. Next, we present our approach to mod-
elling adaptivity with aspects. As a running example, we use a SmexWeb instance that
implements a lesson on the topic of EBNF (Extended Backus-Naur Form). We conclude
with a discussion of related work and some remarks on future research.
? Submitted for publication. This work has been partially supported by the EU project AGILE

(IST-2001-32747).
1 http://smexweb.pst.informatik.uni-muenchen.de



2 UML-Based Web Engineering

Separate modelling of Web application concerns is a main feature of UML-based Web
Engineering (UWE) as well as of other Web engineering methods. Thus, different mod-
els are built for each point of view: the content, the navigation structure, the business
processes, and the presentation. The distinguishing feature of UWE is its UML compli-
ance since UWE is defined in the form of a UML profile and an extension of the UML
metamodel (for more details, see [11,12]).

In UWE, the content of Web applications is modelled in a conceptual model where
the classes of the objects that will be used in the Web application are represented by
instances of�conceptual class� which is a subclass of the UMLClass. Relationships
between contents are modelled by UML associations between conceptual classes.

The navigation model is based on the conceptual model and represents the naviga-
tion paths of the Web application being modelled. A�navigation class� represents a
navigable node in the Web application and is associated to a conceptual class contain-
ing the information of the node. Navigation paths are represented by associations: An
association between two navigation nodes represents a direct link between them. Ad-
ditional navigation nodes are access primitives used to reach multiple navigation nodes
(�index� and�guided tour�) or a selection of items (�query�). Alternative navigation
paths are modelled by�menu�s.

A navigation model can be enriched by the results of the process modelling which
deals with the business process logic of a Web application and takes place in the process
model. The presentation model is used to sketch the layout of the Web pages associated
to the navigation nodes.

Figure 1 shows a simplified navigation model of our SmexWeb example [1]: an
EBNF lesson, in which a grammar for constructing mountains is developed. After an
introductory session, the user can select among three alternatives: “recognising moun-
tains” or “building mountains”, or to solve directly. First the user interactively solves
the exercise with the support of the system. Subsequently, the user can solve a similar
exercise without support.

Mountains
Recognising

Directly
Solving

EBNF−Knowledge
Applying

Introduction
EBNF−Session

Mountains
Building

recognising mountains
building mountains
solving directly

Fig. 1.SmexWeb: Navigation Model for the EBNF Lesson

2



3 Adaptivity

Adaptive Web applications are an alternative to the traditional “one-size-fits-all” ap-
proach in the development of Web systems. An adaptive Web application provides more
appropriate pages to the user by being aware of user or context properties. User prop-
erties are characteristics such as tasks, knowledge, background, preferences or user’s
interests. Context properties are those related to the environment and not to the users
themselves comprising both, user location (place and time) and user platform (hard-
ware, software, network bandwidth). These properties are kept in a user model or con-
text model, which is continuously updated based on the observation the system makes
of the user behaviour or the environment, or on modifications of the user or context
profile explicitly performed by the user.

We distinguish three levels of adaptation [11]: content adaptation, link or navigation
adaptation and presentation adaptation. Others, like Brusilovsky [5], distinguish only
between content and link level adaptation, where content adaptation refers as well to
changes in the layout as to differences in the contents. Adaptive content comprises text
adaptation and multimedia adaptation, whereas well known techniques for text adapta-
tion are inserting/removing/altering of fragments, stretchtext and dimming fragments.
Techniques to implement adaptive presentation are modality (selection, e.g., between
written text or audio), multi-language (text translation into another language) and lay-
out variations (e.g., resizing of images and ordering of text fragments or multimedia
elements). Adaptive navigation support is achieved by adaptive link ordering, adaptive
link hiding/removing/disabling, adaptive link annotation and adaptive link generation.
The direct guidance and map adaptation techniques proposed by Brusilovsky [4,5] can
be implemented by the adaptation link techniques mentioned above: ordering, annota-
tion, hiding and generation; thus we limit the description to those techniques:

– adaptive link orderingis the technique of sorting a group of links belonging to a
particular navigation node. The criteria used for sorting are given by the current
values of the user model: e.g., the closer to the top of the list, the more relevant
the link is. Sorted links are only applicable to non-contextual links and are useful
in information retrieval applications, but they can disorient the user as the link list
may change each time the user enters the page.

– adaptive link annotationconsists of the augmentation of the links with textual com-
ments or graphical icons, which provide the user with additional information about
the current state of the nodes behind the annotated links. Link annotation is an
helpful and frequently used technique, also used for user-independent annotation.

