
Behavioural semantics of algebraic specifications
in arbitrary logical systems

Micha l Misiak

Warsaw University, Faculty of Mathematics, Informatics and Mechanics??

Abstract. Behavioural semantics for specifications plays a crucial role
in the formalization of the developments process, where a specification
need not to be implemented exactly but only so that the required system
behaviour is achieved. There are two main approaches to the definition
of behavioural semantics: the internal one (called behavioural semantics)
and external one (called abstractor semantics).

In this paper we present a notion of a behavioural concrete institution
which is based on a notion of a concrete institution. The basic idea to
form a behavioural institution (i.e. to ensure the satisfaction condition
holds) is adopted from [2]. The behavioural concrete institution is a gen-
eralization of the COL-institution. In this work we also compare the
resulted behavioural semantics with the abstractor semantics.

1 Introduction

One of the problems of algebraic-style specification of software systems is that
the strict interpretation of a specification is often inadequate in practice. Typ-
ically a specification need not to be implemented exactly but only so that the
required system behaviour is achieved. To cope with this problem the seman-
tics of specifications must be redefined resulting in the so called behavioural or
observational interpretation of specifications. There are two main approaches to
the definition of behavioural semantics of algebraic specifications. The internal
approach involves introducing an indistinguishability relation between elements
of models. The external approach is based on an equivalence relation between
models. These two approaches are related to each other and coincide in some
cases, see [4].

In this work we aim at a general definition of a behavioural semantics for
algebraic specifications in an arbitrary logical system. The key notion for this
purpose is the notion of institution, introduced in [6].

We propose a notion of a behavioural concrete institution. This framework is
based on the notion of concrete model category as introduced in [5]. The idea is to
equip the model categories of institutions considered with concretization functor,
thus adding ”carriers” to the models considered. Then, a concrete institution
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is just an ordinary institution in which all categories of models are concrete
categories and each signature has a set of sorts.

To define a behavioural concrete institution we first need to define the be-
havioural satisfaction relation and so the behavioural semantics of flat specifi-
cations, and then extend it to form an institution. The behavioural semantics
of flat specifications was introduced in [5], but this approach doesn’t allow us
to form an institution, since the satisfaction condition doesn’t hold. Therefore
we follow the idea presented in [2]. The behavioural concrete institution is a
generalization of the COL-institution.

2 Basic notions

An S-sorted set is a family X = (Xs)s∈S of sets. Most standard notions con-
cerning sets can be generalized to S-sorted sets. For example, let X = (Xs)s∈S ,
Y = (Ys)s∈S be S-sorted sets:

– X is a subset of Y , written X ⊆ Y if Xs ⊆ Ys for all s ∈ S;
– Cartesian product of X and Y is defined as X × Y = (Xs × Ys)s∈S ;
– an S-sorted relation between elements of X and Y is R ⊆ X × Y ; if x ∈ Xs

and y ∈ Ys for some s ∈ S, then the fact that x is in relation R with y will
be denoted x Rs y or simply x R y;

– an S-sorted function from X to Y is f = (f : Xs → Ys)s∈S ;
– a kernel of an S-sorted function f : X → Y is ker(f) = (ker(fs))s∈S , where

ker(fs) = {(x, x′) | fs(x) = fs(x′)};

The subscript s will be often omitted, for example x ∈ Xs will be written x ∈ X,
for short.

A relation ≈ ⊆ X×X is an equivalence if for all s ∈ S, ≈s is an equivalence.
A quotient of X by an equivalence ≈ is defined X/≈ = {[x]≈ | x ∈ X} (and it
is an S-sorted set), where [x]≈ = {x′ ∈ X | x ≈ x′}.

S-sorted sets with S-sorted functions form the category SetS of S-sorted
sets.

Categories are denoted with bold faces, like SetS . Objects of a category K
are denoted |K|. The fact that A is an object of a category K is written A ∈ |K|.
If f : A → B is a morphism of K then it will be denoted f ∈ K or f : A → B ∈ K
(the latter brings an additional information about the source and target of the
morphism f). The composition of morphisms f : A → B and g : B → C is
denoted with ’;’ (semicolon) and written in the diagrammatic order, f ; g.

Functors are also usually denoted with bold faces, F : K1 → K2.

A notion of institution was introduced in [6], but in this paper we work with a
slightly different definition. The definition we work with can be found, e.g in [7].
An institution INS = (Sign,Sen,Mod, (|=Σ)Σ∈|Sign|) consists of:

– a category Sign of signatures;
– a sentence functor Sen : Sign → Set;



– a model functor Mod : Signop → Cat;
– for each signature Σ ∈ |Sign|, a satisfaction relation |=Σ ⊆ |Mod(Σ)| ×

Sen(Σ) such that for any signature morphism σ : Σ → Σ′ ∈ Sign, Σ-
sentence φ ∈ Sen(Σ) and Σ′-model M ′ ∈ |Mod(Σ′)|:

M ′ |=Σ′ Sen(σ)(φ) iff Mod(σ)(M ′) |=Σ φ.

The above condition is called satisfaction condition.
Throughout this paper the notation for Sen(σ)(φ) and Mod(σ)(M ′) will be

simplified, i.e. Sen(σ)(φ) will be simply written as σ(φ) and Mod(σ)(M ′) will
be denoted M ′|σ. The functor |σ : Mod(Σ′) → Mod(Σ) (Mod(σ)) is called
reduct functor.

