
Extending Activity Diagrams to Model Mobile
Systems? ??

Hubert Baumeister, Nora Koch, Piotr Kosiuczenko, and Martin Wirsing

Institut für Informatik
Ludwig-Maximilians-Universität München

Oettingenstr. 67
{baumeist, kochn, kosiucze, wirsing}@informatik.uni-muenchen.de

Abstract. Mobile systems are gaining more and more importance, nev-
ertheless the means for their specifications are still underdeveloped. Ex-
isting UML diagrams can be used to conveniently model behavior, but
these diagrams can be hardly used to model mobility. In this paper we
present an extension to UML class and activity diagrams to model mobile
systems. We assume that mobile objects can migrate from one location
to another. Locations can be nested and mobile too. We introduce stereo-
types to model mobile objects, locations, and activities like moving or
cloning. We introduce two notational variants of activity diagrams for
modeling mobility. One variant is location centered and focuses on the
topology of locations. The other one focuses on the actor responsible
for an activity. We compare these two types of diagrams and define a
metamodel for them.

1 Introduction

The emergence of the Word Wide Web provides new computational paradigms
in which computation is distributed over the net and highly dynamic, with the
network itself changing continously. The network topology, which was carefully
hidden in LAN, starts to play a fundamental role. This situation fostered new
concepts like virtual locations for administrative domains, fire-walls, physical
locations for computing devices operating in different places. One of the most
important new concepts is mobile computing which gains more and more inter-
est. Code mobility emerged in some scripting languages for controlling network
applications like Tcl and is one of the key features of the Java programming lan-
guage. Agent mobility has been supported by Telescript, AgentTcl, or Odyssey
(cf. e.g. [7]). In addition, hardware can be mobile too. Mobile hosts like laptops,
WAPs, and PDAs can move between networks. Moreover, entire networks can
be mobile, like for example IBM’s Personal Area Network (PAN) and networks
of sensors in airplanes or trains. For example Fig. 1 shows a person having a
PAN who boards an airplane, flies from one location to another, and deplanes.
? This research has been partially sponsored by the EC 5th Framework project AGILE:

Architectures for Mobility (IST-2001-32747).
?? Appeared in Proc. of NetObjectDays, NODe 2002, Erfurt, October 2002.

1



4

2 3

1

Fig. 1. Nested mobile networks.

Mobile computations can cross barriers and move between virtual and phys-
ical locations, therefore they can turn remote calls to local calls avoiding the
latency limits. But there is a price to pay since the administrative barriers and
multiple access pathways interact in very complex ways. This requires special
means for the specification and implementation of mobile systems.

Modeling is a central activity in the software development process that leads
to a clear specification and good implementation. Models are built, among others,
to visualize the system architecture and to communicate the desired structure
and behavior of the system. UML [13] is the standard graphical notation for
modeling object-oriented software. It has the advantage of providing extension
mechanisms to adapt the UML to specific domain requirements.

In this paper we present an extension of UML activity diagrams for modeling
mobile systems. We introduce into UML the concepts of location, mobile object,
mobile location, move action, and clone action. These concepts are defined by
using UML stereotypes, tagged values, and OCL-constraints. Furthermore, we
introduce two variants of activity diagrams for modeling mobility. The first vari-
ant is responsibility centered and uses swimlanes to model who is responsible for
an action. The second is location centered and uses the notation of composite
objects to visualize the hierarchy of locations.

The paper is organized as follows. The rest of this section discusses related
work. In Sect. 2 the basic mobility concepts used in our extension are presented.
In Sect. 3 we present the two variants of UML activity diagrams, followed by a
formal presentation of the proposed UML profile. Finally, in Sect. 5 a conclusion
and an outlook to future work is presented.

2



Related Work There exist several formalisms for specifying mobility, among
them are Seal [15], Basic-Sail [14], and KLAIM [12]. The most relevant for our
approach is, however, the ambient calculus [3]. In this formalism, ambients are
playing the role of processes and physical or logical locations. Ambients can enter
and leave other ambients and perform computations. The topology constrains
the communication and mobility and can be explicitly specified. The advantage
of this calculus is that it provides abstractions for modeling mobility across
nested locations and allows one to specify security constraints.

