
A Simple Refinement Language for CASL ?

Till Mossakowski1, Donald Sannella2, and Andrzej Tarlecki3

1 BISS, Department of Computer Science, University of Bremen
2 LFCS, School of Informatics, University of Edinburgh, Edinburgh, UK

3 Institute of Informatics, Warsaw University and
Institute of Computer Science, PAS, Warsaw, Poland

Abstract. We extend CASL architectural specifications with a simple
refinement language that allows the formalization of developments as
refinement trees. The essence of the extension is to allow refinements of
unit specifications in CASL architectural specifications.

1 Introduction

The standard development paradigm of algebraic specification [1] postulates that
the development begins with a formal requirement specification SP0 (extracted
from a software project’s informal requirements) that fixes only expected prop-
erties but ideally says nothing about implementation issues; this is to be followed
by a number of refinement steps that fix more and more details of the design,
until a specification SPn is obtained that is detailed enough that its conversion
into a program P is relatively straightforward:

SP0∼∼∼> SP1∼∼∼> · · · ∼∼∼> SPn ·····> P

Actually, this picture is too simple in practice: for complex software systems,
it is necessary to reduce complexity by introducing branching points into the
chain of refinement steps, so that the resulting implementation tasks can be
resolved independently, e.g. by different developers. CASL architectural speci-
fications [3, 8] have been designed for this purpose, based on the insight that
structuring of implementations is different from structuring specifications [9].

However, CASL architectural specifications allow for the specification of in-
dividual branching points only. In this work, we extend CASL with a simple
refinement language that adds the means to formalize whole developments in
the form of refinement trees.

As it stands, this is not a formal proposal for an extension to CASL and
some of the details of syntax etc. are rather tentative. It is intended as a basis
for further discussion and experimentation, that may eventually lead to such a
proposal.
? This work has been partially supported by KBN grant 7T11C002 21, European

projects AGILE IST-2001-32747 (AT) and MRG IST-2001-33149 (DS), British–
Polish Research Partnership Programme (DS, AT), and German DFG project KR
1191/5-2 (TM).

2

The paper is organized as follows. Section 2 recalls CASL, Sect. 3 introduces
simple refinements and Sect. 4 branching refinements. These are related to con-
structor implementations in Sect. 5, which leads to the question of how programs
are modelled in CASL. This is addressed in Sect. 6. Sections 7 and 8 describe
the syntax and semantics of our proposed refinement language; to facilitate un-
derstanding, we first deal with a simpler version in Sect. 7 before exposing the
full complexity of the proposed refinement language and its semantics in Sect. 8.
Finally, Sect. 9 sketches a larger example and Sect. 10 concludes the paper.

2 CASL Preliminaries

CASL [2, 8] consists of several major layers, which are quite independent and may
be understood and used separately:

Basic specifications are written in many-sorted first-order logic, extended by
subsorting, partial functions and induction axioms for datatypes. Indeed, the
details are quite irrelevant here as long as a basic specification determines a
signature together with a set of axioms. The semantics of a basic specification
is then given by the signature and the class of all models that satisfy the
axioms. Formally, [[〈Σ, Φ〉]] = {M ∈ Mod(Σ) | M |= Φ}, where Mod(Σ) is
the class of all CASL models over the signature Σ.

Structured specifications allow specifications to be built from basic specifi-
cations by the use of translation, reduction, union, and extension, as well
as generic (parametrized) and named specifications; semantics of structured
specifications is given in terms of signatures and model classes, as for basic
specifications.

Architectural specifications describe the structure of an implementation by
defining how it may be constructed out of software components (units) that
satisfy given specifications. These unit specifications describe self-contained
units (models, as above), or generic units (corresponding to parametrized
programs) mapping such models to other models.

CASL admits a clean separation of the layer of basic specifications from the
other layers. Any logic can be used in the basic specification layer, as long as it is
formalized as an institution [10]. The semantics of the other layers is defined for
an arbitrary institution. The architectural specification layer is also independent
of the details of the features used for building structured specifications.

3 Simple Refinements

The simplest form of refinement is just model class inclusion. Consider the fol-
lowing standard specification of monoids:

spec Monoid =
sort Elem
ops 0 : Elem;

+ : Elem × Elem → Elem, assoc, unit 0

3

This specification is rather loose. It can be refined in many different ways, e.g.
into the natural numbers. We first specify the natural numbers inductively in
terms of zero and successor, then define addition, and finally hide the successor
operation:

spec NatWithSuc =
free type Nat ::= 0 | suc(Nat)
op + : Nat ×Nat → Nat , unit 0

∀x , y : Num • x + suc(y) = suc(x + y)

spec Nat =
NatWithSuc hide suc

The refinement between the two specifications can now be stated as follows:

refinement R1 =
Monoid refined via Elem 7→ Nat to Nat

Correctness of this refinement means that given any Nat-model, its reduct
along Elem 7→ Nat yields a Monoid-model, formally

M |σ ∈ [[Monoid]] for each M ∈ [[Nat]]

where σ maps Elem to Nat (σ is generated from the symbol map Elem 7→ Nat
in a straightforward way, see [8]). Of course, this just states that the natural num-
bers with addition form a monoid, or, in other words, that σ : Monoid → Nat
is a specification morphism. Specification morphisms arise in CASL already as
views, used for instantiating generic specifications. For that application it is
useful to allow them to be generic themselves, and this leads to certain compli-
cations. Here specification morphisms are used for a different purpose where the
complications of generic views are irrelevant and distracting.

The specification Nat can be taken as a realisation of the natural numbers,
but quite an inefficient one. It is far more efficient to use a binary representation
(++ is binary addition with carry):

spec NatBin =
generated type Bin ::= 0 | 1 | 0(Bin) | 1(Bin)
ops + , ++ : Bin × Bin → Bin
∀x , y : Bin
• 0 0 = 0 • 0 1 = 1
• ¬ (0 = 1) • x 0 = y 0 ⇒ x = y
• ¬ (x 0 = y 1) • x 1 = y 1 ⇒ x = y
• 0 + 0 = 0 • 0 ++ 0 = 1
• x 0 + y 0 = (x + y) 0 • x 0 ++ y 0 = (x + y) 1
• x 0 + y 1 = (x + y) 1 • x 0 ++ y 1 = (x ++ y) 0
• x 1 + y 0 = (x + y) 1 • x 1 ++ y 0 = (x ++ y) 0
• x 1 + y 1 = (x ++ y) 0 • x 1 ++ y 1 = (x ++ y) 1

We now have a further refinement:

4

refinement R2 =
Nat refined via Nat 7→ Bin to NatBin

Note that it is quite typical that the target specification of the refinement adds
auxiliary operations, which are forgotten by reducing along the signature mor-
phism.