An institution INS has the amalgamation property is for each pushout in
the category of signatures Sign,

Σ1 σ′1−−−−→ Σ′

σ1

x xσ′2

Σ −−−−→
σ2

Σ2,

Σ1-model M1 ∈ |Mod(Σ1)|, Σ2-model M2 ∈ |Mod(Σ2)| such that M1|σ1 =
M2|σ2 there exists a unique model M ′ ∈ |Mod(Σ′)| such that M |σ′1 = M1 and
M ′|σ′2 = M2.

The semantics of a specification SP in any institution INS is a signature of
this specification, Sig[SP] and a class of models of this specification, Mod[SP].
In each institution INS the following standard specification building operations
are available:

– for Σ ∈ |Sign|, Φ ⊆ Sen(Σ), a basic specification (presentation), (Σ,Φ):
• Sig[SP] = Σ,
• Mod[SP] = {M ∈ |Mod(Σ)| | M |=Σ Φ};

– for any specification SP1, SP2 with the same signature Σ, their union SP1 ∪
SP2:
• Sig[SP1 ∪ SP2] = Σ,
• Mod[SP1 ∪ SP2] = Mod[SP1] ∩Mod[SP2];

– for a signature morphism σ : Σ → Σ′ and a specification SP with the
signature Σ, translate SP by σ:
• Sig[translate SP by σ] = Σ′,
• Mod[translate SP by σ] = {M ′ ∈ |Mod(Σ′)| | M ′|σ ∈ Mod[SP]};

– for a signature morphism σ : Σ → Σ′ and a specification SP′ with the
signature Σ′, derive from SP′ by σ:
• Sig[derive from SP′ by σ] = Σ,
• Mod[derive from SP′ by σ] = {M ′|σ | M ′ ∈ Mod[SP ′]}.

Let σ : Σ → Σ′ be a signature morphism. The reduct functor |σ is isomor-
phic compatible if for each Σ′-model M ′ ∈ |Mod(Σ′)|, Σ-model N ∈ |Mod(Σ)|
that is isomorphic to M ′|σ there exists a model N ′ ∈ |Mod(Σ′)| isomorphic to
M ′ such that N ′|σ = N . A specification SP has isomorphic compatible reduct
functors if for each signature morphism used to build this specification, the
corresponding reduct functor is isomorphic compatible.



3 Concrete categories

The contents of this section is a selection of notions presented in [1] and [5]. The
basic intuition to follow is that objects of a concrete category come equipped
with carrier sets and morphisms can be though of as a functions between carrier
sets that preserve the object structure. This additional structure of a category
allows us to define many concepts from the universal algebra, like subobjects or
quotients.

Definition 1. An S-concrete category is a category K together with a con-
cretization functor | | : K → SetS that is faithful.

The indicator S will be often omitted when dealing with S-concrete categories.
Concrete categories as defined above are similar to constructs in [1] but in

this work we deal with many-sorted sets.
Concrete categories will be denoted simply by | | : K → SetS instead of

K together with | | : K → SetS since in the concretization functors the whole
information about the concrete category is included (i.e. the category K and the
concretization functor itself).

Throughout this section, let | | : K → SetS be a concrete category.

Proposition 1. For any morphism f : A → B ∈ K:

– if |f | is surjective then f is an epimorphism;
– if |f | is injective then f is a monomorphism.

Definition 2. A concrete category | | : K → SetS is transportable if for each
object A ∈ |K| and a bijective function i : |A| → X there exists an object B ∈ |K|
and an isomorphism i′ : A → B such that |i′| = i (and |B| = X).

In [5] the notion of transportability is called admitting of renaming of elements
of objects.

Definition 3. An isomorphism i : A → B ∈ K is identity-carried if |i| is
an identity. Two objects A,B ∈ |K| are exactly isomorphic if there exists an
identity-carried isomorphism i : A → B.

Subobjects A notion of a subobject can be found e.g. in [1], where it is called
initial subobject, but in this work, to simplify matters, we use a slightly different
definition.

Definition 4. Let A ∈ |K| be an object of K. A subobject of A is an object
B ∈ |K| together with a morphism ιB↪→A : B → A such that |ιB↪→A| : |B| → |A|
is an inclusion and for each morphism f : C → A with |f |(|C|) ⊆ |B|1 there
exists a morphism f ′ : C → B such that f ′; ιB↪→A = f .
1 |f |(|C|) is the image of the set |C| under the function |f |.



If B is a subobject of A then there exists exactly one morphism ιB↪→A : B → A
such that |ιB↪→A| is an inclusion (follows from the faithfulness of | |). Moreover
if f : C → A is a morphism with |f |(|C|) ⊆ |B| then the morphism f ′ : C → B
such that f ′; ιB↪→A = f is unique.

The difference between the notion of a subobject presented here and the
notion of an initial subobject from [1] is that the embedding (ιB↪→A, see [1]) is
required here to be an inclusion, not only an injection (like in [1]). That simplifies
the definition of a generated subobject.

There is also a slight difference between the definition of a subobject pre-
sented here and in [5]. The subobjects defined here are called full in [5].

Proposition 2. Let A,B,C ∈ |K|. If B is a subobject of A and C is a subobject
of B then C is a subobject of A.

Definition 5. Let A ∈ |K| be an object and X ⊆ |A|. A subobject of A gener-
ated by X is a subobject B of A such that X ⊆ |B| and for any subobject C of
A if X ⊆ |C| then |B| ⊆ |C|.

Proposition 3. A subobject of A generated by X ⊆ |A|, if it exists, is unique
up to an identity-carried isomorphism. Moreover, any object exactly isomorphic
to a subobject of A generated by X is a subobject of A generated by X.

