
On Refinement of Mobile UML State Machines

Alexander Knapp1, Stephan Merz2, and Martin Wirsing1

1 Institut für Informatik, Ludwig-Maximilians-Universiẗat München
{knapp,wirsing}@informatik.uni-muenchen.de

2 INRIA Lorraine, LORIA, Nancy
Stephan.Merz@loria.fr

Abstract. We study the semantics and refinement of mobile objects, considering
an extension of core UML state machines by primitives that designate the location
of objects and their moves within a network. Our contribution is twofold: first, we
formalize the semantics of state machines in MTLA, an extension of Lamport’s
Temporal Logic of Actions with spatial modalities. Second, we study refinement
concepts for state machines that are semantically justified in MTLA.

1 Introduction

Software development for mobile computing and computations has to extend the tradi-
tional methods and techniques by adequate notations for describing mobile entities and
design steps for refining models with mobile entities into implementations. For mo-
bile systems, correctness of such implementations presents a major concern, as mobile
agents may be roaming through a network and must be guaranteed to work reliably in
different locations and in different environments.

In this paper, we attempt to combine semi-formal modelling for mobile systems with
formal semantics and refinement techniques. For modelling, we consider an extension
of state machines in the “Unified Modeling Language” (UML [13]) for mobility. We
first formalize the semantics of mobile state machines in MTLA [10], an extension of
Lamport’s Temporal Logic of Actions with spatial modalities. Building on this logical
semantics, we study refinement concepts for mobile state machines. In particular, we
consider two notions of spatial refinements: On the one hand, mobile objects can be
split into a hierarchy of cooperating mobile objects. On the other hand, non-hierarchical
decompositions of locations can be justified to form correct refinements by abstracting
from the details of the roaming strategy of a mobile object.

There has been much interest in formalizing concepts of UML as well as in se-
mantic foundations for mobile computations, and we mention only the most closely
related work. Deiß [6] has presented an encoding of (Harel) Statecharts in TLA, with-
out considering either mobility or refinement. However, most formalizations of mobile
computation are based on either process algebras as in [5,11] or on state machine mod-
els as in [8], sometimes accompanied by logics to describe system behavior [4,12], but
without considering refinement. Our notion of refinement of state machines is partly
inspired by [14,15]; a related notion has been elaborated in [16].

a
a a aaa

a
a a aaa

a
a a aaa

�
�

�

�
�
�

B
B
B

@
@

@

�
�

�

�
�
�

B
B
B

@
@

@

�
�

�

�
�
�

B
B
B

@
@

@n2joe n1

ag

n3 n2joe n1 n3 n2joe n1 n3

ag ctl = Shoppingctl = Idle ctl = Shoppingag

Fig. 1.Prefix of a run.

1.1 Mobile UML

Mobile UML [2,3] extends the Unified Modeling Language (UML [13]) by concepts
for modelling mobile computation. The extension is described in terms of the UML
itself, using stereotypes and tagged values as meta-modelling tools. Most importantly,
instances of classes distinguished by the stereotype�location� denotelocationswhere
other objects may reside. Mobile objects are instances of classes with the stereotype
�mobile� and may change their locations over life-time. An actual movement of a mo-
bile object is performed by amove action that takes the target location as its parameter.

1.2 MTLA

The logic MTLA [10] is an extension of Lamport’s Temporal Logic of Actions [9]
intended for the specification of systems that rely on mobility of code. Due to space
restrictions, we refer to [10] for precise definitions of its syntax and semantics3 and
only recall the basic intuitions and notations.

Similar as in the Ambient calculus [5] due to Cardelli and Gordon, we represent a
configuration of a mobile system as a finite tree of nested locations. Mobility is reflected
in modifications of the location hierarchy, as agents move in and out of nested domains.
Whereas in the Ambient Calculus, each node of a configuration tree is associated with
a process, MTLA associates a local state with every node. A run is modeled as anω-
sequence of configuration trees. For example, Fig. 1 shows three configurations of a
system run. The first transition models a local action that changes the value of the local
attributectl associated with locationag . The second transition represents a move ofag
from the locationjoe to the locationn1. Locations carry physical names: each name
occurs at most once in any configuration tree.

MTLA contains both temporal and spatial modalities. Its formulas are evaluated
over runs, at a given location. As is standard for (linear-time) temporal logics, temporal
operators refer to the truth value of formulas at suffixes of a run. For example2F
asserts thatF holds of all suffixes of the run, at the current location.

Similarly, spatial operators shift the spatial focus of evaluation, referring to locations
below the current one. For example, the formulam[F] asserts thatF is true at location
m (strictly) below the current location of evaluation, provided such a location exists,
otherwisem[F] is trivially satisfied. The dual formulam〈F 〉 asserts that the location
m occurs beneath the current location, and thatF holds there. We frequently use a

3 In this paper, we do not use the “everywhere” operator2 of [10].

more convenient dot notation to refer to local attributes at a given location and write,
e.g.,ag .ctl to refer to the value of the attributectl of (the object denoted by)ag .

As in TLA, we use formulas to describe systems and their properties. State transi-
tions are specified using action formulas that contain primed variables, as inag .ctl =
Idle∧ ag .ctl ′ = Shopping. MTLA adds a transition formulaα.n � β.n wheren is a
name andα andβ are sequences of names. This formula asserts that the subtree rooted
at namen within the subtree indicated byα is moved below the pathβ. The next-state
relation of a system is specified by a formula2[A]v asserting that every transition that
modifies the expressionv must satisfy the action formulaA. Similarly,2[A]α.n , where
n is a name andα is a sequence of names stipulates that every transition that removes
or introduces locationn below the subtree indicated byα must satisfyA.