The two refinements can be combined into a chain of refinements:

refinement R3 =
Monoid refined via Elem 7→ Nat to

Nat refined via Nat 7→ Bin to NatBin

which can be depicted as follows:

Monoid
σ
; Nat

θ
; NatBin

Here, σ and θ are the specification morphisms associated to the refinements,
and the correctness conditions for the individual refinements guarantee that the
chain is also a correct refinement in the following sense:

M |σ;θ = (M |θ)|σ ∈ [[Monoid]] for each M ∈ [[NatBin]]

If we want to save some typing, we can also write:

refinement R3′ =
Monoid refined via Elem 7→ Nat to R2

or equivalently

refinement R3′′ =
Monoid refined via Elem 7→ Nat to Nat then R2

which can be rewritten as

refinement R3′′′ = R1 then R2

4 Branching Refinements

Suppose that we want to implement not only Nat, but NatWithSuc, i.e. also
the successor function. Now, while the presence of the successor function en-
ables an easy specification of the natural numbers, it may be a little distracting
in achieving an efficient implementation. So we can help the implementor and
impose (via a CASL architectural specification) that the natural numbers should
be implemented with addition, and the successor function should only be imple-
mented afterwards, in terms of addition:

arch spec Addition First =
units N : Nat;

M : { op suc(n : Nat) : Nat = n + 1 } given N
result M

5

We thus have chosen to split the implementation of NatWithSuc into two
independent subtasks: the implementation of Nat, and the implementation of a
generic program, that given any Nat-model will realise the successor function
on top of it. The generic program is then applied once to the implementation N
of Nat. A version making this genericity explicit is the following:

arch spec Addition First Generic =
units N : Nat;

F : Nat → { op suc(n : Nat) : Nat = n + 1 };
M= F [N]

result M

Here, F is a generic program unit, that is, a parametrized program, that may
be applied to any program unit matching its parameter specification, not only
to N . The specification

Nat → { op suc(n : Nat) : Nat = n + 1 }

is a so-called (generic) unit specification. It denotes the class of all functions F
mapping Nat-models to models of

Nat then { op suc(n : Nat) : Nat = n + 1 }

in such a way that the argument model (unit) is preserved, i.e. F (N)|Nat = N
for any Nat-model N .

The term F [N] is a unit term (in this case: a unit application) computing
a unit out of the (generic and non-generic) units introduced earlier. M = F [N]
is a unit definition which defines the unit M to be exactly the (value of the)
unit term F [N]. The unit M is then used as the result unit term. In general, the
result unit may be given by an arbitrary unit term involving the units declared
or defined within the architectural specification. If the result unit is itself to be
generic, the unit term has to preceded by a λ-abstraction (this is one form of
unit expression).

We can express that Addition First is a refinement of NatWithSuc as
follows:

refinement R4 =
NatWithSuc refined to arch spec Addition First

This time, we have left out the signature morphism, since it is just the iden-
tity. Since the refined specification is an architectural specification, we use the
keywords arch spec before the refined specification.

If we want to combine this design decision with the decision to implement
Nat with NatBin, we can write a refinement directly after the specification of
the unit in question:

arch spec Addition First With Bin =
units N : Nat refined via Nat 7→ Bin to NatBin;

F : Nat → { op suc(n : Nat) : Nat = n + 1 };
M= F [N]

result M

6

or, more briefly, using the refinement of Nat into NatBin named R2 above:

arch spec Addition First With Bin′ =
units N : R2;

F : Nat → { op suc(n : Nat) : Nat = n + 1 };
M= F [N]

result M

5 Refinement: Constructor Implementations

Semantically, all the types of refinements introduced so far can be seen as con-
structor implementations in the sense of [15]. Constructor implementations are
written as

SP κ∼∼∼> SP ′

Here, a constructor κ is a function mapping models to models; formally κ :
Mod(Sig [SP ′]) → Mod(Sig [SP]). Such a constructor implementation is correct
if

for all A′ ∈ [[SP ′]], κ(A′) ∈ [[SP]].

In our proposed refinement language, constructors are induced by specification
morphisms σ:SP−→SP ′, that is, signature morphisms from Sig [SP] to Sig [SP ′]
with [[SP ′]]|σ ⊆ [[SP]]. The constructor is just the reduct functor induced by σ,
and correctness is equivalent to σ being a specification morphism.

Constructors correspond to generic program modules in programming lan-
guages, such as generic packages in Ada or functors in Extended ML:

functor K(X:SP’):SP = ... code ...

In the framework of [15], a specification is implemented via a sequence of
refinement steps, until ultimately the empty specification Empty is reached:

SP0 κ1
∼∼∼> SP1 κ2

∼∼∼> · · · κn
∼∼∼> SPn = Empty

If all these steps are correct, the combination of the constructors (starting with
the trivial model empty of the Empty specification) yields a model of the original
specification SP0:

κ1(κ2(· · · (κn(empty)) · · ·)) ∈ [[SP0]]

Architectural specifications introduce branching : a specification may be re-
fined to several specifications, which requires n-ary constructors:

SP κ∼∼∼>


SP1

...
SPn

As expected, correctness here means that

7

for all A1 ∈ [[SP1]], . . . , An ∈ [[SPn]], κ(A1, . . . , An) ∈ [[SP]].

The corresponding CASL architectural specification is written

arch spec
units U1 : SP1

. . .
Un : SPn

result UT

where UT is a unit term describing the constructor κ, which may involve the unit
names U1, . . . , Un. Unit terms are built by renaming of units, hiding parts thereof,
amalgamation of units, application of generic units to arguments, as well as
local unit definitions (introducing local names for unit terms). The requirements
imposed by the semantics on the result unit terms ensure that the induced
constructors are always defined for the relevant argument units.

Analogously to the linear situation, once we have a tree of correct refinement
steps with leaves being empty specifications, as follows:

SP κ∼∼∼>



SP1 κ1
∼∼∼> Empty

...

SPn κn
∼∼∼>


SPn1 κn1

∼∼∼∼>
{

SPn11 κn11
∼∼∼∼∼> Empty

· · ·
SPnm κnm

∼∼∼∼> Empty

we can construct a model of the original requirement specification by successively
applying the constructors, starting with the trivial model empty :

κ(κ1(empty),
· · ·
κn(κn1(κn11(empty)),

· · ·
κnm(empty))) ∈ [[SP]]

Note that this whole section applies not only to the refinement of ordinary
program units (models), but also to generic units (functions from models to
models). We will come back to this later.