One of the earliest formal notations capable of specifying mobile objects was
Maude [10], although this was not its primary goal. It is a very flexible formalism
for specifying complex communication patterns with hierarchical object struc-
tures, similar to the ambient calculus. Mobile Maude [5] is an extension of Maude
to model mobile objects and processes, i.e. located, computational environments
where mobile objects can reside.

These calculi are good in formalizing simple systems, but for large systems
a visual notation is needed to easier grasp the specifications and to specify the
system from different points of views. There exist already some proposals (cf. [16,
8, 11, 9]) to extend the UML to model mobile systems, which are complementary
to our work. To our knowledge none of these extensions cover activity diagrams.

In [16] an extension of collaboration diagrams is presented to model dynamic
change of the composition relationship. It defines a form of aggregation link
between objects — a component link — with the additional semantics that
a component link may change over time. In addition, it proposes the use of
component boundaries to emphasize the relationship between a component and
its immediate components. It is an interesting approach, but it does not explain
how these extensions fit into the UML metamodel.

In [11] an architecture description language (ADL) for the design of mobile
agent systems is presented. This ADL is defined as a UML profile. Modeling of
agent migration is supported by the stereotyped flow relationship �become�,
an operation move, and operations beforeMove and afterMove that prepare the
agent for the migration. It proposes a graphical representation using deployment
and component diagrams.

Another extension is presented in [8]. It is similar to the early idea of Use Case
Maps [2]. Stereotyped classes and packages are used to model mobility. Objects
moving from one location to another are modeled by stereotyped messages. This
approach can be used when there are only two kinds of objects: mobile objects
and static locations. It is not well suited for modeling objects which are mobile
and also play the role of locations.

In [9] UML sequence diagrams are extended to model complex mobility
patterns. These diagrams generalize the concept of object lifeline of Use Case
Maps [2]. The diagrams provide also the possibility to abstract away from irrel-
evant details. Their semantics is similar to that of ambients or Maude in that a
mobile object is a location and a mobile process as well.

3



2 Mobility Concepts

In the following we introduce the main mobility concepts we use in this paper:
locations, mobile objects, and actions moving mobile objects.

2.1 Locations

The concept of location plays an important role in the case of mobile systems. To
denote classes whose instances are locations we use the stereotype �location�.
For example, the airport Charles de Gaulle (CDG) is an instance of the stereo-
typed class Airport. Similar to the ambient calculus [4] we allow locations to be
nested (cf. Fig. 2). For example, the airport Charles de Gaulle is contained in
France, an instance of class Country, which is also a location. We require that
any location is contained in at most one location and that a location cannot be
contained in itself (directly or indirectly). We do not require that the hierarchy
of locations has a single top element. Thus the hierarchy of locations forms a
forest. Note that these assumptions, in particular the assumption that a location
is contained in at most one location, simplifies the semantics and in consequence
the analysis of mobile systems (cf. e.g. [4]).

<<location>>
Country

name

Airport
<<location>>

name

number
date
boardingTime
gate

Flight
Plane

<<mobile location>>

type
numberOfSeats

land()
takeOff()

Passenger
<<mobile>>

name

eat()
board()
deplane()

destinationorigin

has

1 1

* *

*

run * *

Fig. 2. A simplified class diagram modeling an airport.

2.2 Mobile Objects

A mobile object is an object that can change its location. A class representing
mobile objects is indicated by the stereotype �mobile�. The current location of

4



a mobile object is indicated by the atLoc relation. As in the case of locations,
a mobile object can only be contained in at most one location. In our airport
example, a particular passenger is a mobile object, as he may move from one
location to another, for example, from Munich to Paris (cf. Fig. 2).

Note that the atLoc relation is not explicitly presented in Fig. 2. One reason
is that this would unduly complicate the diagram. For example, a passenger
can be located either at a plane, an airport, or a country. The second reason
is that the existence of the atLoc relation is implied by the use of the mobility
stereotypes (cf. Sect. 4.1).