Hiding of state components can be expressed in MTLA using existential quantifi-
cation. For example,∃∃∃∃∃∃ag .ctl : F holds if one can assign some value to the attribute
ag .ctl at every state such thatF holds of the resulting run. (As in TLA, the precise def-
inition is somewhat more complicated in order to preserve invariance under stuttering.)
One may also quantify over names and write∃∃∃∃∃∃n : F ; this hides the name as well as all
its attributes. Despite their somewhat complicated semantics, these quantifiers observe
standard proof rules. In particular, we have the introduction axioms

(∃∃∃∃∃∃ -ref) F{t/n, t1/n.a1, . . . , tk/n.ak}⇒ ∃∃∃∃∃∃n : F
(∃∃∃∃∃∃ -sub) m〈true〉 ⇒ ∃∃∃∃∃∃n : m.n〈true〉 (m 6≡ n)

The axiom (∃∃∃∃∃∃ -ref) asserts that∃∃∃∃∃∃n : F can be derived by finding a “spatial refine-
ment mapping” that substitutes witnesses for the hidden namen as well as for its at-
tributes. The axiom (∃∃∃∃∃∃ -sub) allows us to introduce a new sublocationn of an existing
locationm.

2 Statecharts and their MTLA Semantics

We introduce mobile statecharts and provide a formal semantics based on MTLA. We
illustrate mobile state machines by means of the “shopper” example: A mobile shopping
agent is sent out by Joe to gather offers for some item in several shops; when returning
to Joe, the shopping agent presents all offers that it has found.

2.1 State Machines for Mobility

UML state machines, an object-oriented variant of Statecharts as defined by Harel [7],
are an expressive and feature-rich class of state transition systems with a complex se-
mantics [17]. In this paper, we consider a restricted class of state machines, but extended
by a special move action. In particular, we consider neither hierarchical nor pseudo-
states, with the exception of a single initial state per state machine. We consider only
events triggered by asynchronous signals (excluding call, time, and change events) and
ignore deferred events. Although our encoding could be extended to encompass all fea-
tures of UML state machines, the simplifications we impose let us concentrate on the
problems of mobility and refinement that are our primary concern.

name : String

present(offers : List)

«location» Site

«mobile» Shopper

offer(o : Offer)
look(i : Item)

name : String
home : Site

(a) Class diagram.

Idle

Shopping

offer(o) /
offers=add(offers,o)

home.present(offers)
[@home] /

(lookFor,offers)
look(item) /

= (item, {})

/ ANY l : Site :
move(l)

[@home]

(b) State machine for the shopper.

Fig. 2.High-level model for the shopper.

Transitions of state machines are labelled bytriggers, guards, andactions, any and
all of which can be absent. Triggers denote signal receptions; they are of the form
op(par) whereop is the name of an operation declared in the class andpar is a list
of parameters. Guards are Boolean expressions over the attributes of the class and the
parameters that appear in the trigger clause. Besides, we allow for guardse1 ≺ e2 that
refer to the hierarchy of objects; such a clause is true if (the object denoted by)e1 is
currently located beneathe2. The most common form isself ≺ e, requiring the current
object to be located belowe, which we abbreviate to@e. Actions indicate the response
of an object, beyond the state transition. For simplicity, we assume that all actions are
of the form

ANY x : P : upd ;send ;move

where each of the constituents may be absent. Herein,P is a predicate over location ob-
jects, andANY x : P functions as a binder that chooses some location objectx satisfying
P which can be used in the remainder of the action. Theupd part is a simultaneous as-
signment(a1, . . . ,ak) = (e1, . . . ,ek) of expressionsei to attributesai . Thesend part is
of the forme.op(par) and denotes the emission of a signalop with parameterspar to
receiver objecte. Finally, themove part consists of a singlemove(e) action that indi-
cates that the object should move to the location object whose identity is denoted by
e. We require that all free variables in the action are among the attributes of the class,
the parameters introduced by the trigger, and the locationx bound byANY. Figure 2(b)
shows an initial state machine for our shopping agent, based on the class diagram of
Fig. 2(a). For the subsequent refinements, we will not explicitly indicate the class dia-
grams, as they can be inferred from the elements that appear in the state machines.

Our interpretation of transitions deviates in certain ways from the UML standard.
First, the UML prioritizes triggerless transitions (so-called “completion transitions”)
over transitions that require an explicit triggering event. In contrast, we consider that
completion transitions may be delayed; this interpretation favors non-determinism and
is therefore more appropriate for specifications at higher levels of abstraction. As a

second, minor deviation, we allow guards to appear in transitions from a state machine’s
initial state.

2.2 MTLA Semantics of State Machines

We formalize systems of interacting, mobile state machines in MTLA. The formaliza-
tion enables us to prove properties about systems specified in UML. We will also use it
to justify correctness-preserving refinement transformations.

In MTLA, every object is represented by a MTLA location whose local state in-
cludes a unique, unmodifiable identifier. We denote byObj the set of all MTLA loca-
tions that represent objects of a given object system. The subsetLoc denotes the set of
MTLA locations that represent UML Location objects (including Mobile Locations),
and the formalization of a system of state machines at a given level of abstraction is
with respect to these setsObj andLoc. An object configuration is represented as a tree
of names whose nesting reflects the spatial relationships between objects.

The local state at each node represents the attributes declared for the correspond-
ing object. Besides, we use the additional attributesself to denote the unique object
identifier,ctl to hold the current control state of the object (i.e., the active state of the
corresponding state machine), andevts to represent the list of events that are waiting to
be processed by the object (we assume that no attribute is of nameself , ctl or evts). Ob-
jects interact asynchronously by sending and receiving messages. The communication
network is represented by an attributemsgs located at the root node of the configuration
tree.