The generated subobject of A by X ⊆ |A| will be denoted 〈X〉A and the
inclusion morphism, ι〈X〉A↪→A : 〈X〉A → A, will be written ιX↪→A, for short.

Definition 6. A concrete category | | : K → SetS has generated subobjects if
for each A ∈ |K| and X ⊆ |A| there exists the subobject of A generated by X.

Quotients

Definition 7. Let A ∈ |K| be an object of K. A quotient of A is an object B ∈
|K| together with an epimorphism πA/B : A → B such that for any morphism
f : A → C with ker(|πA/B |) ⊆ ker(|f |) there exists a morphism f ′ : B → C such
that πA/B ; f ′ = f .

A quotient B of A is final if |πA/B | is surjective.

If B is a quotient of A then the morphism πA/B is called the quotient pro-
jection.

The notion of a final quotient as defined above comes from [1]. In [5] final
quotients are called surjective quotients.

Definition 8. Let A ∈ |K| be an object of K. An equivalence relation ≈ ⊆
|A| × |A| is a congruence on A if there exists a morphism f : A → B such that
ker(|f |) = ≈.

A quotient of A by ≈ is a quotient B of A with πA/B : A → B such that
ker(|πA/B |) = ≈.



Proposition 4. A quotient of A by a congruence ≈ ⊆ |A| × |A|, if it exists, is
unique up to an isomorphism. Moreover, any object isomorphic to a quotient of
A by ≈ is a quotient of A by ≈.

The quotient of A by a congruence ≈ ⊆ |A| × |A| will be denoted A/≈ and the
morphism πA/(A/≈) will be simply written as πA/≈ : A → A/≈.

Let A ∈ |K| be an object of K and ≈ ⊆ |A| × |A| be a congruence. If B is a
subobject of A then the quotient (if it exists) of B by ≈∩|B|×|B| will be simply
denoted B/≈ instead of B/(≈ ∩ |B| × |B|). Notice that if ≈ is a congruence on
A then ≈ (more precisely ≈ ∩ |B| × |B|) is also a congruence on B.

Definition 9. A concrete category | | : K → SetS has (final) quotients if for
each object A ∈ |K| and a congruence ≈ ⊆ |A| × |A| on A there exists a (final)
quotient of A by ≈.

Definition 10. In a concrete category | | : K → SetS subobjects are compat-
ible with quotients if for each object A ∈ |K|, its subobject ιB↪→A : B → A
and a congruence ≈ ⊆ |A| × |A| if quotients A/≈ and B/≈ exist then B/≈ is
a subobject of A/≈ (formally there exist an object C ∈ |K| isomorphic to B/≈
which is a subobject of A) and the following diagram commute:

B
ιB↪→A−−−−→ A

πB/≈

y yπA/≈

B/≈ −−−−−−−→
ιB/≈↪→A/≈

A/≈,

i.e. ιB↪→A; πA/≈ = πB/≈; ιB/≈↪→A/≈.

4 Concrete institutions

In this section we follow the ideas of the previous section and define a concrete
institution which is an extension of the notion of the institution introduced in [6].
A concrete institution is an institution in which for each signature a set of sorts
of this signature is available and each category of models is a concrete category.

The notation for the category of S-sorted sets, SetS , can be extended to
denote the functor: Set( ) : Setop → Cat. For a set S, SetS is the category
of S-sorted sets. For a function σ : S → S′, Setσ is the reduct functor, Setσ :
SetS′ → SetS defined: Setσ((Xs)s∈S′) = (Ys)s∈S with Ys = Xσ(s) and similarly
for S′-sorted functions.

If ≈′ ⊆ A′ × B′ is an S′-sorted relation then Setσ(≈′) is well defined since,
in fact, ≈′ is an S′-sorted set (and the result is an S-sorted relation between
elements of Setσ(A) and Setσ(B)).

Definition 11. A concrete institution INSc based on an institution INS =
(Sign,Sen,Mod, (|=Σ)Σ∈|Sign|) consists of INS together with a functor sorts :
Sign → Set and a natural transformation | | : Mod → sortsop ; Set( ) between
functors from Signop to Cat.



Thus, a concrete institution is a tuple:

INSc = (Sign,Sen,Mod, (|=Σ)Σ∈|Sign|, sorts, | |).

The functor sorts : Sign → Set yields, for each signature Σ, a set of sorts of this
signature. The natural transformation | | : Mod → sortsop ; Set( ) is a family of
concretization functors, (| |Σ : Mod(Σ) → Setsorts(Σ))Σ∈|Sign|. The naturality
of this transformation ensures that the following diagram commutes:

Σ

σ

y
Σ′

Mod(Σ)
| |Σ−−−−→ Setsorts(Σ)

|σ
x xSetsorts(σ)

Mod(Σ′) −−−−→
| |Σ′

Setsorts(Σ
′),

where σ : Σ → Σ′ ∈ Sign.
The commutativity of the above diagram allows us to simplify the nota-

tion. The functor Setsorts(σ) : Setsorts(Σ
′) → Setsorts(Σ) will be denoted |σ :

Setsorts(Σ
′) → Setsorts(Σ).

Let INSc = (Sign,Sen,Mod, (|=Σ)Σ∈|Sign|, sorts, | |) be a concrete institu-
tion, fixed throughout this section.

Definition 12. A satisfaction relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ), where Σ ∈
|Sign|, is isomorphism compatible if for all isomorphic models A,B ∈ |Mod(Σ)|
and Σ-sentence φ ∈ Sen(Σ) the following holds: A |=Σ φ iff B |=Σ φ.