Locations can be mobile too. This allows us to model passengers in an air-
plane and flying the airplane from one airport to another. In this case the stereo-
type �mobile location� is used. The stereotype �mobile location� inherits from
the stereotype �location� and the stereotype �mobile� for mobile objects. This
was the only way to define mobile locations by stereotypes with the UML 1.3,
because a model element could have only one stereotype attached to it. UML
1.4, however, makes it possible to attach more than one stereotype to a model
element. In this case we could give the class Airplane the stereotypes �mobile�

and �location� to denote that it is a mobile location. However, we feel that using
the stereotype �mobile location� conveys better the concept of mobile locations.

For mobile locations we require that the atLoc relation inherited from mobile
objects is the same as the atLoc relation inherited from locations. To ensure
this, stereotypes �mobile� and �location� inherit from a common stereotype
�spatial� which denotes classes of objects that can be at a location (cf. Fig. 8).

2.3 Actions

Basically, there are two primitives that change the location of a mobile object. A
mobile object can move from one location to another — a so called move action;
or a copy of an object is moved to a new location [6] — a so called clone action.
Move and clone actions act on objects and their containment relationship wrt.
locations. Given a move action on an object o which is contained in location l,
i.e., o.atLoc = l, to another location l′, then after performing the move operation
object o is contained in location l′, i.e. o.atLoc = l′. Clone works similar; however,
instead of moving the object itself, first a copy of the object is created which is
then moved to the new location.

The stereotypes �move� and �clone� for action states in activity diagrams
are used to denote move actions and clone actions, respectively. Actions have
two additional attributes, the first one indicates who is performing the action,
and the second one is the location where the action is performed.

Calculi for mobility restrict these primitives further by omitting the clone
operation. Instead, the clone operation is defined as the composition of a copy
operation followed by a move operation. For notational convenience we decide
to take clone as a primitive. Commonly, these calculi also restrict the target
location of a move, for example, to move only one level in the containment
hierarchy [4, 14].

5



3 Notations

In the following, we present two notations for the above mentioned mobility
concepts in the context of activity diagrams. The first notation is responsibility
centered and focuses on who is performing an action and is based on the standard
notation for activity diagrams. The second notation is location centered and
focuses on where an action is performed, given by the atLoc relation between
mobile objects and locations, and how activities change this relation.

3.1 Responsibility Centered

The first notation uses object-flow states with classifier in states to model the
atLoc relation. In the airport example consider a passenger Hubert who is board-
ing a plane at the airport of Munich. This can be modeled as a move action as
shown in Fig. 3. The source of the move action is the object-flow state Hu-
bert:Passenger [atLoc = MUC:Airport] and the target an object-flow state Hu-
bert:Passenger [atLoc = LH123:Plane]. The passenger Hubert moves from his
previous location, Munich airport (MUC), to his new location, the plane LH123.
More precisely this means, if in an object configuration there is a passenger Hu-
bert, an airplane LH123, and an airport MUC such that Hubert is contained
in MUC and also LH123 is contained in MUC, the move operation changes the
configuration in such a way that Hubert is no longer directly contained in the
airport MUC, instead it is contained in the plane LH123. The containment of
the plane does not change; therefore Hubert is still indirectly contained in MUC.
Swimlanes can be used to show who is performing the action; in this case it is
the passenger who boards the plane.

<<move>>
boarding

Hubert : Passenger

[atLoc=MUC]

<<mobile>>

Hubert : Passenger

[atLoc=LH123]

<<mobile>>
<<become>>

Hubert

Fig. 3. The move action.

The clone operation is shown in Fig. 4 for a list of passengers (lop). One
copy of the list is kept by the airport staff and another copy of the list is moved
into the plane. The difference in the semantics of this diagram to the previous

6



diagram is that given the configuration as before, the clone operations creates a
new document list of passengers lop′ which differs from lop only in the fact that
it is contained in LH123. In addition lop is still contained in MUC, i.e. lop has
not moved at all.

<<clone>>
take on board

lop’ : Document

[atLoc=LH123]

<<mobile>>

lop : Document

[atLoc=MUC]

<<mobile>>
<<copy>>

Fig. 4. The clone action.