Every transition of an object is translated into an MTLA action formula that takes a
parametero denoting the location corresponding to the object. For lack of space, we do
not give a precise, inductive definition of the translation, but only indicate its general
form. In the following, if ϕ is an MTLA expression (a term or a formula), we write
ϕx andϕo , respectively, for the expressions obtained by replacingx by x .self and by
replacing all attributesa of o by o.a.

The action formula representing a transition is a conjunction built from the transla-
tions of its trigger, guard, and action components. The automaton transition from states
src to dest is reflected by a conjuncto.ctl = src∧o.ctl ′ = dest.

A trigger op(par) contributes to the definition of the action formula in two ways:
first, the parameterspar are added to the formal parameters of the action definition.
Second, we add the conjunct

¬empty(o.evts)∧head(o.evts) = 〈op,par〉∧o.evts ′ = tail(o.evts)

asserting that the transition can only be taken if the trigger is actually present in the
event queue and that it is removed from the queue upon execution of the transition.
For transitions without an explicit trigger we add the conjunctUNCHANGED o.evts to
indicate that the event queue is unmodified.

A Boolean guardg over the object’s attributes is represented by a formulago , in-
dicating thatg is true at locationo. A constrainte1 ≺ e2 on the hierarchy of objects is
represented by a conjunct of the form∨

o1,o2∈Obj

o1.self = (e1)o ∧o2.self = (e2)o ∧o2.o1〈true〉

The representation of an action consists of action formulae for multiple assignment,
sending a message, and moving. If an action shows anANY x : P quantifier the con-
junctionacts of these formulae are bound by a disjunction

∨
x∈Loc Px

o ∧actsx . In more
detail, a multiple assignment to attributes is represented by a formula

o.a ′1 = (e1)xo ∧ . . .∧o.a ′k = (ek)xo ∧UNCHANGED 〈o.ak+1, . . . ,o.an〉

whereak+1, . . . ,an are the attributes ofo that are not modified by the assignment and
x is the variable bound byANY. Sending a messagee.op(par) is modelled by adding
a tuple of the form〈ex

o ,op,parx
o 〉 to the networkmsgs. For actions that do not send

a message we add the conjunctmsgs ′ = msgs. A final conjunct constrains the moves
caused by the current action. If the action contains a clausemove(e), we add a conjunct∨

l∈Loc

l .self = ex
o ∧ ε.o � l .o

that asserts thato will move to (the location with identity)eo . Otherwise we add the
conjunct

∧
l∈Loc [false]l .o to indicate that the object does not enter or leave any location

in Loc.
To model the reception of new events by the object, we add an actionRcvEvt(o,e)

that removes an evente addressed too from the network and appends it to the queue
evts of unprocessed events while leaving all other attributes unchanged. We also add an
actionDiscEvt(o) that discards events that do not have associated transitions from the
current control state. The entire next-state relationNext(o) of objecto is represented as
a disjunction of all actions defined from the transitions and the implicit actionsRcvEvt
andDiscEvt , existentially quantifying over all parameters that have been introduced in
the translation.

A state predicateInit(o) defining the initial conditions of objecto is similarly ob-
tained from the transition from the initial state of the state machine. Finally, the overall
specification of the behavior of an objecto of classC is given by the MTLA formulas

IC (o) ≡ ∧ Init(o)∧o.evts = 〈〉∧2[Next(o)]attr(o)∧2[false]o.self

∧
∧

l∈Loc 2[Next(o)]l .o
(1)

C (o) ≡ ∃∃∃∃∃∃o.ctl ,o.evts : IC (o) (2)

The “internal” specificationIC (o) asserts that the initial state must satisfy the ini-
tial condition, that all modifications of attributes ofo and all moves ofo (entering or
leaving any location ofLoc) are accounted for by the next-state relation, and that the
object identity is immutable. Here,attr(o) denotes the tuple consisting of the explic-
itly declared attributes and the implicit attributesctl andevts. For example, the formula
IShopper(ag) shown in Fig. 3 defines the behavior of an objectag of classShopper
introduced in Fig. 2(b). The “external” specificationC (o) is obtained fromIC (o) by
hiding the implicit attributesctl andevts.

The specification of a finite system of objects consists of the conjunction of the
specifications of the individual objects. Moreover, we add conjuncts that describe the
hierarchy of locations and objects and that constrain the network. For our shopper exam-
ple, we might assume a typical system configuration being given by the object diagram

Init(ag) ≡ ag .ctl = Idle∧
∨

l∈Loc(l .ag〈true〉∧ag .home = l .self)
Stationary(ag) ≡

∧
l∈Loc [false]l .ag

Deq(ag ,msg) ≡ ¬empty(ag .evts)∧head(ag .evts) = msg ∧ag .evts ′ = tail(ag .evts)
Look(ag , item) ≡ ∧ ag .ctl = Idle∧ag .ctl ′ = Shopping∧Deq(ag ,〈look, item〉)

∧ ag .lookFor ′ = item ∧ag .offers ′ = {}∧UNCHANGED ag .home
∧ msgs ′ = msgs ∧Stationary(ag)

Offer(ag ,o) ≡ ∧ ag .ctl = Shopping∧ag .ctl ′ = Shopping∧Deq(ag ,〈offer,o〉)
∧ ag .offers ′ = add(ag .offers,o)∧UNCHANGED 〈ag .lookFor ,ag .home〉
∧ msgs ′ = msgs ∧Stationary(ag)