– adaptive link hidingcan be easily implemented by removing, disabling or hiding
of links. All three techniques reduce the cognitive-overload of the user with the
advantage of more stable nodes when links are added incrementally.

– adaptive link generationis a runtime feature for adding new anchors for links to a
node based on the current status of the user model. The typical implementation are
user model dependent shortcuts.

In our SmexWeb example we use the techniques of adaptive link annotation, adap-
tive link ordering and adaptive link hiding for link adaptation. Depending on the ac-
quired knowledge, the user skills and the estimated cognitive abilities of the user—

3



pointcut
ModelAspect

LinkAspect

RuntimeAspect

LinkAnnotationAspect

LinkTraversalAspect

LinkTransformationAspect

Package

Package

Package

Aspect

1

advice

1

Fig. 2.Extension of UML metamodel

contained in the current user model (see below)—the system offers different links,
sorted in a different way and differently annotated with emoticons.

The current user model for the EBNF course comprises three sub-models: domain,
navigation and individual model. Values of the domain model represent the learner’s
knowledge about the topic of the course. The most important attribute of the naviga-
tion model captures the learner’s navigation behaviour. The individual model represents
learning preferences, for instance with brief or extended explanations, more abstract or
more pragmatic descriptions. The initial values of all sub-models are assigned on basis
of the initial questionnaire the user has to go through before starting the lesson. From
there on, values of the user model will change dynamically according to the user’s
behaviour while navigating or solving an exercise. For further details about the user
modelling techniques implemented in SmexWeb see [11].

4 Modelling Adaptivity with Aspects

In aspect-oriented modelling [8], cross-cutting features of software models are sepa-
rated into aspects that are woven with the principal model. The points where an aspect
interacts with other model elements are called pointcuts; these pointcuts represent the
places where the weaving has to be performed. What has to be woven for a particular
aspect is stated in the advice part of the aspect.

Packaging modelling constructs which belong together and affect the software per-
vasively into a dedicated aspect affords a separation of concerns and keeps the software
models concise. Building on a simple extension of the UML by aspects, we demonstrate
the use of aspect-oriented modelling for modelling adaptivity in our running example
SmexWeb.

4.1 Aspects in the Unified Modeling Language

The UML does not show genuine support for aspect-oriented modelling. In fact, several
proposals have been made for integrating aspect orientation with the object-oriented

4



*
NavigationAnnotationNavigationNode Link

*

+source1

1..* +target +inLinks

+outLinks *
1..*

Fig. 3.Extended UWE metamodel (fragment).

paradigm followed by the UML, ranging from representing the programming language
features of AspectJ in the UML [14] to integrating aspects in UML 2.0 as compo-
nents [3], for an overview see, e.g., [8].

We restrict ourselves to a rather lightweight extension of the UML that merely
composes the main ingredients of aspect-oriented modelling into a subclass (stereo-
type�aspect�) of the UML metaclassPackage: pointcut and advice; see Fig. 2. The
pointcut package comprises (references to) all model elements on whose occurrence the
advice package is to be applied. Both packages may contain constraints that either detail
the application condition or the effect of an aspect. The semantics of applying an advice
on a pointcut depends on whether an aspect is to be woven statically (�model aspect�)
at the model level or dynamically (�runtime aspect�) at runtime. The different kinds
of aspects we use for modelling navigation adaptation are discussed in the subsequent
sections.

4.2 Extension of the UWE Metamodel

In order to capture adaptive link ordering, link annotation, and link hiding, we ex-
tend the UWE metamodel for designing navigation structures of Web applications by a
NavigationAnnotation metaclass, see Fig. 3. In navigation structure models, navigation
annotations thus can be attached to any navigation link. The details of how to represent
ordering or hiding in a specific Web application can thus be deferred to the choice of
the designer.

4.3 Model Aspects

Adaptive navigation behaviour of Web applications has to rely on parameterisable fea-
tures of the underlying navigation model. Thus, the integration of adaptability into
UWE navigation structures is most simply achieved by adding annotations to navigation
links which are to be adapted by user behaviour [11]. Such an extension, in particular,
has to take place on the navigation model level. On the one hand, each navigation link
that shall be subject to adaptation has to be marked; on the other, the marking may not
be desired to be uniform, but to be restricted to a certain part of the navigation model.