A concrete institution INSc = (Sign,Sen,Mod, (|=Σ)Σ∈|Sign|, sorts, | |) has
isomorphic compatible satisfaction relations if for each signature Σ ∈ |Sign| the
satisfaction relation |=Σ is isomorphic compatible.

Definition 13. A reduct functor |σ, where σ : Σ → Σ′ ∈ Sign, preserves
subobjects if for each Σ′-model A′ ∈ Mod(Σ′) and its subobject B′ the reduct
B′|σ is a subobject of A′|σ.

In a concrete institution INSc = (Sign,Sen,Mod, (|=Σ)Σ∈|Sign|, sorts, | |)
reduct functors preserve subobjects if for each signature morphism σ : Σ →
Σ′ ∈ Sign, the reduct functor |σ preserves subobjects.

Definition 14. A reduct functor |σ, where σ : Σ → Σ′ ∈ Sign, preserves
quotients if for each Σ′-model A′ ∈ Mod(Σ′) and its quotient πA′/B′ : A′ → B′

the reduct πA′/B′ |σ : A′|σ → B′|σ is a quotient of A′|σ.
In a concrete institution INSc = (Sign,Sen,Mod, (|=Σ)Σ∈|Sign|, sorts, | |)

reduct functors preserve quotients if for each signature morphism σ : Σ → Σ′ ∈
Sign, the reduct functor |σ preserves quotients.

A concrete institution INSc = (Sign,Sen,Mod, (|=Σ)Σ∈|Sign|, sorts, | |)

– is transportable;
– has generated subobjects;



– has (final) quotients;
– subobjects are compatible with quotients

if for each signature Σ ∈ |Sign|, the concrete category | |Σ : Mod(Σ) →
Setsorts(Σ) has the corresponding property.

5 Behavioural concrete institutions

The extra structure of a concrete institution allows us to redefine the satisfaction
relation to obtain its behavioural version.

Let INSc = (Sign,Sen,Mod, (|=Σ)Σ∈|Sign|, sorts, | |) be a concrete institu-
tion, fixed throughout this section. We assume that INSc

– is transportable,
– has generated subobjects,
– has final quotients,
– subobjects are compatible with quotients,
– has isomorphic compatible satisfaction relations,
– reduct functors preserve subobjects and quotients.

5.1 Behavioural satisfaction relation

Reachability is an important concept of system specifications. A reachability
structure on a model is a subset of the carrier set of this models. It contains
the elements which are of interest from the user’s point of view. In this work we
follow the ideas introduced in [2] and do not require a reachability structure to
be a subobject of a model considered contrary e.g. to [4] (where a reachability
structure is implicitly incorporated into a notion of a partial congruence).

Definition 15. A reachability structure over a signature Σ ∈ |Sign| is a family
R = (RM )M∈|Mod(Σ)| of sorts(Σ)-sorted sets such that RM ⊆ |M |Σ for each
M ∈ |Mod(Σ)|.

Another important aspect of system specifications is the concept of observ-
ability. In this work we generalize the notion of observational equality from [2]
which we call here an observability structure. An observability structure on a
model is an equivalence relation on the carrier set of this model. Unlike the
approach presented in [4] we do not impose any further restrictions on an ob-
servability structure. The idea comes from [2].

Definition 16. An observability structure over a signature Σ ∈ |Sign| is a
family ≈ = (≈M )M∈|Mod(Σ)| of equivalence relations such that ≈M ⊆ |M |Σ ×
|M |Σ (i.e. ≈M is an equivalence relation on |M |Σ).

Usually a reachability structure is determined by a distinguished set of con-
structor operations and an observability structure by a distinguished set of ob-
server operations, see [2], but it is not the purpose of this work to present how



those structures can be defined. The problem here is more complicated since in
an arbitrary (concrete) institution the notion of an operation is not available.
In this work we only present the way of defining the behavioural semantics of
specifications given arbitrary reachability and observability structures.

A pair (R,≈), where R is a reachability structure over a signature Σ and ≈ is
an observability structure over the signature Σ, is called a behavioural structure
over the signature Σ.

Definition 17. A behavioural signature ΣBeh = (Σ,R,≈) consists of:

– a signature Σ ∈ |Sign|;
– a reachability structure R over the signature Σ;
– an observability structure ≈ over the signature Σ.

Following the ideas from [2], since no restrictions were imposed on reacha-
bility and observability structures, we introduce two kinds of constraints on the
class of models: the reachability and the observability constraint. The former is
a well-known constraint which expresses the property that the only admissible
models are those on which the reachability structure is a subobject of the model
considered (intuitively it is closed under operations). But if we deal both with the
reachability and observability concepts such a requirement is too strong, since
from the user’s point of view this is not different from allowing the elements
of the submodel generated by its reachability structure to be indistinguishable
from some elements in this reachability structure.

The latter (the observability constraint) simply states that the observability
structure on a model must be a congruence on the subobject of this model
generated by the reachability structure.

Definition 18. Let ΣBeh = (Σ,R,≈) be a behavioural signature. A Σ-model
M ∈ |Mod(Σ)| satisfies

– the reachability constraint if for each a ∈ |〈RM 〉M |Σ there exists b ∈ RM

such that a ≈M b;
– the observability constraint if ≈M is a congruence on 〈RM 〉M (more pre-

cisely if ≈ ∩ |〈RM 〉M |Σ × |〈RM 〉M |Σ is a congruence on 〈RM 〉M ).

Definition 19. Let ΣBeh = (Σ,R,≈) be a behavioural signature. A Σ-model
M ∈ |Mod(Σ)| is called behavioural if it satisfies the reachability and the ob-
servability constraints.