Present(ag) ≡ ∧
∨

l∈Obj l .self = ag .home ∧ l .ag〈true〉
∧ ag .ctl = Shopping∧ag .ctl ′ = Idle
∧ UNCHANGED 〈ag .lookFor ,ag .offers,ag .home,ag .evts〉
∧ msgs ′ = msgs ∪{〈ag .home,present,ag .offers〉}
∧ Stationary(ag)

Move(ag) ≡
∨

l∈Loc ∧ l .self ∈ Site
∧ ag .ctl = Shopping∧ag .ctl ′ = Shopping
∧ UNCHANGED 〈ag .lookFor ,ag .offers,ag .home,ag .evts〉
∧ msgs ′ = msgs ∧ ε.ag � l .ag

RcvEvt(ag ,e) ≡ ∧ 〈ag .self ,e〉 ∈msgs ∧msgs ′ = msgs \ 〈ag .self ,e〉
∧ ag .evts ′ = append(ag .evts,e)
∧ UNCHANGED 〈ag .ctl ,ag .lookFor ,ag .offers,ag .home〉
∧ Stationary(ag)

DiscEvt(ag) ≡ ∧ ¬empty(ag .evts)∧ag .evts ′ = tail(ag .evts)
∧ ¬∃i : head(ag .evts) = 〈look, i〉∨ag .ctl 6= Idle
∧ ¬∃o : head(ag .evts) = 〈offer,o〉∨ag .ctl 6= Shopping
∧ UNCHANGED 〈ag .ctl ,ag .lookFor ,ag .offers,ag .home〉
∧ msgs ′ = msgs ∧Stationary(ag)

Next(ag) ≡ ∨ (∃i : Look(ag , i))∨ (∃o : Offer(ag ,o))∨Present(ag)
∨ Move(ag)∨ (∃e : RcvEvt(ag ,e))∨DiscEvt(ag)

attr(ag) ≡ 〈ag .ctl ,ag .lookFor ,ag .offers,ag .home,ag .evts〉
IShopper(ag) ≡ ∧ Init(ag)∧ag .evts = 〈〉∧2[Next(ag)]attr(ag)∧2[false]ag .self

∧
∧

l∈Loc 2[Next(ag)]l .ag

Fig. 3.MTLA specification of the shopper behavior (see Fig. 2(b))

«location» sh : Site1

«location» sh : SiteN

«location» joe : Site

«location»
ag : Shopper

...

Fig. 4.Object diagram for the shopper example.

in Fig. 4. This configuration can be translated into the formula

∃∃∃∃∃∃msgs : ∧
∧N

i=1shi〈self = shop-i ∧ joe[false]∧
∧N

j=1shj [false]〉∧Site(shi)
∧ joe〈self = joe∧

∧N
i=1shi [false]〉∧Site(joe)

∧ joe.ag〈self = shopper〉∧Shopper(ag)
∧

∧
l∈Loc 2[false]l .sh1,...,l .shN ,l .joe

∧ msgs = 〈〉∧2
[∨

o∈Obj Next(o)
]
msgs

(3)

Idle

Returning

Ready
look(item) /

= (item, {})
(lookFor,offers)

(offers)
/ home.present

/ ANY x : nbs(loc) :

loc=x; move(x)

ArrivedWaitOffer

offer(o) /
offers=add(offers,o)

Shopping

/ loc.getOffer(lookFor)

loc=home

[@home]

[@home]

Fig. 5.Refined state machine for the shopper.

The formula in the scope of the existential quantifier asserts that the configuration
contains theN +1 sitessh1, . . . ,shN andjoe, and a shopping agentag . Moreover,joe
and the shops are immobile and unnested locations, whereasag is situated beneath
joe. The last conjunct asserts that messages are only sent and received according to
the specifications of the participating objects. The external specification is obtained by
hiding, via existential quantification, the set of messages in transit, which is implicit at
the UML level.

For this example,Obj is the set{sh1, . . . ,shN , joe,ag} and Loc = Obj \ {ag}.
Moreover, we define a setSite containing the identities of the elements ofLoc, i.e.
Site = {shop-1, . . . ,shop-N , joe}.

One purpose of our formalization is to prove properties about a system of objects.
For the shopper example, we can deduce that the shopping agent is always located at its
home agent or at one of the shops, expressed by the formula

2

(∨
l∈Loc

l .ag〈true〉
)

(4)

3 Refinement of state machines

In an approach based on refinement, interesting correctness properties of systems can
already be established for models expressed at a high level of abstraction. These proper-
ties are preserved by subsequent models that provide a more detailed description of the
system under development. In this paper, we focus on the refinement of state machines,
and we add a “spatial” dimension to refinement in order to reveal more structure of the
object hierarchy. In particular, a single high-level object can be refined into a tree of
sub-objects. Throughout, we assume that the public interface of a refining class con-
tains that of the refined one, and that the setsLoc andObj corresponding to the refining
model are supersets of those of the refined model.

3.1 Interface Preserving Refinement

Typically, refinement reduces the degree of non-determinism in a system description.
For example, consider the state machine for the shopping agent shown in Fig. 5, which
imposes a number of constraints with respect to the state machine shown in Fig. 2(b).
After arriving at a new shop location (whose identity is recorded in the additional at-
tribute loc), the agent may now either query for offers via a new messagegetOffer or
immediately move on to another neighbor location. In the former case, it waits until the
offers are received, adds them to its local memory, and then moves on. When the agent
arrives at its home location, it may quit the cycle, presenting the collected offers and
returning to theIdle state.