In Fig. 4(a), we show how the partial introduction of annotations can be achieved by
using a model aspect for the SmexWeb navigation structure (cf. Fig. 1). This aspect sep-
arates the annotation feature from the navigational behaviour and documents the adapt-
ability possibilities in a dedicated place. Each model aspect is woven statically with
the principal model at design time. The pointcut of the�link aspect� describes those
parts of the navigation structure model which are to be made amenable to adaptation.
The advice part of the aspect specifies that the classAnnotation, which is an instance of

5



«link aspect»

Mountains
Recognising

Directly
Solving

Mountains
Building

recognising mountains
building mountains
solving directly

Annotation
«navigation annotation»

recLevel : int

«advice»

«pointcut»

(a) Annotation model aspect.

Mountains
Recognising

Directly
Solving

EBNF−Knowledge
Applying

Introduction
EBNF−Session

Mountains
Building

recognising mountains
building mountains
solving directly

Annotation
«navigation annotation»

recLevel : int

(b) Weaving result.

Fig. 4.Adding annotations to the SmexWeb navigation structure.

NavigationAnnotation, has to be added to all the links (hence the name�link aspect�)
present in the pointcut. The result of the weaving is shown in Fig. 4(b).

4.4 Runtime Aspects

The difference between a run time aspect and a model time aspect is that the effect of
weaving the aspect with the navigation model is based on information only available at
runtime. This includes information about which link is being traversed and the state of
the user model. In addition, a run time aspect may change the runtime environment.

There are three types of run time aspects, link annotation aspects, link traversal
aspects, and link transformation aspects. A�link annotation aspect� is used for adap-
tation of the link’s annotation attributes depending, for example, on the experience of
the user. A�link traversal aspect� allows us to model the adaptation of the user and
navigation model when a link is traversed, e.g., to count how often a certain link is
followed and, in combination with a�link annotation aspect�, to increase the link’s
priority, if followed often. With a�link transformation aspect� new navigation links

6



1
Session User

visited(NavigationNode node): int {query}
getKnowLevel(): int {query}

Knowledge

formal: boolean

Preference

1 1

1 1

*

Fig. 5.Relationship between sessions and users.

which were not available in the original navigation model can be introduced and exist-
ing links removed. For example it can be modelled that a direct navigation link is added
when the system discovers that the user navigates to a navigation node quite often.

Link Annotation/Traversal Aspect Both, link annotation and link traversal aspects,
have a similar structure. In both cases the pointcut is a navigation diagram and the
advice is an OCL constraint. The difference is the type of OCL constraint and how
weaving is performed. With a link annotation aspect the constraint is an invariant, and,
for all links which are instances of the links in the navigation diagram of the pointcut,
the constraint is required to hold. In contrast, with a link traversal aspect, the constraint
is a postcondition constraint, and, whenever a link instance of one of the links of the
pointcut is being traversed, the postcondition has to hold after the traversal of the link.

In the case of a�link annotation aspect�, the advice is an OCL invariant constraint.
We refer in the constraint to the current session by usingthisSession, assuming that
thisSession is an instance of classSession which has at least an association to a class
User representing the current user of this session (cf. Fig. 5). In addition, we assume
that the variablelink refers to an instance of a link in the navigation diagram defined in
the pointcut. This makes it possible for the constraint to navigate to the current user and
the links in the navigation diagram.

The semantics of a�link annotation advice� is that at runtime, for all links that are
instances of links in the navigation diagram defined in the pointcut of that aspect, the
instance diagram has to satisfy the constraint of the advice. Note that we are modelling
the behaviour of aspects but not how this behaviour is implemented. Thus the imple-
mentation of the aspect has to ensure that the constraint is satisfied.

link.annotation.recLevel = 3}

Mountains
Recognising

Directly
Solving

Mountains
Building

recognising mountains
building mountains
solving directly

«pointcut»

«link annotation aspect»

«advice» {inv: thisSession.user.getKnowLevel() > 10 implies

Fig. 6.Example of the use of a�link annotation aspect�.

7



thisSession.user.visited(link.target)@pre + 1}

recognising mountains
building mountains
solving directly

Directly
Solving

«link traversal aspect»

«pointcut»

«advice» {post: thisSession.user.visited(link.target) = 

Fig. 7.Example of the use of a�link traversal aspect�.

In the example, cf. Fig. 6, the constraint of the advice ensures that the attribute
recLevel of the annotation associated with a navigation link from the navigation dia-
gram is set to3 when the current user has a knowledge level greater than10. When a
link from the navigation diagram is displayed, the value ofrecLevel can be used, for
example, to display a smiley for a high recommendation level, or a frowny for a low
recommendation level.