Note that by the UML it is possible to omit the �become� stereotype in the
output of the move action in Fig. 3, as it is the default that the input and the
output are the same objects if the type of the object flow states are the same. In
the same way, the �copy� stereotype in the output of the clone action in Fig. 4
can be omitted because this stereotype can be deduced from the stereotype
�clone� of the clone action.

A more complex example is given in Fig. 5. The activity diagram starts
with the boarding activity of the passenger at the Munich airport. This activity
changes the location of the passenger Hubert from the airport (MUC) to the
particular plane LH123. The next activity is the take-off activity of the plane.
This activity changes the location of the plane from the Munich airport (MUC) to
a not specified destination, that is we are not interested in the location where the
plane is when it is flying. During the flight, the plane performs the flying activity
and the passenger the send mail activity. These activities happen in parallel. Note
that before landing, the passenger has to stop the send mail activity because
the use of electronic devices is not allowed during take-off and landing. When
landing, the location of the plane is changed to the destination airport, in this
case the Paris airport (CDG). Finally, the passenger deplanes and is now located
at the Paris airport. This notation is responsibility centered as the swimlanes
are indicating who is performing a particular activity.

3.2 Location Centered

The second notation uses containment of the boxes for mobile objects/locations
in the boxes of other locations to show the atLoc relation. For that we use the
same UML notation as for composite objects. A difference is that the atLoc rela-
tion is not an aggregation. Another difference is that we also allow action states
to be drawn inside composite objects of stereotype �location�. This indicates

7



<<move>>
boarding

Hubert
[atLoc=LH123]

LH123
[atLoc=MUC]

take off
<<move>>

LH123

Hubert
[atLoc=Muc]

send mail flying

<<move>>
deplaning

Hubert
[atLoc=CDG] landing

<<move>> LH123
[atLoc=CDG]

Hubert LH123

Fig. 5. The airport example using the responsibility centered notation.

that the action is performed at the corresponding location. Figure 6 shows this
notation for the move operation depicted in Fig. 3.

Note, that in addition to the fact that the passenger is in the plane, we
can model also that the plane is parked at the airport. This is an information
that cannot be represented in the responsibility centered approach as shown in
Fig. 3. What Fig. 6 also shows is that activities can be drawn inside locations
to indicate that the operation is performed at that location. In the example,
boarding takes place at the airport. While it is still possible to use swimlanes to
indicate who is performing an action, most likely, more complex diagrams will
have to concentrate on either the topology of locations or on the actor performing
an activity to avoid an overloaded diagram.

Note that the box containing the airport may be omitted if this is not relevant
for the presentation.

Figure 7 presents a location centered view of the activities of Fig. 5. Again,
the first activity changes the location of the passenger from the airport to the
plane. However, in contrast to the responsibility centered notation it is visible
that the passenger is still located indirectly in the Munich airport, because the
plane has not moved yet. Also one can see that the boarding activity happens at
the airport. The next activity, the take-off, takes again place at the airport. In
the location centered variant the notation indicates that the plane has left the
airport after take-off. Again, during the flight the activities flying and send mail
happen in parallel. In contrast to the information provided by the responsibility-

8



boarding
<<move>>

Hubert:Passenger

Hubert:Passenger

LH123:Plane

MUC:Airport

Fig. 6. The move action.

centered notation, this notation shows that the send mail activity happens in the
plane, while flying does not take place inside the plane. Note that for simplicity
reasons, the box denoting the passenger during the flight can be omitted. Landing
and deplaning are similar to the activities boarding and take-off.

Hubert
<<move>>
boarding

take off
<<move>>

landing
<<move>>

Hubert

flying

Hubert

Hubert

Hubert
<<move>>
deplaning

send mail

CDG : AirportMUC : Airport

LH123 : Plane

LH123 : Plane

LH123 : Plane

Fig. 7. The airport example using the location centered notation.

4 UML Profile

In this section we present a UML profile for modeling mobility aspects with
class and activity diagrams. The profile consists of the stereotypes �location�,
�mobile�, �mobile location�, �spatial�, �move�, and �clone� and the tagged
value where.