Intuitively, the state machine of Fig. 5 is a refinement of the one shown in Fig. 2(b)
because the states of the refined state machine can be mapped to those of the high-level
state machine such that every transition of the lower-level machine are either explicitly
allowed or invisible at the higher level. In particular, the statesReady, Arrived, Wait-
Offer, andReturning can all be mapped to the high-level stateShopping, as indicated
by the dashed line enclosing these states. Assuming that the setnbs(l) contains only
identities inSite, for all l ∈ Loc, each transition of the refined model either corresponds
to a transition of the abstract model or to a stuttering transition, e.g. the transition from
Arrived to WaitOffer.

We now formalize this intuition by defining what we mean by asserting that a state
machineR refines another state machineM for a classC . Basically, refinement is
represented in linear-time formalisms by trace inclusion or, logically, by validity of im-
plication. However, we will be a little more precise about the context in whichM and
R are supposed to be embedded. Both machines are specified with respect to attribute
and method signaturesΣR andΣM that include all method names that appear in tran-
sition labels (either received or sent), and we assume thatΣR extendsΣM . Similarly,
the setsObjR andLocR of MTLA names for the objects and the location objects at
the level of the refinement should be supersets of the corresponding setsObjM and
LocM at the abstract level. Finally, the refinement may be subject to global hypotheses
about the refined system, such as the hierarchy of names, that are formally stated by an
MTLA state predicateH . Thus, we say thatR refinesM under hypothesisH if for all
system specificationsSysM andSysR such thatSysR results fromSysM by replacing
all occurrences of the MTLA specificationsCM (o) by CR(o) and by conjoining some
formulas such thatSysR implies2H , the implicationSysR ⇒ SysM is valid.

In order to prove thatR refinesM , we relate the machines by a mappingη that
associates with every states of R a pairη(s) = (Inv(s),Abs(s)) whereInv(s) is a set
of MTLA state predicates, possibly containing spatial operators, and whereAbs(s) is a
state ofM . With such a mapping we associate certain proof obligations: the invariants
must be inductive forR, and the (MTLA formalizations of the) transitions of the ma-
chineR must imply some transition allowed at the corresponding state ofM , or leave
unchanged the state ofM . A proof of the following theorem appears in the appendix.

Theorem 1. Assume thatM andR are two state machines for classesCM andCR

such that the attribute and method signatureΣR of CR extends the signatureΣM of
CM , and thatη is a mapping associating with every states of R a setInv(s) of MTLA

state predicates and a stateAbs(s) of M . If all of the following conditions hold thenR
refinesM under hypothesisH . We writeϕ for

ϕ{Abs(o.ctl)/o.ctl ,o.evts�ΣM /o.evts,msgs�ΣM /msgs}

wheree�Σ denotes the subsequence of elementse whose first component is inΣ.

1. Abs(sR
0) = sM

0 wheresM
0 andsR

0 denote the initial states ofM andR. Moreover,

|= H ∧ InitR(o)⇒ o[Inv(sR
0)]∧ InitM (o)

holds for the initial conditionsInitR andInitM of M andR.
2. For every transition ofR with source and target statess and t formalized by the

MTLA action formulaA(o,par):

|= H ∧H ′∧o[Inv(s)]∧A(o,par)⇒ o[Inv(t)′]

3. For every states ofR and every outgoing transition formalized by formulaA(o,par)
and corresponding stateAbs(s) of M whereB1(o,par1), . . . ,Bm(o,parm) are the
MTLA formulas formalizing the outgoing transitions ofAbs(s), attrM (o) is the
tuple of attributes defined forM andLocM is the set of locations forM :

|= H ∧H ′∧o[Inv(s)]∧A(o,par) ⇒
∨

∨m
i=1(∃pari : Bi(o,pari))

∨ UNCHANGED 〈attrM (o),msgs�ΣM 〉∧
∧

l∈LocM
[false]l .o

Theorem 1 ensures thatR can replaceM in any system of mobile objects satisfy-
ing the syntactical requirements, subject to hypothesesH . In particular, all properties
established for the high-level system will be preserved by the implementation.

In order to prove that the state machine of Fig. 5 refines that of Fig. 2(b) (with re-
spect toH ≡∀s ∈ Site : nbs(s)∈ Site) we must define the mappingη. We have already
indicated the definition of the state abstraction mappingAbs. For the mappingInv , we
associate (the MTLA encoding of)@home with stateReturning andag .loc ∈ Site with
all other states. It is then easy to verify the conditions of theorem 1. In particular, the
transitions leaving stateArrived do not modify the shopping agent’s attributes or the
projections of the messages to the high-level signature, and are therefore allowed by
condition (3) of Theorem 1.

Theorem 1 can also be used to justify refinements that modify the spatial hierarchy
of locations. Consider the state machine shown in Fig. 6. It is based on the idea that
prior to interacting with an object, incoming agents are first placed in a special subloca-
tion for security checking. Instead of a simple, atomic move from one shop to another
as in Figs. 2(b) and 5, this version moves the shopping agent first to the “incoming”
sublocation of the target location. If the agent is accepted by the host, as modelled by
the reception of anadmit signal, it transfers to the “dock” sublocation where the real
processing takes place. Otherwise, the host will send arefuse signal, and the shopping
agent moves on to another neighbor host. Here we assume that every locationl ∈ Loc
contains sublocationsl in and l dock . Moreover, we assume functionsincoming and
dock to look up the id’s of the corresponding sub-locations for a given network site.

Idle

Returning

Ready
look(item) /

= (item, {})
(lookFor,offers)

offers=add(offers,o)
offer(o) /

(offers)
/ home.present

Incoming
/ ANY x : nbs(loc) :

loc=x; move(incoming(x))loc=home

[@home]

move(dock(loc))
admit() /

DockedWaitOffer
/ loc.getOffer(lookFor)

refuse()

[@home]

Fig. 6.Spatial refinement of the network sites.