In the case of a�link traversal aspect�, an advice is an OCL postcondition con-
straint in the context of an instance of the navigation diagram given by the pointcut of
the aspect. As in an advice for a�link annotation aspect�, the constraint may refer to
the current session bythisSession. The result of weaving a�link traversal aspect� into
the navigation model is that when a link corresponding to the navigation diagram of the
pointcut is traversed, the constraint of the advice is true w.r.t. the states of the system
before and after the traversal of the link. Similar to the�link annotation aspect�, the
postcondition has to be ensured by the implementor of the aspect after the link has been
traversed. Using an aspect-oriented language, the postcondition can be implemented by
anafter advice where the pointcut is the method in the runtime environment that tra-
verses the link. In the example, cf. Fig. 7, the constraint of the advice ensures that the
traversal of links in the navigation diagram by the current user is counted.

Link transformation aspect Adaptive link generation and removal can also be mod-
elled using aspects in a modularised way. In the SmexWeb example, a shortcut from
EBNF-Session Introduction to Apply EBNF-Knowledge should be added to the naviga-

{thisSession.user.visited(SolvingDirectly) > 0}

recognising mountains
building mountains
solving directly

EBNF−Knowledge
Applying

EBNF−Knowledge
Applying

«link tranformation aspect»

«pointcut»

«advice»
recognising mountains
building mountains
solving directly
applying knowledge

Fig. 8.Example of a�link transformation aspect�.

8



tion model after the user has solved the mountain grammar exercise directly. The point-
cut of a�link transformation aspect� has the form of a navigation model, consisting of
the navigation nodes, between whom extra links are to be added or removed and which
can use OCL constraints specifying when the advice should be applied. The advice is
another navigation model, consisting of the classes contained in the pointcut and the
new navigation structure between them. Figure 8 shows an aspect where a link from
EBNF-Session Introduction to Apply EBNF-Knowledge should be introduced when the
user has visited nodeSolving Directly at least once.

5 Related Work

Most of the currently existing methodologies tackle the modelling of adaptive Web ap-
plications by defining a rule or a filter for each point in the application where adaptation
applies. As far as we know, only some of them view adaptivity as a cross-cutting feature
and none of them uses aspects for modelling adaptivity.

The Hera methodology [9] provides an RMM-based notation for the representation
of slices and links, which are the basic model elements of the application model. An
application model is used to represent the navigation structure and presentation aspects
of the Web application. Adaptation is on the one hand modelled explicitly, e.g., speci-
fying the possible choices with links and alternative sub-slices. On the other hand, Hera
constructs a rule-based adaptation model, but does not offer a visual representation of
these rules. Rules are allowed to be composed recursively; Hera, however, assumes a
confluent and terminating rule set.

The OO-H approach [10] proposes the use of personalisation rules to adaptivity.
These rules are associated to the navigation links of the navigation model. This means
that if a navigation node requires adaptation, this will be performed at runtime by ex-
ecution of these rules. When a node is reachable by several links, for each link the
corresponding filter has to be defined. This introduces additional redundancy, which
opens the door for bugs, like forgetting a required filter for adaptation on a link.

In WSDM [7], an adaptation specification language is defined that allows design-
ers to specify at the level of the navigation model which adaptations of the navigation
structure can be performed at runtime. Although a visual representation of the rules is
missing, rules are defined orthogonally to the navigation functionality as designers are
allowed to define rules on one single element (node, link) and on group of elements. An-
other approach is OOHDM [6], which separates adaptation from navigation by adding
a wrapper class for each navigation node which requires adaptation.

The use of aspect-oriented modelling has been recognised as a general means to
improve the modularity of software models [8]. Our pragmatic approach to the aspect-
oriented design of adaptive Web applications takes up some aspect techniques, but is
rather geared towards the application of aspect-oriented modelling. In particular, Stein
et al. [15] propose a more elaborate graphical notation for selecting model elements.
It supports the application of wildcards for pattern matching model element names.
This notation can be used to extend our approach in specifying pointcuts. Furthermore,
Straw et al. [16] have given directives such asadd , remove , and override for
composing class diagrams. The directives can be used to describe how to weave two

9



class diagrams together and thus the weaving process in our approach may be described
by their composition directives.

6 Conclusions and Future Work

We have demonstrated the use of aspects for modelling adaptive Web applications in
the UWE method by separating the navigation model from the adaptation model. A
link aspect introduces navigation annotations to particular links for link reordering,
annotating, or hiding due to user behaviour. This link aspect is applied at model time
and thus captures cross-cutting model information in a dedicated place. During runtime,
link annotation and link traversal aspects record information of the user behaviour and
accordingly adapt the annotations or the user model for further use in the presentation
layer. Additionally, the navigation structure becomes adaptable by link transformation
aspects, that allow the designer to have fine-grained control on when links are added or
removed.