The class of all behavioural models over a behavioural signature ΣBeh will be
denoted ModBeh(ΣBeh).

The standard way of defining a behavioural satisfaction relation indepen-
dently on the logical system is by the notion of a behaviour of a model, see [4]
or [5]. For the logical systems in which the satisfaction relation is based on an
equality between terms this approach (this definition of a behavioural satisfac-
tion relation) is equivalent to the approach which involves changing the semantics
of equality, see [4] or [2].



Definition 20. Let ΣBeh = (Σ,R,≈) be a behavioural signature. The behaviour
BΣBeh(M) of a behavioural model M ∈ ModBeh(ΣBeh) is defined:

BΣBeh(M) = 〈RM 〉M/≈M .

Definition 21. Let ΣBeh = (Σ,R,≈) be a behavioural signature. A behavioural
model M ∈ ModBeh(ΣBeh) behaviourally satisfies a sentence φ ∈ Sen(Σ),

M |=ΣBeh φ

if its behaviour satisfies the sentence φ in the original sense,

BΣBeh(M) |=Σ φ.

5.2 Behavioural concrete institutions

The above section covers only the case of flat specifications, sometimes called
satisfaction frame, which is only a single fibre of an institution. In this section we
present how the notions of the previous section can be used to form a behavioural
concrete institution.

The first step is to impose additional requirements of the signature mor-
phisms of the original institution INSc, to eliminate those that violate the sat-
isfaction condition for behavioural satisfaction relation and behavioural models.

Definition 22. A behavioural signature morphism σ : ΣBeh → Σ′
Beh, where

ΣBeh = (Σ,R,≈) and Σ′
Beh = (Σ′,R′,≈′), is a signature morphism σ : Σ → Σ′

such that it preserves the reachability structure and the observability structure,
i.e. if for each Σ′-model M ′ ∈ |Mod(Σ′)| the following holds: R′

M ′ |σ = RM ′|σ
and ≈′

M ′ |σ = ≈M ′|σ .

Now, given the notion of a behavioural morphism we can define the category
of all behavioural signatures. This category contains all behavioural signatures
and morphisms of this category are all behavioural signature morphisms.

Definition 23. The category of all behavioural signatures, ASign, consists of:

– objects are all behavioural signatures ΣBeh = (Σ,R,≈) such that Σ ∈ |Sign|
and (R,≈) is a behavioural structure over Σ;

– morphisms are all behavioural signature morphisms.

The functor from the category of all behavioural signatures ASign to the
category of signatures Sign which simply ”forgets” about behavioural structures
is called the forgetful functor, AF : ASign → Sign. It is defined: AF(ΣBeh) = Σ
for ΣBeh = (Σ,R,≈) ∈ |ASign| and AF(σ) = σ for σ ∈ ASign.

Theorem 1. Let σ : ΣBeh → Σ′
Beh ∈ ASign be a behavioural signature mor-

phism, ΣBeh = (Σ,R,≈) and Σ′
Beh = (Σ′,R′,≈′). Then for any behavioural

model M ′ ∈ Mod(Σ′) the reduct of this model, M ′|σ2, is behavioural.
2 Formally, it should be written M ′|AF(σ), but to simplify matters, since it doesn’t

throw into confusion it will be denoted like above (i.e. M ′|σ).



The above theorem allows us to define the behavioural model functor, which
for each behavioural signature ΣBeh = (Σ,R,≈) yields the category of all be-
havioural models over the signature Σ and for each behavioural signature mor-
phism σ : ΣBeh → Σ′

Beh it yields the restriction of the reduct functor |σ to the
category of all behavioural models over the signature Σ′ (Σ′

Beh = (Σ′,R′,≈′)).
Th. 1 states that this definition is correct, i.e. the reduct of a behavioural model
over the signature Σ′ is a behavioural model over the signature Σ (w.r.t (R,≈),
where ΣBeh = (Σ,R,≈)).

Definition 24. The behavioural model functor AMod : ASignop → Cat is
defined:

– for ΣBeh = (Σ,R,≈) ∈ |ASign|, AMod(ΣBeh) = ModBeh(ΣBeh) is the full
subcategory of Mod(Σ);

– for σ : ΣBeh → Σ′
Beh ∈ ASign, where ΣBeh = (Σ,R,≈) and Σ′

Beh =
(Σ′,R′,≈′), AMod(σ) = |σ is the restriction of the reduct functor |σ :
Mod(Σ′) → Mod(Σ) to the category AMod(Σ′

Beh).

Theorem 2. For each behavioural signature morphism σ : ΣBeh → Σ′
Beh, where

ΣBeh = (Σ,R,≈) and Σ′
Beh = (Σ′,R′,≈′), for each behavioural Σ′-model M ′ ∈

|AMod(Σ′
Beh)| and Σ-sentence φ ∈ Sen(Σ) the following holds:

M ′|σ |=ΣBeh φ iff M ′ |=Σ′Beh
σ(φ).

Definition 25. The tuple

AINSc = (ASign,ASen,AMod, (|=ΣBeh)ΣBeh∈|ASign|, asorts, | |a)

is the behavioural concrete institution also called the concrete institution of
behavioural logic based on the concrete institution INSc, where

– ASign is the category of all behavioural signatures,
– ASen : ASign → Set is the behavioural sentence functor, defined: ASen =

AF; Sen,
– AMod : ASignop → Cat is the behavioural model functor,
– for each ΣBeh ∈ |ASign|, |=ΣBeh is the behavioural satisfaction relation,
|=ΣBeh ⊆ |AMod(Σ)| ×ASen(Σ),

– asorts : ASign → Set is the behavioural sorts functor, defined: asorts =
AF; sorts,

– | |a : AMod → asortsop ; Set( ) is a natural transformation between functors
from ASignop to Cat, defined: for a behavioural signature ΣBeh ∈ |ASign|,
| |aΣBeh

: AMod(Σ) → Setasorts(ΣBeh) is the restriction of the functor | |Σ :
Mod(Σ) → Setsorts(AF(ΣBeh)) to the category of all behavioural models over
ΣBeh.