Formally, Theorem 1 can again be used to show that the “docked” shopper of Fig. 6
is a refinement of that shown in Fig. 5 with respect to the hypothesis

H ≡
∧

l∈LocM

∧ l .l in〈true〉∧ l .l dock〈true〉
∧ incoming(l .self) = l in.self ∧dock(l .self) = l dock .self

The statesIncoming andDocked are mapped to the single high-level stateArrived, and
the invariant mapping associates (the MTLA encoding of)@loc with the locationIn-
coming andag .loc ∈ Site with all states. Indeed, the move action labeling the transi-
tion from theReady to theIncoming state will be formalized by an MTLA action for-
mula equivalent to

∨
l∈LocR l .ag �m in.ag , which implies the corresponding formula∨

l∈LocM l .ag � m.ag formalizing the move between the high-level statesReady and
Arrived, using the hypothesisH . Similarly,H and the invariant establish that the move
between theIncoming andDocked states maps to a stuttering action: clearly, the local
attributes and the message queue are left unchanged. Moreover, the invariant associated
with stateIncoming asserts that the agent is located beneath the site (with identity)loc.
Therefore, a move to the “dock” sublocation of that same site is invisible with respect
to the locations inLocM : the action implies[false]l .ag , for all l ∈ LocM .

For these kinds of refinement to be admissible, it is essential that the spatial oper-
ators of MTLA refer to locations at an arbitrary depth instead of just the children of
a node and that it is therefore impossible to specify the precise location of the agent.
This observation led us to discard the attribute indicating the location of a mobile object
proposed in [3].

3.2 Interface Refinement I: Spatial Distribution of State

Frequently, refinements of the spatial hierarchy will be accompanied by a distribution
of the high-level attributes over the hierarchy of sublocations of the refined model. For
a simple example, departing again from the high-level shopper of Fig. 2(b), consider
the state machine shown in Fig. 7. Here we assume that the shopping agent contains
two sub-agentspath that determines the path to follow through the network anddt that
collects the data, and we have replaced the attributeslookFor andoffers of the high-

ShoppingIdle GotRoute look(item) /
(dt.tgt, dt.res)

= (item, {})

offer(o) /
dt.res=add(dt.res,o)

[not empty(path.rt)] /
path.rt = tail(path.rt);
move(head(path.rt))

route(r) /
path.rt = r

[r in Seq(Site)]

[@home]

[@home] / home.present(offers)

Fig. 7.Spatial refinement of the shopper.

level shopper by attributestgt and res assigned to thedt sub-agent.4 The transition
from Idle to GotRoute determines the route of the agent. It is guarded by the condition
r ∈ Seq(Site), asserting thatr is a list of (identities of) network sites.

Spatial distribution of attributes is similar to the concept of data refinement in stan-
dard refinement-based formalisms. Intuitively, the refinement of Fig. 7 is admissible
provided that the public interface is preserved. We will therefore assume that the at-
tributesitem andoffers have been marked as private attributes in the class diagram for
the abstract shopper, ensuring that no other object relies on their presence.

Formally, we modify slightly the MTLA formalization of state machines, taking
into account the visibility (either “private” or “public”) of attributes. We redefine the
external specification of the behavior of an objecto of classC with private attributes
a1, . . . ,ak as the MTLA formula

C (o) ≡ ∃∃∃∃∃∃o.a1, . . . ,o.ak ,o.ctl ,o.evts : IC (o) (5)

whereIC (o) is defined as before by formula (1). Since the specification of an object
system in formula (3) is based on the external object specification, private attributes
are invisible at the system level, and the definition of refinement modulo a hypothesis
remains as before.

The verification of refinement relies on conditions generalizing those of Theorem 1,
provided that the private attributes of the high-level object can be computed from those
of the implementation via a refinement mapping [1]. The relation between the two di-
agramsR andM is therefore given by the mappingη as before, complemented by
termst1, . . . , tk that represent the values of the private high-level attributesa1, . . . ,ak .
These terms have then to be substituted for the attributes in the formulas concerning the
high-level state machineM .

Theorem 2. Extending the context of Theorem 1 by termst1, . . . , tk , we now writeϕ for

ϕ{Abs(o.ctl)/o.ctl ,o.evts�ΣM /o.evts,msgs�ΣM /msgs, t1/o.a1, . . . , tk/o.ak}

If the set of public attributes ofR is a superset of those ofM thenR refinesM under
hypothesisH up to hiding of attributeso.a1, . . .o.ak if the conditions of Theorem 1 hold
for this new interpretation of substitution.

4 The renaming of the attributes is not necessary, but will make clear in the following to which
model we are referring.

Idle Shopping

offer(o) /
offers=add(offers,o)

Shipping

[@home] /
home.present(offers)

look(item) /
(lookFor,offers)=(item,{})

[@home]
loc=home

ANY l : Site :
loc=l; move(l)

move(transit)

Fig. 8.State machine for the “slow shopper”.

Proof. The proof is analogous to that of Theorem 1. The assumption that every public
attribute ofM is also a public attribute ofR is necessary to apply the elimination rule
for existential quantification. ut

For the example shown in Fig. 7, the hypothesis is

H ≡ ag .path〈true〉∧ag .dt〈true〉

The implementation statesIdle and GotRoute are both mapped to the abstract state
Idle. The invariant mapping assigns the state formulaag .path.rt ∈ Seq(Site) to the
statesGotRoute andShopping. Finally, the refinement mapping is defined by substi-
tuting ag .dt .res andag .dt .tgt for ag .offers andag .lookFor , respectively. All proof
obligations of Theorem 2 are then easily verified.