6 Programs in CASL

One problem with the approach described so far is that the constructors provided
by specification morphisms and architectural specifications in CASL do not suffice
for implementing specifications. In a sense, these constructors only provide means
to combine or modify existing program units—but there is no way to build
program units from scratch. That is, CASL lacks a notion of program.

An obvious way out of this situation is to add more unit operations that
can be used for unit terms (or unit expressions) in architectural specifications.

8

Concerning construction of datatypes, one could add a simple version of free
extension, giving a model of a datatype that is determined uniquely up to iso-
morphism, and that corresponds to an algebraic datatype in a functional pro-
gramming language. For the construction of operations on top of these datatypes,
one could use reducts along derived signature morphisms. Derived signature mor-
phisms may map an operation to a term or to a recursive definition by means of
equations, like function definitions in a functional programming language. See
[16, Chap. 4] for a more detailed account of this approach.

Note that this approach is necessarily no longer institution independent. The
details of the kind of free extensions that actually correspond to datatypes in
a programming language depend both on the institution and the programming
language at hand. The same remark holds for the definition of derived signature
morphisms.

An alternative is to approximate the institution independent essence of pro-
grams by considering monomorphic specifications. A unit specification is mono-
morphic if the result specification is a monomorphic extension of the argument
specifications. This means that it is a construction that is unique up to iso-
morphism. Ultimately, monomorphic unit specifications need to be translated
to (parametrized) programs in some programming language. As above, this pro-
cess obviously depends on both the institution and the programming language
in question. The difference is that the specification language itself remains insti-
tution independent, since the translation to a programming language is not part
of the specification language.

In some cases it is possible to perform the translation automatically, for unit
specifications that obey certain syntactic restrictions. For functional program-
ming languages such as Haskell and ML, one would require that all sorts are
given as free types, and all functions are defined by means of recursive equa-
tions in such a way that termination is provable. Indeed, the translation of a
parametrized program then provides a construction that is unique, not only
unique up to isomorphism. See [14] for details, and [6] for a translation of a
subset of CASL to OCAML. Using free extensions, it is also possible to capture
partial recursive functions, see [6, 14]. Moreover, with Haskell (and its type class
Eq) as target language, generated types with explicitly given equality can also
be used. For ML and Haskell, there is also a direct correspondence at the level
of CASL unit terms, see Fig. 1.

For other programming languages, the translation between monomorphic
specifications and programs might be much less straightforward. In general, it
may be necessary to translate manually, and prove that the resulting program is
a correct realization of the specification. There may also be a mismatch between
the constructs that are available for combining modules in the programming lan-
guage and the constructs that CASL provides for combining unit terms. Then,
one possibility would be to view unit terms in architectural specifications as
prescriptions for the composition and transformation of the component units,
and carry these out manually using the constructs that the programming lan-
guage provides. (This may be automated by devising operations on program

9

CASL ML Haskell

non-generic unit structure module

generic unit functor multi-parameter type class
in a module

monomorphic unit specifica-
tion with free types and re-
cursive definitions

structure with datatypes
and recursive definitions

module with datatypes and
recursive definitions

unit application functor application type class instantiation

unit amalgamation combination of structures combination of modules

unit hiding restriction to subsignature hiding

unit renaming redefinition redefinition

architectural specification structure/functor using
other structures/functors

module using other modules

Fig. 1. Unit term constructs in ML and Haskell

texts corresponding to unit term constructs.) Alternatively, one might take the
target programming language into account in the refinement process and simply
avoid in unit terms any use of the constructs that have no counterpart in the
programming language at hand.

With this approach, the use of a parametrized program κ in a constructor
implementation SP κ∼∼∼> SP ′ is expressed as

arch spec
unit K : SP ′ → SP refined to USP
result K

where USP is a monomorphic specification of κ from which the corresponding
parameterized program may be obtained directly. Such a constructor can also
be used in the context of another refinement. For example, the refinement

SP κ∼∼∼> SP ′
κ′∼∼∼> SP ′′

is expressed as

refinement R5 =
SP refined to

arch spec
units

K : SP ′ → SP refined to USP
A′ : SP ′ refined to arch spec

units
K ′ : SP ′′ → SP ′ refined to USP ′

A′′ : SP ′′

result K ′(A′′)
result K (A′)

where USP and USP ′ are monomorphic specifications of κ and κ′, respectively.

10

7 Refinements in CASL

Let us now come to a more systematic treatment of the refinement language that
we propose.

The grammar below extends the grammar for the concrete syntax of CASL

given in the CASL Reference Manual [8]. The new parts of the grammar are
marked in italics, while removed parts are crossed out. The details here are for-
mulated in terms of concrete syntax, in contrast to [8], to make the presentation
more accessible to readers who are not intimately familiar with the details of the
CASL design. A corresponding abstract syntax is given in the appendix.

The central notion of the refinement language is specification refinement.
These can take various forms, all of which have already been discussed along
with concrete examples above.

SPEC-REF ::= SPEC-NAME

| UNIT-SPEC

| UNIT-SPEC refined via SYMB-MAP-ITEMS* to SPEC-REF

| UNIT-SPEC refined to SPEC-REF

| arch spec ARCH-SPEC

| SPEC-REF then SPEC-REF

Like ordinary specifications and unit specifications, specification refinements
can be named:

SPEC-REF-DEFN ::= refinement SPEC-NAME = SPEC-REF end

Here, the notation end stands for optional end.
The syntax of declarations of units within architectural specifications is re-

laxed: arbitrary specification refinements are allowed, not only unit specifica-
tions:

UNIT-DECL ::= UNIT-NAME : SPEC-REF

To avoid additional complexity but mainly for methodological reasons, we leave
out refinements of unit specifications with imports (the “given” clause in Ad-
dition First in Sect. 4). See Sect. 10 for justification and discussion.

Finally, since we allow for coercion of architectural specifications to specifi-
cation refinements, there is no need for coercing them to unit specifications:

UNIT-SPEC ::= SPEC

| SPEC *...* SPEC -> SPEC

| arch spec ARCH-SPEC

| closed UNIT-SPEC

As with the rest of CASL, the semantics is given in two parts: the static
semantics and the model semantics. In the semantics below, we ignore global en-
vironments which store the meanings of global names; consequently, we also omit
the case of named specification refinements. Details, which are straightforward,
follow a similar pattern as in [8, III:5 and III:6].