9



In this section we assume the reader to be familiar with the basic concepts
of the UML metamodel and the Object Constraint Language (OCL), see [13].
We explain only those concepts of the metamodel which are important for un-
derstanding our profile for mobility aspects.

4.1 Metamodel

Figure 8 shows the metamodel for the stereotypes �location�, �mobile�, and
�mobile location�. To model the atLoc relation, we require that each class with

spatial
<<stereotype>>

Class
<<metaclass>>

<<stereotype>>
location

<<stereotype>>
mobile location

<<stereotype>>
mobile

{self.allFeatures
−>select(e | isAtLocAttribute(e))−>size() = 1

 and
 self.allInstances−>forall(o | o.parentLocs.excludes(o))}

{self.allFeatures
−>select(e | isAtLocAttribute(e))
.oclAsType(Attribute).changeability = #changeable}

<<stereotype>>

Fig. 8. Metamodel for stereotypes �location�, �mobile�, and �mobile location�.

stereotype �location� or �mobile� provides its instances with an attribute atLoc.
Since we want to state the requirement only once, we introduce the abstract
stereotype �spatial� and state the requirement for that stereotype. Then the
stereotypes �location� and �mobile� inherit the requirement. To express this as
an OCL-constraint, we define an additional predicate isAtLocAtribute on features,
i.e. instances of metaclass Feature. In the metamodel each class is associated
with a set of features describing the methods and attributes of the class and its
instances. A feature e is an atLoc attribute, i.e. isAtLocAttribute(e), if e is
an instance attribute, has the name atLoc, and its multiplicity is zero or one.
Further, the attribute can hold instances of classes having stereotype �location�:

isAtLocAttribute(e : Feature) =
e.oclIsKindOf(Attribute) and
e.name = ’atLoc’ and
let e′ = e.oclAsType(Attribute) in

10



e′.ownerScope = #instance and

e′.multiplicity = 0..1 and

e′.targetScope = #instance and

e′.type.oclIsKindOf(Class) and
e′.type.stereotype.name->includes(’location’)

Now we require that each class with stereotype �spatial� has a unique atLoc
attribute and that the atLoc relation does not contain cycles:

self.allFeatures->select(e | isAtLocAttribute(e))->size() = 1 and

self.allInstances->forAll(o | o.parentLocs->excludes(o))

The additional operation parentLocs computes the set of all parent locations
for an instance of a class with stereotype �spatial�:

self.parentLocs = self.atLoc->union(self.atLoc.parentLocs)

For mobile objects we require in addition that they are able to change their
location, which means that their atLoc attribute can change its value. This can
be expressed by requiring that the changeability attribute of atLoc has the value
#changeable for all classes with stereotype �mobile�, in addition to the exis-
tence of an atLoc attribute — which is inherited from stereotype �spatial�:

self.allFeatures->select(e | isAtLocAttribute(e))
.oclAsType(Attribute).changeability = #changeable

The operation allFeatures is an additional operation on Classifier defined in
the UML 1.4 semantics. It collects the features of a classifier together with all
features of its parents.

The metamodel for move and clone action states is shown in Fig. 9. The

Partition
<<stereotype>>

location ActionState

clone
<<stereotype>>

move
<<stereotype>>

*
<<tagged value>>

*
where[0..1]

<<stereotype>> <<stereotype>>

/contents

Fig. 9. Metamodel for stereotypes �move� and �clone�.

association between Partition and ActionState is inherited from the association
between classes Partition and ModelElement defined in the UML 1.4 semantics
for activity graphs. According to the UML 1.4 semantics, a tagged value can

11



either be associated to a stereotype — which is the preferred way — or to
any model element. However, neither does it make sense to introduce a new
stereotype for action states just for the purpose of adding a tagged value, nor to
put the tagged value where on an arbitrary model element. Therefore we draw
a dependency from ActionState with stereotype �tagged value� to indicate that
we only want to apply the tagged value where to action states.