3.3 Interface Refinement II: Virtualisation of Locations

So far, when refining locations, we have always taken care to preserve the hierarchy
of locations that existed at the abstract level. In MTLA, and also in the version of mo-
bile UML that we consider in this paper, the location of an agent cannot be specified
precisely, but only relatively to the locations of the other objects of the model at the
current level of abstraction. The conditions of Theorems 1 and 2 are therefore sufficient
to ensure that all MTLA formulas are preserved, even if they contain spatial operators.
However, it can occasionally be desirable to allow for refinements that do not at all
times preserve the spatial relationships imposed by the original specification.

For example, the previous specifications of the shopping agent have all assumed
that moves between locations happen atomically. Figure 8 presents a variation of the
original state machine of Fig. 2(b) where the agent moves to an intermediatetransit
location, which is not included inSite, before moving to the next site. (A subsequent
refinement could add more structure to thetransit location, modeling the transport of
the agent across the network.) We cannot use Theorems 1 or 2 to prove that this model
refines the original one because the move to the transit location cannot be mapped to any
high-level action. Even more, the MTLA formula representing the “slow shopper” does
not imply the formula encoding the original specification. In particular, the invariant
formula (4) asserting that the shopping agent is always located at some location that
represents a network site does not hold of the slow shopper.

Such a relationship can be formalized by considering a weaker notion of refinement
in which we abstract from some of the names that occur in the original specification. In

our running example, one may argue that the name of the shopping agent should not be
part of the interface: the purpose of the system is that the agent’s home site learns about
offers made by other network sites; the use of a mobile agent is an implementation de-
tail. We say that an object system formalized by an MTLA formulaImpl refines another
system formalized bySpec up to hiding of namen if the implicationImpl ⇒∃∃∃∃∃∃n : Spec
holds. In general, the behavior required of objectn at the abstract level may be imple-
mented by several implementation objects, hence it does not appear useful to give a
“local” rule attempting to prove refinement by considering a single state machine at a
time. Instead, the strategy in proving such a refinement is to define a “spatial refinement
mapping”, using the rules given in Section 1.2. For the slow shopper, we first use rule
(∃∃∃∃∃∃ -sub) to introduce a new sublocation, sayl virtual , for every high-level locationl
and then define a refinement mapping that returns the implementation-level agent as
long as it is not at thetransit location, and otherwise the locationl virtual associated
with the previous site visited as stored in the attributeloc. The local attributes of the
high-level shopper are in any case those of the implementation-level agent.

Refinement up to hiding of names allows for implementations that differ more rad-
ically in structure. For example, the single shopping agent of the initial specification
could be implemented by a number of shopping agents that roam the network in par-
allel, cooperating to establish the shopping list. On the other hand, an implementation
could also be based on a traditional client-server solution instead of using mobile agents.

4 Conclusion

We have studied the applicability of the logic MTLA proposed in [10] in view of for-
malizing Mobile UML State Machines [3] and establishing refinement relationships
between models described in this language. A configuration of a mobile system is rep-
resented as a tree of names, and mobility is reflected by changes to the name hierarchy.
MTLA provides for local state at every node in the tree, which simplifies the formaliza-
tion of state-based notations such as UML state machines that may manipulate object
attributes. The operators of MTLA have been designed to support system refinement; in
particular, all spatial operators refer to nodes arbitrarily deep beneath the current node
and not just its children as in other spatial logics, e.g. [4].

We have assumed some simplifications and restrictions for our formalization of
Mobile UML state machines. In particular, we assume that spatial relationships are
specified using constraintse1 ≺ e2, comparing the relative positions of two objects at
the current level of abstraction. This assumption has been essential to obtain a sound and
elegant representation of refinement as implication of specifications for mobile systems.

Our main objective has been the study of three fundamental refinement principles,
focusing on refinements of the spatial hierarchy. We have indicated sufficient condi-
tions for verifying refinement. However, these conditions are incomplete: in particular,
it is well known that refinement mappings need to be complemented by devices such
as history and prophecy variables for completeness results [1]. We have also ignored
liveness and fairness properties in this paper, and we have mostly restricted ourselves
to proving refinement “object by object”. We intend to study adequate composition and
decomposition concepts in future work.

References

1. Mart́ın Abadi and Leslie Lamport. The existence of refinement mappings.Theoretical Com-
puter Science, 81(2):253–284, May 1991.

2. Hubert Baumeister, Nora Koch, Piotr Kosiuczenko, Perdita Stevens, and Martin Wirsing.
UML for global computing. In C. Priami, editor,Global Computing. Programming Envi-
ronments, Languages, Security, and Analysis of Systems, volume 2874 ofLecture Notes in
Computer Science, pages 1–24, Rovereto, Italy, 2003. Springer-Verlag.

3. Hubert Baumeister, Nora Koch, Piotr Kosiuczenko, and Martin Wirsing. Extending activity
diagrams to model mobile systems. In M. Aksit, M. Mezini, and R. Unland, editors,Objects,
Components, Architectures, Services, and Applications for a Networked World (NODe 2002),
volume 2591 ofLecture Notes in Computer Science, pages 278–293, Erfurt, Germany, 2003.
Springer-Verlag.

4. Luis Caires and Luca Cardelli. A spatial logic for concurrency (part I). InTheoretical
Aspects of Computer Software, Lecture Notes in Computer Science, pages 1–37. Springer-
Verlag, 2001. Revised version to appear in Information and Computation.

5. Luca Cardelli and Andrew Gordon. Mobile ambients.Theoretical Computer Science,
240:177–213, 2000.

6. Thomas Deiß. An approach to the combination of formal description techniques: Statecharts
and TLA. In K. Araki, A. Galloway, and K. Taguchi, editors,Integrated Formal Methods
(IFM 1999), pages 231–250, York, UK, 1999. Springer-Verlag.