The static semantics of specification refinements is given in Fig. 2. The judge-
ments are of the form ` SPR � (UΣ,UΣ′). Here, UΣ is the unit signature for

11

` USP � UΣ
` USP qua SPEC-REF � (UΣ, UΣ)

` USP � UΣ
` SPR � (UΣ, UΣ′′)

` USP refined to SPR � (UΣ, UΣ′′)

` USP � UΣ = (Σ1, . . . , Σn → Σ)
` SI � σ : Σ → Σ′

` SPR � (UΣ′ = (Σ1, . . . , Σn → Σ′), UΣ′′)

` USP refined via SI to SPR � (UΣ, UΣ′′)

` ASP � Cs, UΣ
` arch spec ASP � (UΣ,⊥)

` SPR1 � (UΣ, UΣ′) ` SPR2 � (UΣ′, UΣ′′)

` SPR1 then SPR2 � (UΣ, UΣ′′)

Fig. 2. Static semantics of specification refinements

units of the specification being refined and UΣ′ is the unit signature for units
of the specification after refinement. A unit signature consists of a tuple of ar-
gument signatures (which is empty and may be omitted for non-generic units)
and a result signature. Further details can be found in [8, III:5]. For instance,
we have

` Monoid refined via Elem 7→ Nat to Nat � (ΣMonoid, ΣNat),

where ΣMonoid and ΣNat are the signatures of Monoid and Nat respectively.
Since so far we don’t allow for further refinement of architectural specifications,
only of their units, if SPR is an architectural specification we mark this by
putting UΣ′ = ⊥.

The model semantics of specification refinements is given in Fig. 3. The
judgements are of the form ` SPR ⇒ R. If ` SPR � (UΣ,UΣ′) then R is a
class of pairs (U,U ′) such that U and U ′ are units over unit signatures UΣ and
UΣ′ respectively and R−1 is a partial function mapping UΣ′-units to UΣ-units.
R−1 is the constructor involved in the refinement and its domain is the class of
models of the specification after refinement. A unit is either a model (when it is
non-generic) or a unit function, mapping compatible tuples of argument models
to result models. Further details can be found in [8, III:5]. For instance, we have

` Monoid refined via Elem 7→ Nat to Nat ⇒ {(N |σ, N) | N ∈ [[Nat]]}

where σ maps Elem to Nat . Again, this takes a special form when SPR is an
architectural specification: the second component of each pair is then ⊥.

Both static semantics and model semantics rules rely on the semantics of
unit specifications [8, III:5], symbol mappings [8, III:4] and architectural spec-
ifications [8, III:5]. We just recall that the static semantics of an architectural
specification consists of a static unit context (which we ignore here, but see
Sect. 8) and a result unit signature. An architectural model consists of a unit
environment (again, ignored here, but see Sect. 8) and a result unit. Note that
the semantics of architectural specifications has to be adjusted as well, since
its unit declarations may now involve arbitrary specification refinements rather
than only unit specifications. Luckily, going from the semantics of the former to
the plain CASL semantics of the latter is very easy here. In the static semantics,

12

` USP ⇒ U
` USP qua SPEC-REF⇒ {(U, U) | U ∈ U}

` USP ⇒ U ` SPR ⇒R
U ′ ∈ U , for all (U ′, U ′′) ∈ R
` USP refined to SPR ⇒R

` USP ⇒ U ` SI � σ : Σ → Σ′ ` SPR ⇒R
U ′|σ ∈ U , for all (U ′, U ′′) ∈ R
R′ = {(U ′|σ, U ′′) | (U ′, U ′′) ∈ R}

` USP refined via SI to SPR ⇒R′

` ASP ⇒ AM
` arch spec ASP ⇒ {(U,⊥) | (E, U) ∈ AM}

` SPR1 ⇒R1 ` SPR2 ⇒R2

for all (U ′, U ′′) ∈ R2, (U, U ′) ∈ R1 for some U
R = {(U, U ′′) | (U, U ′) ∈ R1, (U

′, U ′′) ∈ R2 for some U ′}
` SPR1 then SPR2 ⇒R

Fig. 3. Model semantics of specification refinements

from the semantics of specification refinements we just take the first component
(the unit signature of the specification being refined). In the model semantics,
we project the semantics of specification refinements onto the first component,
thus taking the class of all units that may arise as results of the construction
involved in the refinement.

The semantics of specification refinements relies on the simplifying assump-
tion that the parameter specifications of generic unit specifications do not change
under refinement. This allows us to freely use the reduct notation U |σ, even when
U is a generic unit; in this case, the notation denotes the unit function obtained
by reducing the result via σ after applying U . In practice, this restriction is not
troublesome, since we always can write an architectural specification that ad-
justs the parameter specification as required. Namely, given unit specifications
SP → SP ′ and SP1 → SP ′

1 with a specification morphism σ : SP1 → SP , the
following is a correct specification refinement1

SP → SP ′ refined via τ to arch spec
unit F :SP1 → SP ′

1

result λX :SP .F [X fit σ]

1 Assuming that all symbols shared between SP ′
1 and SP originate in SP1, as imposed

by CASL rules for application of generic units.

13

where τ is a specification morphism from SP1 to the pushout specification SP ′
1⊕

SP in the following diagram:

SP1
//

σ

��

SP ′
1

��
SP

%%JJJJJJJJJJ
// SP ′

1 ⊕ SP

SP ′

τ

OO

In the terminology of [11], (σ, τ) is a first-order morphism from SP → SP ′ to
SP1 → SP ′

1.
A crucial property of development trees as are now captured by architectural

specifications with specification refinements is that adding correct refinements to
unit specifications in an architectural specification, and thus expanding the de-
velopment tree by additional refinement steps at its leaves, preserves correctness
of the entire development. In particular, the semantics of architectural speci-
fications with new correct refinements remains well-defined. This holds by [3,
Thm. 2] (a technical assumption necessary there holds trivially in the absence
of imports).