The superscript ’a’ in the natural transformation | |a : AMod → asortsop ; Set( )

will be omitted.



The institution AINSc is a rather ”large” institution. The category of sig-
natures of this institution contains all behavioural signatures ΣBeh = (Σ,R,≈)
such that Σ is a signature from the original category of signatures Sign and
(R,≈) is an arbitrary behavioural structure. Such a freedom is usually inade-
quate in practice (when defining a behavioural semantics of a specification lan-
guage based on the original semantics). Interesting cases are when behavioural
structures are determined for example by given sets of constructor and observer
operations (see [2]). The institution AINSc was introduced for technical reasons,
to express some properties concerning behavioural structures. Therefore we in-
troduce a new behavioural concrete institution BINSc in which the category
of signatures BSign contains only some behavioural signatures and behavioural
signature morphisms. In other words BSign is a subcategory of ASign. Formally
BINSc is a tuple:

BINSc = (BSign,BSen,BMod, (|=ΣBeh)ΣBeh∈|BSign|, bsorts, | |b).

The other components (apart from BSign) of BINSc are defined in exactly the
same way as in the institution AINSc. The forgetful functor BF : BSign →
Sign can also be easily defined.

An institution BINSc can be thought of as a ”subinstitution” of AINSc

with a smaller category of signatures. Note that AINSc is a special case of
BINSc.

5.3 Properties of behavioural concrete institutions

Let INSc be a concrete institution that satisfies all the properties mentioned in
the beginning of this section and BINSc be an arbitrary behavioural concrete
institution based on INSc. Of course there also exists the behavioural concrete
institution AINSc based on INSc in which the category of signatures contains
all behavioural signatures and all behavioural signature morphisms.

In this subsection we assume that the functor sorts : Sign → Set is cocon-
tinuous.

Proposition 5. If the category Sign of signatures if cocomplete then so is the
category of all behavioural signatures ASign and the forgetful functor AF :
ASign → Sign is cocontinuous.

One important property of an institution is the amalgamation property. Un-
fortunately a behavioural concrete institution doesn’t have the amalgamation
property even if the concrete institution on which it is based on has the amalga-
mation property. The counterexample can be found in [3], where the constructor
based observational logic institution, which is a special case of a behavioural con-
crete institution, is presented. However there are some conditions under which
the amalgamation union of two models exists. These conditions are generaliza-
tion of the conditions for amalgamation from [3].



Proposition 6. Let

Σ1
Beh = (Σ1,R1,≈1)

σ′1−−−−→ Σ′
Beh = (Σ′,R′,≈′)

σ1

x xσ′2

ΣBeh = (Σ,R,≈) −−−−→
σ2

Σ2
Beh = (Σ2,R2,≈2)

be a pushout in the category BSign of behavioural signatures such that, the image
of this diagram under the forgetful functor BF,

Σ1 σ′1−−−−→ Σ′

σ1

x xσ′2

Σ −−−−→
σ2

Σ2,

is a pushout in the category Sign. Assume that INSc has the amalgamation
property on this pushout, i.e. for any N1 ∈ |Mod(Σ1)|, N2 ∈ |Mod(Σ2)| such
that N1|σ1 = N2|σ2 there exists the unique amalgamation N ′ ∈ |Mod(Σ′)| of N1

and N2 (i.e. N ′|σ′1 = N1 and N ′|σ′2 = N2). Now, let M1 ∈ |BSign(Σ1)|, M2 ∈
|BSign(Σ2)| be behavioural models such that M1|σ1 = M2|σ2 . If 〈R1

M1
〉
M1
|σ1 =

〈RM1|σ1
〉
M1|σ1

and 〈R2
M2
〉
M2
|σ2 = 〈RM2|σ2

〉
M2|σ2

then there exists the unique

amalgamation M ′ ∈ |BSign(Σ′)| of M1 and M2.

5.4 Behavioural specifications

Given a behavioural concrete institution BINSc all standard specification build-
ing operations are available:

– for ΣBeh ∈ |BSign|, Φ ⊆ BSen(ΣBeh), a basic specification (presentation)
(ΣBeh, Φ):
• Sig[(ΣBeh, Φ)] = ΣBeh,
• Mod[(ΣBeh, Φ)] = {M ∈ |BMod(ΣBeh)| | M |=ΣBeh Φ};

– for any specifications SP1
Beh, SP2

Beh with the same signature ΣBeh, their
union SP1

Beh ∪ SP2
Beh:

• Sig[SP1
Beh ∪ SP2

Beh],
• Mod[SP1

Beh ∪ SP2
Beh] = Mod[SP1

Beh] ∩Mod[SP2
Beh];

– for a behavioural signature morphism σ : ΣBeh → Σ′
Beh and a specification

SPBeh with the signature ΣBeh, translate SPBeh by σ:
• Sig[translate SPBeh by σ] = Σ′

Beh,
• Mod[translate SPBeh by σ] = {M ′ ∈ |BMod(Σ′

Beh)| | M ′|σ ∈ Mod[SPBeh]};
– for a signature morphism σ : ΣBeh → Σ′

Beh and a specification SP′
Beh with

the signature Σ′
Beh, derive from SP′

Beh by σ:
• Sig[derive from SP′

Beh by σ] = ΣBeh,
• Mod[derive from SP′

Beh by σ] = {M ′|σ | M ′ ∈ Mod[SP′
Beh]}.