7. David Harel. Statecharts: A Visual Formalism for Complex Systems.Science of Computer
Programming, 8(3):231–274, 1987.

8. Thomas A. Kuhn and David von Oheimb. Interacting state machines for mobility. In
K. Araki, S. Gnesi, and D. Mandrioli, editors,Proc. 12th Intl. FME Symposium (FM2003),
volume 2805 ofLecture Notes in Computer Science, pages 698–718, Pisa, Italy, September
2003. Springer-Verlag.

9. Leslie Lamport. The Temporal Logic of Actions.ACM Transactions on Programming
Languages and Systems, 16(3):872–923, May 1994.

10. Stephan Merz, J́ulia Zappe, and Martin Wirsing. A spatio-temporal logic for the specification
and refinement of mobile systems. In M. Pezzè, editor,Fundamental Approaches to Software
Engineering (FASE 2003), volume 2621 ofLecture Notes in Computer Science, pages 87–
101, Warsaw, Poland, April 2003. Springer-Verlag.

11. R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: a kernel language for agents interaction
and mobility. IEEE Trans. on Software Engineering, 24(5):315–330, 1998.

12. R. De Nicola and M. Loreti. A modal logic for Klaim. In T. Rus, editor,Proc. Algebraic
Methodology and Software Technology (AMAST 2000), volume 1816 ofLecture Notes in
Computer Science, pages 339–354, Iowa, 2000. Springer-Verlag.

13. Object Management Group. Unified Modeling Language Specification, Version 1.5. Speci-
fication, OMG, 2003.http://cgi.omg.org/cgi-bin/doc?formal/03-03-01.

14. Barbara Paech and Bernhard Rumpe. A new concept of refinement used for behaviour mod-
elling with automata. InFME’94, volume 873 ofLecture Notes in Computer Science, pages
154–174, Barcelona, Spain, 1994. Springer-Verlag.

15. Peter Scholz. A refinement calculus for Statecharts. InIntl. Conf. Fundamental Approaches
to Software Engineering (FASE’98), volume 1382 ofLecture Notes in Computer Science,
pages 285–301, Lisbon, Portugal, 1998. Springer-Verlag.

16. Michael Schrefl and Markus Stumptner. Behavior-consistent specialization of object life
cycles.ACM Trans. Software Engineering and Methodology, 11(1):92–148, 2002.

17. Michael von der Beeck. Formalization of UML-statecharts. In M. Gogolla and C. Kobryn,
editors,Proc. 4th Int. Conf. UML (UML 2001), volume 2185 ofLecture Notes in Computer
Science, pages 406–421. Springer, 2001.

A Proof of theorem 1

Assume that the low- and high-level systems are specified by the MTLA formulasSysR

andSysM . By ISysR andISysM , we will denote the corresponding formulas without
the quantification overmsgs and the implicit attributesoi .ctl andoi .evts, for all objects
oi . We will prove that

|= ISysR ⇒ ISysM (6)

whereF denotes the formula

F{Abs(o.ctl)/o.ctl ,msgs�ΣM /msgs,oi .evts�ΣM /oi}

— in particular, all event queues, and not just that of the refined objecto, are restricted
to messages in the high-level signatureΣM .

From (6), we obtain the assertion|= SysR ⇒ SysM by the standard introduction
and elimination rules for existential quantification.

For the proof of (6), recall that we assumeSysR to be obtained fromSysM by
adding (some global assumptions that imply)2H and by replacing the specification
CM (o) by CR(o). In particular, all conjuncts inISysM that refer to the global system
(and in particular the object hierarchy) are implied byISysR, and we only have to
consider the specifications of the objects that appear inISysM . Formula (6) is proved
by a proof of step simulation, considering the actions possible at the implementation
level.

First consider any objectoi different from the refined objecto. By definition,

|= ISysR ⇒ InitM (oi)∧oi .evts = 〈〉

and therefore it follows that

|= ISysR ⇒ InitM (oi)∧oi .evts�ΣM = 〈〉

Similarly,NextR(oi) andNextM (oi) as well asattrR(oi) andattrM (oi) are identical.
In particular, all moves (with respect to location inLocM) at the implementation level
must also be allowed at the abstract level. To see that

|= [NextM (oi)]attrM (oi),msgs ⇒ [NextM (oi)]
attrM (oi),msgs

observe that for every actionA(oi ,par) other thanRcvEvt(oi ,e) or DiscEvt(oi), its
definition is such that

|= A(oi ,par)⇒A(oi ,par)

because any message consumed or sent byA is contained inΣM , implying thatoi .evts
andmsgs on the one side andoi .evts�ΣM andmsgs�ΣM on the other side are modified
in the same way. On the other hand, executions ofRcvEvt(oi ,e) or DiscEvt(oi) for
an event not inΣM are mapped to stuttering transitions with respect tooi .evts�ΣM and
msgs�ΣM .

Now consider the refined objecto itself. Condition (1) ensures that the initial con-

dition InitM (o)∧ o.evts�ΣM = 〈〉 holds for any run satisfyingISysR. Moreover, con-
ditions (1) and (2) inductively establish thato[Inv(ctl)] holds at all states. Therefore,
condition (3) shows that every move ofo in a run described byISysR either maps to

a move allowed byISysM or does not affect the projection of the state visible at the
abstract level, i.e.

|= ISysR ⇒2[NextM (o)]
attr(o)∧2[NextM (o)]msgs ∧

∧
l∈LocM

2[NextM (o)]l .o

This completes the proof of (6), and thus of theorem 1. ut