8 Component refinements

Refinements introduced in Sect. 7 do not allow the user to refine architectural
specifications as such. Only refinements for individual units are allowed, and they
must be inserted into the architectural specification, directly into unit declara-
tions. Consider for instance the following example from Sect. 4, where a refine-
ment for unit N in the architectural specification Addition First Generic
was captured as follows:

arch spec Addition First With Bin′ =
units N : R2;

F : Nat → { op suc(n : Nat) : Nat = n + 1 };
M= F [N]

result M

This is not very convenient: given an already defined architectural specification
(in this case, Addition First Generic), one would like to avoid rewriting it
when indicating that specifications of some of the units (N here) are to be refined
(using R2 here). Instead, one would rather refer to the architectural specification
as given, and indicate refinements that are to follow, in this case writing:

refinement R =
arch spec Addition First Generic then {N to R2}

14

where {N to R2} is a refinement of an architectural specification having a unit
named N . The refinement R then consists of the architectural specification Ad-
dition First Generic with N further refined according to R2. The need for
such syntax is perhaps even more visible in complex examples involving nested
refinements, like refinement R5 at the end of Sect. 6, which one would prefer to
restructure as follows:

refinement R5′ =
SP refined to arch spec units

K : SP ′ → SP
A′ : SP ′

result K (A′)
then {K to USP ,

A′ to arch spec units
K ′ : SP ′′ → SP ′

A′′ : SP ′′

result K ′(A′′)
then {K ′ to USP ′}}

or even:

refinement R5′′ =
SP refined to arch spec units

K : SP ′ → SP
A′ : SP ′

result K (A′)
then {K to USP ,

A′ to arch spec units
K ′ : SP ′′ → SP ′

A′′ : SP ′′

result K ′(A′′)}
then {A′ to {K ′ to USP ′}}

Of course, all the architectural specifications used here, as well as the refinements,
would typically be defined earlier and then referred to by their names when
refined further.

To capture such possibilities we extend the syntax for refinements introduced
in Sect. 7, adding a new form:

SPEC-REF ::= ...

| {UNIT-NAME_1 to SPEC-REF_1, ..., UNIT-NAME_n to SPEC-REF_n}

However, this apparently simple change considerably increases the conceptual
(and then semantic) complexity here, since in fact we are now dealing with three
kinds of refinements:

– unit specification refinements which lead from a unit specification to another
unit specification;

– branching specification refinements which generalise unit refinements by ad-
ditionally allowing the target specification to be architectural; and

15

` USP � UΣ
` USP qua SPEC-REF � (UΣ, UΣ)

` USP � UΣ
` SPR � (UΣ, BΣ′′)

` USP refined to SPR � (UΣ, BΣ′′)

` USP � UΣ = (Σ1, . . . , Σn → Σ)
` SI � σ : Σ → Σ′

` SPR � ((Σ1, . . . , Σn → Σ′), BΣ′′)

` USP refined via SI to SPR � (UΣ, BΣ′′)

` ASP � RstC , UΣ
` arch spec ASP � (UΣ, π2(RstC))

` SPR1 � RΣ1 ` SPR2 � RΣ2

RΣ = RΣ1 ; RΣ2

` SPR1 then SPR2 � RΣ

UN 1, . . . ,UN n are distinct
` SPR1 � RΣ1 · · · ` SPRn � RΣn

` {UN 1 to SPR1, . . . ,UN n to SPRn}� {UN 1 7→ RΣ1, . . . ,UN n 7→ RΣn}

Fig. 4. Static semantics of extended refinements

– component specification refinements which name units whose specifications
are to be further refined as indicated.

The corresponding semantic concepts come now in three flavours as well. For
the static semantics, we introduce refinement signatures, RΣ, which take one of
the following forms:

– unit refinement signatures (UΣ,UΣ′) which consist of two unit signatures
(this corresponds to the typical case in the static semantics of Sect. 7);

– branching refinement signatures (UΣ,BΣ′) which consist of a unit signature
UΣ and a branching signature BΣ′, which is either a unit signature UΣ′ (in
which case the branching refinement signature is a unit refinement signature)
or a branching static context BstC ′, which is in turn a (finite) map assigning
branching signatures to unit names. Note that therefore all static contexts
as used in the plain CASL semantics [8, III:5] are branching static contexts,
but not vice versa;

– component refinement signatures which are (finite) maps {UN i 7→ RΣi}i∈J
from unit names to refinement signatures. When all RΣi, i ∈ J , in such a
map are branching refinement signatures, we refer to it as a refined-unit static
context. Any refined-unit static context RstC = {UN i 7→ (UΣi, BΣi)}i∈J
can be naturally coerced to the static context π1(RstC) = {UN i 7→ UΣi}i∈J
of the plain CASL semantics, as well as to the branching static context
π2(RstC) = {UN i 7→ BΣi}i∈J .

New rules for the static semantics of refinements are given in Fig. 4. The first
three rules are essentially inherited from Sect. 7, with a minor change to allow for
the target signature to be branching. The new rule for architectural refinements
allows for their further refinement by replacing the ⊥ mark by the branching
static context that emerges from the semantics of the architectural specifica-
tion (see the end of this section for a brief discussion of the new semantics for
architectural specifications). The rule for individual component refinements is

16

straightforward: it just stores the refinement signatures obtained from the re-
finements attached to unit names. The extra complexity is hidden in the rule
for refinement composition using an auxiliary partial composition operation on
refinement signatures. Given refinement signatures RΣ1 and RΣ2, their com-
position RΣ1 ;RΣ2 is defined inductively depending on the form of the first
argument:

– RΣ1 = (UΣ,UΣ′): then RΣ1 ;RΣ2 is defined only if RΣ2 is a branching
refinement signature of the form (UΣ′, BΣ′′). Then RΣ1 ;RΣ2 = (UΣ,BΣ′′).

– RΣ1 = (UΣ,BstC ′): then RΣ1 ;RΣ2 is defined only if RΣ2 is a component
refinement signature such that RΣ2 matches BstC ′, that is, dom(RΣ2) ⊆
dom(BstC ′) and for each UN ∈ dom(RΣ2),
• either BstC ′(UN) is a unit signature and then RΣ2(UN) = (UΣ′, BΣ′′)

with UΣ′ = BstC ′(UN), or
• BstC ′(UN) is a branching static context and then RΣ2(UN) matches

BstC ′(UN).
Then RΣ1 ;RΣ2 = (UΣ,BstC ′[RΣ2]), where given any branching static con-
text BstC ′ and component refinement signature RΣ2 that matches BstC ′,
BstC ′[RΣ2] modifies BstC ′ on each UN ∈ dom(RΣ2) as follows:
• if BstC ′(UN) is a unit signature then BstC ′[RΣ2](UN) = BΣ′′ where

RΣ2(UN) = (BstC ′(UN), BΣ′′),
• if BstC ′(UN) is a branching static context then BstC ′[RΣ2](UN) =

BstC ′(UN)[RΣ2(UN)].
– RΣ1 is a component refinement signature: then RΣ1 ;RΣ2 is defined only if

RΣ2 is a component refinement signature too, and moreover, for all UN ∈
dom(RΣ1) ∩ dom(RΣ2), RΣUN = RΣ1(UN) ;RΣ2(UN) is defined. Then
RΣ1 ;RΣ2 modifies the (ill-defined) union of RΣ1 and RΣ2 by putting
(RΣ1 ;RΣ2)(UN) = RΣUN for UN ∈ dom(RΣ1) ∩ dom(RΣ2).