For each behavioural specification SPBeh (i.e. a specification in the institution
BINSc) there exists a standard specification SP (i.e. in the institution INSc)
built in the same way as SPBeh, which corresponds to this behavioural specifi-
cation with the following property: Sig[SP] = BF(Sig[SPBeh]). This correspon-
dence can be easily defined by the induction on the structure of specifications. For
example, if SPBeh = (ΣBeh, Φ) is a basic specification, where ΣBeh = (Σ,R,≈),
then the corresponding standard specification is defined: SP = (Σ, Φ). The def-
inition of the correspondence for the others specification building operations
are obvious, e.g. if SPBeh = derive from SP′

Beh by σ then the corresponding
standard specification is defined: SP = derive from SP′ by σ, where SP′ is a
standard specification that corresponds to SP′

Beh.

5.5 Examples

The described above notion of a behavioural concrete institution covers many
institution of interest: institution of standard algebras, partial algebras with
strong homomorphisms and Casl -institution with a slightly changed notion of
a homomorphism between models.

6 Relating behavioural and abstractor semantics

In this section we present relations between the behavioural and abstractor se-
mantics.

Let INSc = (Sign,Sen,Mod, (|=Σ)Σ∈|Sign|, sorts, | |) be a concrete institu-
tion that satisfies all the assumptions presented in the beginning of the previous
section (which allow us to define a behavioural concrete institution based on
INSc), fixed throughout this section.

6.1 Abstractor specifications

Let us now briefly focus on the abstractor semantics. More information about it
can be found for example in [5] or [4].

In fact the additional structure available in concrete institutions is not needed
to define the abstractor semantics (i.e. the notion of the standard institution is
sufficient for that purpose).

Let Σ ∈ |Sign| be a signature of a concrete institution INSc. An abstractor
equivalence over the signature Σ is an equivalence relation between Σ-models,
≡ ⊆ |Mod(Σ)|× |Mod(Σ)|. An abstractor equivalence ≡ is called isomorphism
protecting if all isomorphic models M,N ∈ |Mod(Σ)| are equivalent, M ≡ N .

For any class of Σ-models M ⊆ |Mod(Σ)|, the abstractor closure of M is
the closure of this class under the abstractor equivalence, Abs≡(M) = {M ∈
|Mod(Σ)| | M ≡ N for some N ∈M}.

The notion of an abstractor closure allows us to define the abstractor seman-
tics of specifications. Let SP be a specification with the signature Σ. The class



of models which behaviourally (up to the abstractor equivalence ≡) satisfy the
specification SP is the abstractor closure of the class of models which satisfy the
specification SP literally, i.e. Mod[abstract SP wrt ≡] = Abs≡(Mod[SP]).

6.2 Behavioural specifications and behavioural closure operator

Let BINSc = (BSign,BSen,BMod, (|=ΣBeh)ΣBeh∈|BSign|, bsorts, | |) be a be-
havioural concrete institution based on INSc.

A similar condition to isomorphism protecting can be expressed for be-
havioural structures. It is called isomorphism compatibility and it differs slightly
from the one introduced in [4] since in this framework not for each model the
behaviour is defined.

Definition 26. A behavioural signature ΣBeh = (Σ,R,≈) ∈ |BSign| is iso-
morphism compatible if for each isomorphic Σ-models M,N ∈ |Mod(Σ)| if
M is behavioural then N is behavioural and in that case their behaviours are
isomorphic, BΣBeh(M) ∼= BΣBeh(N).

The notion of a fully abstract model can be found in [4] or [5]. A model
is fully abstract if the behavioural structure on this model is trivial, i.e. the
reachability structure on such a model is the whole carrier set of this model and
the observability structure is an identity relation.

Definition 27. Let ΣBeh = (Σ,R,≈) ∈ |BSign| be a behavioural signature. A
model M ∈ |Mod(Σ)| is fully abstract if RM = |M |ΣBeh and ≈M = id |M |ΣBeh

.
If M⊆ |Mod(Σ)| is a class of Σ-models then, FAΣBeh(M) denotes the class of
all fully abstract models in M, FAΣBeh(M) = {M ∈M | M is fully abstract}.

Note that if a model M ∈ |Mod(Σ)| is fully abstract then it is behavioural.
Therefore FAΣBeh(M) is a class of behavioural models (even if in M there are
non-behavioural models).

The regularity of a behavioural structure (signature) is also an important
property, see [4]. It express the idempotency of the behaviour operator.

Definition 28. A behavioural signature ΣBeh ∈ |BSign| is called:

– weakly regular if for each behavioural model M ∈ |BMod(ΣBeh)| its be-
haviour is behavioural and it is isomorphic to the behaviour of the behaviour
of this model, i.e. BΣBeh(M) ∼= BΣBeh(BΣBeh(M));

– regular if for each behavioural model M ∈ |BMod(ΣBeh)| its behaviour is a
fully abstract model.

Regularity implies weak regularity. If a behavioural signature ΣBeh is weakly reg-
ular and isomorphic compatible then the behavioural satisfaction relation |=ΣBeh

is isomorphism compatible.



The above conditions which should be satisfied by any reasonable behavioural
concrete institution (by all signatures in the behavioural concrete institution)
will allow us to express relations between the internal approach and the external
approach to the definition of behavioural semantics.