Each action state is connected via incoming and outgoing transitions to other
states (cf. Fig. 10). We require that a move/clone action state has at most one
incoming and outgoing transition associated to an object flow state satisfying
the following conditions:

– Either the classifier of the object flow state has the stereotype �mobile� (or
its subtype �mobile location�)

– or, if the type of the object flow state is a classifier in state, its type has the
stereotype �mobile�.

In case both, an incoming and an outgoing transition, are connected to such an
object flow state, the types have to be the same. This is to ensure that the type
of the mobile object that is input to a move/clone action is the same as the type
of the output. Note that a move/clone action may have additional non-mobile
objects as input and output.

Given the current UML metamodel, the difference between move and clone
actions — i.e., that the move action moves the same object while the clone action
moves a copy — is not expressible without a more precise semantics of activity
diagrams. This is due to the fact that an object flow state is associated to a
classifier and it is therefore not possible to reference the precise object that is
input or output to a move/clone action.

State

SimpleState

ActionState

Transition

ObjectFlowState Classifier

ClassifierInState

incoming

target

type

source

outgoing

type

Fig. 10. An excerpt of the UML 1.4 metamodel for object flow states.

12



4.2 Mapping to the Metamodel

The responsibility centered notation uses standard activity diagrams, there-
fore can be mapped to the metamodel as described in the UML semantics
(cf. [13], Sect. 3.84).

The containment of objects in the location centered notation is mapped to
a constraint on the atLoc attributes. These attributes connect objects in the
corresponding object-diagram describing the state of the system at a given point
in time. That is, if the box of a mobile object or of a location is drawn inside a
location then the atLoc attribute of that object or location has to contain the
location it is in. If an action is drawn inside a composite object then the where
tagged value of the action is set to the object the action is inside.

Source and target of a dashed arrow going from an object inside a composite
state are mapped to corresponding object flow states. For example, if mo is
directly contained in the composite object loc, and mo is a mobile object, loc
a location, and mo is either target or source of a dashed arrow connected to a
move/clone action state, then mo is mapped to an object flow state having as
its classifier in state mo [atLoc = loc]. Figure 11 illustrates this mapping.

<<mobile>>
mo

<<location>>
loc

<<mobile>>
mo

<<location>>
loc’

<<move/
clone>>

maps to:

<<move/
clone>>

<<mobile>>
mo [atLoc=loc] mo [atLoc=loc’]

<<mobile>>

Fig. 11. Illustration of the mapping of the location centered notation.

5 Conclusion and Future Work

In this paper we have presented extensions to UML activity diagrams — a so
called UML profile — to model mobile systems. We have defined stereotyped
classes to model locations and mobile objects, as well as stereotyped action
states to model move and clone actions.

Another approach would be to use the UML without stereotypes for the
mobile concepts. In this case locations, mobile objects, and the atLoc relation
could be modeled explicitly as abstract classes and associations in class diagrams
and mobile objects, like Passenger and Planes, would inherit from these classes
(cf. Fig. 12). However, such an approach is practical only for simple models of
mobile systems. To model more complicated systems it is desirable to have the

13



concepts for expressing mobility as part of the language — as we have done
in this paper — instead of modeling these concepts explicitly every time they
are used. In addition, our proposal for a common profile for mobility concepts
permits the definition of a common semantics for these concepts.

Country

<<abstract>>
Spatial

<<abstract>>
Location

<<abstract>>
Mobile

Airport

Flight PassengerPlane

atLoc

0..1

*

origin 1 destination1

* *
*run *

has*

Fig. 12. The same class diagram as in Fig. 2, but modeling the mobility concepts
explicitly.

Further, we have introduced two variants of activity diagrams for modeling
mobility: a responsibility centered variant, focusing on the actor performing the
action, and a location centered one, focusing on the topology of locations. The
responsibility centered variant uses the current UML notation for activity di-
agrams. In contrast, the location centered variant combines activity diagrams
with a notation similar to composite objects to show how move/clone actions
change the containment relation between locations.