The complexity of the model semantics for refinements increases similarly.
Given a refinement signature RΣ, refinement relations, R, are classes of assign-
ments, R, which take the following forms:

– unit assignments, for RΣ = (UΣ,UΣ′), are pairs (U,U ′) of units over unit
signatures UΣ and UΣ′, respectively;

– branching assignments, for RΣ = (UΣ,BΣ′), are pairs (U,BM ′), where U
is a unit over the unit signature UΣ and BM ′ is a branching model over
the branching signature BΣ′, which is either a unit over BΣ′ when BΣ′

is a unit signature (in which case the branching assignment is a unit as-
signment), or a branching environment BE ′ that fits BΣ′ when BΣ′ is a
branching static context. Branching environments are (finite) maps assign-
ing branching models to unit names, with the obvious requirements to ensure
compatibility with the branching signatures indicated in the corresponding
branching static context. Note that therefore all unit environments as used
in the plain CASL semantics [8, III:5] are branching environments, but not
vice versa.

17

` USP ⇒ U
` USP qua SPEC-REF⇒ {(U, U) | U ∈ U}

` USP ⇒ U ` SPR ⇒R
U ′ ∈ U , for all (U ′,BM ′′) ∈ R
` USP refined to SPR ⇒R

` USP ⇒ U ` SI � σ : Σ → Σ′ ` SPR ⇒R
U ′|σ ∈ U , for all (U ′,BM ′′) ∈ R

R′ = {(U ′|σ,BM ′′) | (U ′,BM ′′) ∈ R}
` USP refined via SI to SPR ⇒R′

` ASP ⇒ AM
` arch spec ASP ⇒ {(U, π2(RE)) | (RE , U) ∈ AM}

` SPR1 ⇒R1 · · · ` SPRn ⇒Rn

` {UN 1 to SPR1, . . . ,UN n to SPRn} ⇒ {R | dom(R) = {UN 1, . . . ,UN n},
R(UN 1) ∈ R1, . . . , R(UN n) ∈ Rn}

` SPR1 ⇒R1 ` SPR2 ⇒R2 R = R1 ;R2

` SPR1 then SPR2 ⇒R

Fig. 5. Model semantics of extended refinements

– component assignments, for RΣ = {UN i 7→ RΣi}i∈J , are (finite) maps
{UN i 7→ Ri}i∈J from unit names to assignments over the respective refine-
ment signatures. When RΣ is a refined-unit static context (and so each Ri,
i ∈ J , is a branching assignment) we refer to RE = {UN i 7→ (Ui,BM i)}i∈J
as a refined-unit environment. Any such refined-unit environment can be nat-
urally coerced to a unit environment π1(RE) = {UN i 7→ Ui}i∈J of the plain
CASL semantics, as well as to a branching environment π2(RE) = {UN i 7→
BM i}i∈J .

New rules for the model semantics of refinements are given in Fig. 5. As
with the static semantics, the non-trivial change is hidden in the rule for re-
finement composition using the auxiliary partial operation to compose refine-
ment relations. Given two refinement relations R1,R2 over refinement signatures
RΣ1, RΣ2, respectively, such that the composition RΣ = RΣ1 ;RΣ2 is defined,
the composition R1 ;R2 is defined as a refinement relation over RΣ as follows:

– RΣ1 = (UΣ,UΣ′), RΣ2 = (UΣ′, BΣ′′): then R1 ;R2 is defined only if for all
(U ′,BM ′′) ∈ R2 we have (U,U ′) ∈ R1 for some U . Then

R1 ;R2 = {(U,BM ′′) | (U,U ′) ∈ R1, (U ′, BM ′′) ∈ R2 for some U ′}

18

– RΣ1 = (UΣ,BstC ′) and RΣ2 is a component refinement signature that
matches BstC ′: then R1 ;R2 is defined only if for each R2 ∈ R2 there is
(U,BE ′) ∈ R1 such that R2 matches BE ′, that is, for each UN ∈ dom(R2),
• either BstC ′(UN) is a unit signature and then R2(UN) = (U ′′,BM ′′)

with U ′′ = BE ′(UN), or
• BstC ′(UN) is a branching static context and then R2(UN) matches

BE ′(UN).
Then

R1 ;R2 = {(U,BE ′[R2]) | (U,BE ′) ∈ R1, R2 ∈ R2, R2 matches BE ′}

where given any branching environment BE ′ that fits BstC ′ and assignment
R2 that matches BE ′, BE ′[R2] modifies BE ′ on each UN ∈ dom(R2) as
follows:
• if BstC ′(UN) is a unit signature then BE ′[R2](UN) = BM ′′ where

R2(UN) = (BE ′(UN),BM ′′);
• if BstC ′(UN) is a branching static context then we put BE ′[R2](UN) =

BE ′(UN)[R2(UN)].
– RΣ1 and RΣ2 are component refinement signatures such that for all UN ∈

dom(RΣ1) ∩ dom(RΣ2), RΣUN = RΣ1(UN) ;RΣ2(UN) is defined then
R1 ;R2 is defined only if for each R2 ∈ R2 there is R1 ∈ R1 such that
R1 transfers to R2, that is, for each UN ∈ dom(R1) ∩ dom(R2),
• either RΣ1(UN) is a unit refinement signature (UΣ,UΣ′), and then

R1(UN) = (U,U ′
1) and R2(UN) = (U ′

2,BM ′′) with U ′
1 = U ′

2, or
• RΣ1(UN) is a branching refinement signature (UΣ,BstC ′), and then

R1(UN) = (U,BE ′) and R2(UN) is an assignment that matches BE ′, or
• RΣ1(UN) is component refinement signature, and then R1(UN) trans-

fers to R2(UN).
Then

R1 ;R2 = {R1 ;R2 | R1 ∈ R1, R2 ∈ R2, R1 transfers to R2}

where given any assignments R1, R2 over RΣ1, RΣ2, respectively, such that
R1 transfers to R2, R1 ;R2 is the assignment that modifies the (ill-defined)
union of R1 and R2 on each UN ∈ dom(R1) ∩ dom(R2) as follows:
• if RΣ1(UN) = (UΣ,UΣ′), R1(UN) = (U,U ′

1) and R2(UN) = (U ′
2,BM ′′)

(hence U ′
1 = U ′

2) then (R1 ;R2)(UN) = (U,BM ′′);
• if RΣ1(UN) = (UΣ,BstC ′), R1(UN) = (U,BE ′) (hence R2(UN) is an

assignment that matches BE ′) then (R1 ;R2)(UN) = (U,BE ′[R2(UN)]);
• if RΣ1(UN) is a component refinement signature (hence R1(UN) and

R2(UN) are component assignments such that R1(UN) transfers to
R2(UN)) then (R1 ;R2)(UN) = R1(UN) ;R2(UN).