Definition 29. Let ΣBeh = (Σ,R,≈) ∈ |BSign| be a behavioural signature,
M⊆ |Mod(Σ)| be a class of Σ-models. The behavioural closure of the class M
is a class BehΣBeh(M) = {M ∈ |BMod(ΣBeh)| | BΣBeh(M) ∈M}.

Note that, similarly as for the operator which yields the class of fully abstract
models, even if there are some non-behavioural models in M, the behavioural
closure of this class contains only behavioural models.

Corollary 1. Let SPBeh = (ΣBeh, Φ) be a behavioural specification and SP be its
corresponding standard specification. Then Mod[SPBeh] = BehΣBeh(Mod[SP]).

The following lemma is useful to prove relations between the behavioural and
abstractor semantics.

Lemma 1. Let SPBeh be a behavioural specification and SP its corresponding
standard specification. If SP has isomorphic compatible reduct functors then
Mod[SPBeh] ⊆ BehΣBeh(Mod[SP]), where ΣBeh = Sig[SPBeh].

The proof of the above lemma is by the induction on the structure of specifica-
tions.

The opposite inclusion doesn’t hold in general (i.e. BehΣBeh(Mod[SP]) 6⊆
Mod[SPBeh]), even in the case of standard algebras and equational logic.

6.3 Relations

The crucial notion for expressing relations between the two approaches to the
definition of the behavioural semantics is the notion of factorizability, introduced
in [4].

Definition 30. Let ΣBeh = (Σ,R,≈) be a behavioural signature and ≡ be an
abstractor equivalence over Σ. The abstractor equivalence ≡ is called factorizable
by ΣBeh (or by the behavioural structure (R,≈)) if the following two conditions
hold:

– for all behavioural models M,N ∈ |BMod(ΣBeh)|, M ≡ N iff BΣBeh(M) ∼=
BΣBeh(N);

– for each behavioural model M ∈ |BMod(ΣBeh)| and N ∈ |Mod(Σ)| if M ≡
N then N is behavioural, N ∈ |BMod(ΣBeh)|.

The second condition in the above definition states that the class of behavioural
models over Σ (w.r.t (R,≈)) is closed under the abstractor equivalence ≡. The
first condition is standard, i.e. it comes from the original definition of factoriz-
ability in [4].



The abstractor equivalence ≡Obs,In from [4] is factorizable by ΣCOL w.r.t
the above definition, if Obs is the set of observable sorts of ΣCOL (i.e. SObs)
and In is the set of loose sorts of ΣCOL (i.e. SLoose), see [2] for the definition of
observable and loose sorts of a COL-signature.

Throughout the rest of this section we assume that all behavioural signa-
tures ΣBeh ∈ |BSign| are isomorphic compatible and all abstractor equivalences
considered are isomorphic protecting.

Lemma 2. Let ΣBeh = (Σ,R,≈) be a behavioural signature that is weakly regu-
lar and ≡ is an abstractor equivalence over Σ, factorizable by ΣBeh. Then for any
class of models M ⊆ |Mod(Σ)| the following holds: BehΣBeh(M) ⊆ Abs≡(M).
If moreover M is closed under isomorphism and M⊆ BehΣBeh(M) (behavioural
consistency) then BehΣBeh(M) = Abs≡(M).

Note that in the above lemma, the class M is not required to be a class of
behavioural models. But if M is behaviourally consistent (M ⊆ BehΣBeh(M))
then it implies that M contains only behavioural models.

Proposition 7. Let ΣBeh = (Σ,R,≈) be a behavioural signature that is weakly
regular and ≡ be an abstractor equivalence over Σ, factorizable by ΣBeh. Let also
SPBeh be a behavioural specification with Sig[SPBeh] = ΣBeh and SP be a stan-
dard specification which corresponds to the behavioural specification SPBeh. We
assume that SP has isomorphic compatible reduct functors. Then Mod[SPBeh] ⊆
Mod[abstract SP wrt ≡].

The opposite inclusion doesn’t hold in general. Consider a basic specifica-
tion SPBeh with an empty set of axioms. If not all models over the signature
Sig[SPBeh] are behavioural then Mod[abstract SP wrt ≡] 6⊆ Mod[SPBeh] (SP is
the standard specification corresponding to SPBeh), since on the left-hand side
of the inclusion there is the whole class of models over Sig[SP] and on the right-
hand side only behavioural models.

The last fact in this subsection concerns relations between behavioural spec-
ifications and the abstractor closure of the class of fully abstract models.

Lemma 3. Let ΣBeh = (Σ,R,≈) be a behavioural signature that is regular
and ≡ is an abstractor equivalence over Σ, factorizable by ΣBeh. Then for any
class of models closed under isomorphism M ⊆ |Mod(Σ)| the following holds:
BehΣBeh(M) = Abs≡(FAΣBeh(M)).

7 Final remarks

In this paper we attempted to define a behavioural semantics for specifications
built in an arbitrary logical system formalized as an institution. Although the
presented framework covers many institutions of interest it doesn’t cover, for ex-
ample the institution of continuous algebras (an institution of behavioural logic



for continuous algebras can be defined if we deal only with the observability con-
cepts). In fact, all assumptions needed to form a behavioural concrete institution
from an ordinary concrete institution are quite numerous.

A technical tool used in this work are standard techniques of concrete cate-
gories. However, an interesting issue, for further work is to define a behavioural
institution based on an institution (without the additional structure of concrete
institutions) by a given behaviour operator.

Another important issue for further work is to find a proof system for be-
havioural specifications basing on a given proof system for ordinary specifica-
tions.
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