We are currently investigating the appropriateness of UML for the specifica-
tion of structural and behavioral aspects of mobile systems. Our next step will
be to validate the proposed notations in a bigger case study within the scope of
the EU-project AGILE [1], which is part of the Global Computation Initiative.
The objective of AGILE is to develop an architectural approach in which mo-

14



bility aspects can be modeled explicitly. This paper is the first step towards a
general profile incorporating all essential aspects of mobile systems.

We plan to develop a formal semantics for extended activity diagrams to
provide a precise meaning of the presented concepts which is needed for formal
analysis and reasoning about models. In addition, we plan to develop tools that
support animation, early prototyping, and analysis of mobile systems.

Acknowledgments We would like to thank Alexander Knapp for helpful com-
ments on an earlier version of this paper and Stephan Herrmann for indicating
an inconsistency with the UML extension mechanism.

References

1. AGILE. Architectures for mobility. www.pst.informatik.uni-muenchen.de, 2002.

2. Raymond Buhr and Ronald Casselman. Use Case Maps for Object-Oriented Sys-
tems. Prentice-Hall, USA, 1995.

3. Luca Cardelli. Mobility and security. In F. Bauer and R. Steinbrüggen, editors,
Foundations of Secure Computation. Proc. NATO Advanced Study Institute, pages
3–37. IOS Press, 2000.

4. Luca Cardelli and Andrew Gordon. Mobile ambients. In Maurice Nivat, editor,
First Conference on Foundations of Software Science and Computation Structure,
LNCS 1378, pages 140–155. Springer Verlag, March 1998.

5. Francisco Durán, Steven Eker, Patrick Lincoln, and José Meseguer. Principles
of Mobile Maude. In David Kotz and Friedemann Mattern, editors, Agent Sys-
tems, Mobile Agents, and Applications, Second International Symposium on Agent
Systems and Applications and Fourth International Symposium on Mobile Agents,
ASA/MA 2000, LNCS 1882, pages 73–85. Springer, 2000.

6. FIPA. FIPA agent management: Support for mobility specification. www.fipa.org,
August 2001.

7. Jin Jing, Abdelsalam Helal, and Ahmed Elmagarmid. Client-server computing in
mobile environments. ACM Computing Surveys, 31(2):117–157, 1999.

8. Cornel Klein, Andreas Rausch, Marc Sihling, and Zhaojun Wen. Extension of the
Unified Modeling Language for mobile agents. In K. Siau and T. Halpin, editors,
Unified Modeling Language: Systems Analysis, Design and Development Issues,
chapter VIII. Idea Group Publishing, Hershey, PA and London, 2001.

9. Piotr Kosiuczenko. Sequence diagrams for mobility. In Stefano Spaccapietra,
editor, 21 International Conference on Conceptual Modeling (ER2002). Springer-
Verlag, October 2002. to appear.

10. José Meseguer. Research directions in high-level parallel programming languages.
LNCS 574. Springer, Berlin, 1992.

11. Florin Muscutariu and Marie-Pierre Gervais. On the modeling of mobile agent-
based systems. In 3rd International Workshop on Mobile Agents for Telecommu-
nication Applications (MATA’01), LNCS 2164, pages 219–234. Springer Verlag,
August 2001.

12. Rocco De Nicola, GianLuigi Ferrari, and Rosario Pugliese. Programming access
control: The KLAIM experience. In Conference on Concurrency Theory, LNCS
1877. Springer Verlag, 2000.

15



13. OMG. Unified Modeling Language (UML), version 1.4. www.omg.org, September
2001.

14. Dirk Pattinson and Martin Wirsing. Making components move: A separation of
concerns approach. In Proc. First Internat. Symposium on Formal Methods for
Components and Objects, FMCO’02, Leiden, November 2002, LNCS, 2003. To
appear.

15. Jan Vitek and Giuseppe Castagna. Towards a calculus of secure mobile computa-
tions. 1998.

16. Axel Wienberg, Florian Matthes, and Marko Boger. Modeling dynamic software
components in UML. In Robert France and Bernhard Rumpe, editors, UML’99 -
The Unified Modeling Language. Proceedings, LNCS 1723, pages 204–219. Springer-
Verlag, 1999.

16