We also have to consider the necessary changes to the semantics of archi-
tectural specifications in [8, III:5]. Most visibly, as sketched above, we have
to modify the semantic concepts for architectural specifications to work with
refined-unit static contexts and refined-unit environments rather than unit static

19

contexts and unit environments. This would alter most of the rules only formally.
At crucial places, where units are used, the easy modification relies on the π1 co-
ercions from refined-unit static contexts to static contexts and from refined-unit
environments to unit environments for static and model semantics, respectively.

Further straightforward modification concerns the semantics of unit declara-
tions, now with arbitrary specification refinements in place of unit specifications.
The new static semantics imposes the restriction that only branching specifica-
tion refinements (so: no component specification refinements) are allowed here2,
and stores the appropriate branching refinement signature for the declared unit
name in the refined-unit static context. Then, the model semantics produces the
context that consists of all refined-unit environments that map the declared unit
name to a branching assignment in the semantics of the branching specification
refinement used in the declaration.

Finally, the semantics of unit definitions involves additional unit refinement
signatures and assignments with the ⊥mark as the second component to indicate
that unit definitions cannot be further refined.

9 The Steam Boiler Example

So far, we have illustrated the refinement language by means of toy examples.
A discussion of realistic examples would exceed the space limitations of this
paper. However, the CASL User Manual [2, Chap. 13] contains a specification
of an industrial case study, namely a steam boiler control system that serves
to control the water level in a steam boiler. Reference [2, Sect. 13.10] contains
several architectural specifications explaining how to decompose the steam boiler
control system into subsystems, using e.g. a specification Value for physical
values, a specification Sbcs State for the specification of the state of the steam
boiler, a specification PU Prediction for prediction of the pump behaviour,
etc. There is no space here to repeat the details of this example, so we refer the
reader to [2, Chap. 13] and only use the additional linguistic features introduced
in Sects. 7 and 8 to present specification refinements that formally capture the
development described there.

The development in [2, Sect. 13.10] begins by indicating the initial architec-
tural design for the overall requirement specification of the system:

arch spec Arch Sbcs =
units P : Value → Preliminary

S : Preliminary → Sbcs State
A : Sbcs State → Sbcs Analysis
C : Sbcs Analysis → Steam Boiler Control System

result λV : Value • C [A [S [P [V]]]]

2 The (abstract) syntax of specification refinements may be massaged so that some
of the restrictions imposed by the static semantics on the composability and use of
specification refinements are incorporated in the (context-free) grammar.

20

We may record this initial refinement now:

refinement Ref Sbcs =
Steam Boiler Control System to Arch Sbcs

In [2, Sect. 13.10], specifications refining the individual units of the above
architectural specification are given. We extend the refinement Ref Sbcs to
capture them as well:

refinement Ref Sbcs′ =
Ref Sbcs then {P to arch spec Arch Preliminary,

S to Unit Sbcs State,
A to arch spec Arch Analysis,
C to Unit Sbcs System }

The resulting specification for the unit S, Unit Sbcs State, is monomor-
phic:

unit spec Unit Sbcs State =
Preliminary → Sbcs State Impl

Development within CASL stops at this point, the last step being the passage
to a program in a programming language. This also holds for the component
C, even though the corresponding unit specification Unit Sbcs System is not
explicitly provided in [2, Chap. 13].

The architectural specification Arch Analysis used in the refinement above
is given in [2, Sect. 13.10] as follows:

arch spec Arch Analysis =
units FD : Sbcs State → Failure Detection

PR : Failure Detection → PU Prediction
ME : PU Prediction → Mode Evolution [PU Prediction]
MTS : Mode Evolution [PU Prediction] → Sbcs Analysis

result λS : Sbcs State • MTS [ME [PR [FD [S]]]]

As remarked in [2, Sect. 13.10], the specifications for the components ME and
MTS are simple enough to be directly implemented, so we stop their development
at this point. For the other two units, we record the corresponding refinements
from [2, Sect. 13.10]:

refinement Ref Arch Analysis =
{FD to arch spec Arch Failure Detection,
PR to arch spec Arch Prediction}

Finally, we put the above together and capture the overall development
sketched in [2, Sect. 13.10]:

refinement Ref Sbcs′′ =
Ref Sbcs′ then {A to Ref Arch Analysis}

21

10 Conclusion and Future Work

The issue of refinement has been discussed in many specification frameworks,
starting with [12] and [13], and some frameworks provide methods for proving
correctness of refinements. But this is normally regarded as a “meta-level” issue
and specification languages have typically not included syntactic constructs for
formally stating such relationships between specifications that are analogous to
those presented here for CASL. A notable exception is Specware [17], where speci-
fications (and implementations) are structured using specification diagrams, and
refinements correspond to specification morphisms for which syntax is provided.
This, together with features for expanding specification diagrams, provides suf-
ficient expressive power to capture our branching specification refinements. A
difference is that Specware does not include a distinction between structured
specifications and CASL-like architectural specifications, and refinements are re-
quired to preserve specification structure.

One point of this proposal that requires further work is the treatment of
shared subcomponents, such as S in the following:

arch spec ASP = units S : USP
A1 : arch spec

units
B1 : USP ′

1

· · ·
Bm : USP ′

m

result . . .B1 . . .S . . .Bm . . .
· · ·
A2 : arch spec

units
C1 : USP ′

1

· · ·
Cp : USP ′

p

result . . .C1 . . .S . . .Cp . . .
result . . .A1 . . .A2 . . .

This requires a relatively straightforward modification to the semantics of CASL

architectural specifications to make declared units visible within architectural
specifications for further units.