The use of aspect-oriented modelling techniques may be further applied to model
adaptation for the content and the presentation model of a Web application. In par-
ticular, the effect of adding and modifying annotations on the navigation level to the
presentation can again be described by aspects. We have restricted ourselves to a rather
lightweight approach to integrating aspects into the UML and UWE. A more elaborate
pointcut and advice description language is certainly desirable and subject to future re-
search. For tool support, we plan to integrate adaptivity aspects in the open-source Web
application modelling tool ArgoUWE.

References

1. F. Albrecht, N. Koch, and T. Tiller. SmexWeb: An Adaptive Web-based Hypermedia Teach-
ing System.J. Interactive Learning Research, 11(3–4):367–388, 2000.

2. T. Baar, A. Strohmeier, A. Moreira, and S. J. Mellor, editors.Proc. 7th Int. Conf. Unified
Modeling Language (UML’04), volume 3273 ofLect. Notes Comp. Sci.Springer, Berlin,
2004.

3. E. Barra, G. Ǵenova, and J. Llorens. An Approach to Aspect Modelling with UML 2.0. In
Proc. 5th Wsh. Aspect-Oriented Modeling (AOM’04), Lisboa, 2004.

4. P. Brusilovsky. Methods and Techniques of Adaptive Hypermedia.User Model. User-Adapt.
Interact., 6(2–3):87–129, 1996.

5. P. Brusilovsky. Adaptive Hypermedia.User Model. User-Adapt. Interact., 11:87–110, 2001.
6. J. Cappi, G. Rossi, A. Fortier, and D. Schwabe. Seamless Personalization of E-commerce

Applications. In H. Arisawa, Y. Kambayashi, V. Kumar, H. C. Mayr, and I. Hunt, editors,
Proc. Wsh. Conceptual Modeling in E-Commerce (eCOMO’01), volume 2465 ofLect. Notes
Comp. Sci., pages 457–470. Springer, Berlin, 2003.

7. S. Casteleyn, O. De Troyer, and S. Brockmans. Design Time Support for Adaptive Behavior
in Web Sites. InProc. 18th ACM Symp. Applied Computing, pages 1222–1228. ACM Press,
2003.

8. R. E. Filman, T. Elrad, S. Clarke, and M. Aksit.Aspect-Oriented Software Development.
Addison-Wesley, 2004.

10



9. F. Frasincar, G.-J. Houben, and R. Vdovjak. Specification Framework for Engineering Adap-
tive Web Applications. InProc. 11th Int. Conf. World Wide Web (WWW’02), Web Engineering
Track, Honolulu, 2002.

10. I. Garrigós, J. Ǵomez, and C. Cachero. Modelling Dynamic Personalization in Web Appli-
cations. In Lovelle et al. [13], pages 472–475.

11. N. Koch. Software Engineering for Adaptive Hypermedia Systems: Reference Model, Mod-
eling Techniques and Development Process. PhD thesis, Ludwig-Maximilians-Universität
München, 2001.

12. N. Koch and A. Kraus. Towards a Common Metamodel for the Development of Web Appli-
cations. In Lovelle et al. [13], pages 497–506.

13. J. M. C. Lovelle, B. M. G. Rodŕıguez, L. J. Aguilar, J. E. L. Gayo, and M. del Puerto
Paule Rúız, editors.Proc. 3rd Int. Conf. Web Engineering (ICWE’03), volume 2722 ofLect.
Notes Comp. Sci.Springer, Berlin, 2003.

14. D. Stein, S. Hanenberg, and R. Unland. An UML-based Aspect-Oriented Design Notation
For AspectJ. InProc. 1st Int. Conf. Aspect-Oriented Software Development, pages 106–112.
ACM, 2002.

15. D. Stein, S. Hanenberg, and R. Unland. Query Models. In Baar et al. [2], pages 98–112.
16. G. Straw, G. Georg, E. Song, S. Ghosh, R. France, and J. M. Bieman. Model Composition

Directives. In Baar et al. [2], pages 84–97.
17. G. Zhang, H. Baumeister, N. Koch, and A. Knapp. Aspect-Oriented Modeling of Access

Control in Web Applications. InProc. 6th Int. Wsh. Aspect Oriented Modeling (AOM),
Chicago, 2005. To appear.

11