We have not provided a treatment of refinements of unit specifications with
imports, as was pointed out in Sect. 7. A formal account of imports would add
considerably to the complexity of the semantics, see [8, III:5]. However, they can
be regarded as implicit formal parameters which are instantiated only once, as
in the specification Addition First Generic. And moreover, this seems to be
the appropriate view when refinements are considered. The ultimate target of re-
finement of such a specification will necessarily involve a parametrized program,
and at some point in the refinement process this needs to be made explicit. Thus
we regard the lack of treatment of imports as methodologically sound rather than
merely a convenient simplification. That said, given modified visibility rules as

22

sketched above, we could allow for refinements from a specification of the form
SP given UT to an architectural specification of the form

arch spec
units F : SPpar → SP ′

result F [UT]

which would be correct provided UT : SPpar and [[SP]] ⊇ [[SPpar and SP ′]].
Notice that here UT typically refers to units from the level of the unit that is
specified by SP given UT ; this is the reason why the modified visibility rules
are necessary.

Finally, we have not discussed behavioural refinement, corresponding to ab-
stractor implementations in [15]. Often, a refined specification does not satisfy
the initial requirements literally, but only up to some sort of behavioural equiv-
alence: for example, if stacks are implemented as arrays-with-pointer, then two
arrays-with-pointer differing only in their “junk” entries (that is, those that are
“above” the pointer) exhibit the same behaviour in terms of the stack oper-
ations, and hence correspond to the same abstract stack. This can be taken
into account by re-interpreting unit specifications to include models that are be-
haviourally equivalent to literal models, see [4, 5]; then specification refinements
as considered here become behavioural.

Acknowledgments: Our thanks to the anonymous referees, and to Michel
Bidoit, whose suggestions encouraged us to make some important improvements.

References

1. E. Astesiano, H.-J. Kreowski, and B. Krieg-Brückner. Algebraic Foundations of
Systems Specification. Springer, 1999.

2. M. Bidoit and P.D. Mosses. Casl User Manual. LNCS Vol. 2900 (IFIP Series).
Springer, 2004.

3. M. Bidoit, D. Sannella, and A. Tarlecki. Architectural specifications in Casl.
Formal Aspects of Computing, 13:252–273, 2002.

4. M. Bidoit, D. Sannella, and A. Tarlecki. Global development via local observational
construction steps. In Proc. 27th Intl. Symp. on Mathematical Foundations of
Computer Science, LNCS Vol. 2420, pages 1–24. Springer, 2002.

5. M. Bidoit, D. Sannella, and A. Tarlecki. Observational interpretation for CASL

specifications. In preparation, 2004.

6. T. Brunet. Génération automatique de code à partir de spécifications formelles.
Master’s thesis, Université de Poitiers, 2003.

7. CoFI. The Common Framework Initiative for algebraic specification and de-
velopment, electronic archives. Notes and Documents accessible from http:

//www.cofi.info/.

8. CoFI (The Common Framework Initiative). Casl Reference Manual. LNCS
Vol. 2960 (IFIP Series). Springer, 2004.

9. J. Fitzgerald and C. Jones. Modularizing the formal description of a database
system. In Proc. VDM’90 Conference, LNCS Vol. 428. Springer, 1990.

23

10. J. Goguen and R. Burstall. Institutions: Abstract model theory for specification
and programming. Journal of the Association for Computing Machinery, 39:95–
146, 1992.

11. J. Goguen and K. Lin. Morphisms and semantics for higher order parameter-
ized programming. Available from http://www.cs.ucsd.edu/users/goguen/pps/

shom.ps, August 2002.
12. C.A.R. Hoare. Correctness of data representations. Acta Informatica, 1:271–281,

1972.
13. R. Milner. An algebraic definition of simulation between programs. In Proc.

2nd Intl. Joint Conf. on Artificial Intelligence, pages 481–489. British Computer
Society, 1971.

14. T. Mossakowski. Two “functional programming” sublanguages of CASL. Note L-9,
in [7], March 1998.

15. D. Sannella and A. Tarlecki. Toward formal development of programs from al-
gebraic specifications: implementations revisited. Acta Informatica, 25:233–281,
1988.

16. D. Sannella and A. Tarlecki. Foundations of Algebraic Specifications and Formal
Program Development. Cambridge University Press, 2005, to appear. See http:

//homepages.inf.ed.ac.uk/dts/book/index.html.
17. D. Smith. Designware: Software development by refinement. In Proc. Conference

on Category Theory and Computer Science, CTCS’99, volume 29 of Electronic
Notes in Theoretical Computer Science. Elsevier, 2000.

24

A Abstract Syntax for CASL Architectural Specifications

The grammar extends the grammar given in the CASL Reference Manual [8].
The new parts of the grammar are marked in italics, while removed parts are
crossed out.

ARCH-SPEC-DEFN ::= arch-spec-defn ARCH-SPEC-NAME ARCH-SPEC

ARCH-SPEC ::= basic-arch-spec UNIT-DECL-DEFN+ RESULT-UNIT

| ARCH-SPEC-NAME

UNIT-DECL-DEFN ::= UNIT-DECL | UNIT-DEFN

UNIT-DECL ::= unit-decl UNIT-NAME SPEC-REF UNIT-IMPORTED

UNIT-IMPORTED ::= unit-imported UNIT-TERM*

UNIT-DEFN ::= unit-defn UNIT-NAME UNIT-EXPRESSION

UNIT-SPEC-DEFN ::= unit-spec-defn SPEC-NAME UNIT-SPEC

UNIT-SPEC ::= UNIT-TYPE | SPEC-NAME

| arch-unit-spec ARCH-SPEC

| closed-unit-spec UNIT-SPEC

UNIT-TYPE ::= unit-type SPEC* SPEC

SPEC-REF-DEFN ::= ref-unit-spec-defn SPEC-NAME SPEC-REF

SPEC-REF ::= SPEC-NAME

| unit-spec UNIT-SPEC

| refinement UNIT-SPEC SYMB-MAP-ITEMS* SPEC-REF

| arch-unit-spec ARCH-SPEC

| compose-ref SPEC-REF SPEC-REF

| component-ref UNIT-REF*

UNIT-REF ::= unit-ref UNIT-NAME SPEC-REF

RESULT-UNIT ::= result-unit UNIT-EXPRESSION

UNIT-EXPRESSION ::= unit-expression UNIT-BINDING* UNIT-TERM

UNIT-BINDING ::= unit-binding UNIT-NAME UNIT-SPEC

UNIT-TERM ::= unit-translation UNIT-TERM RENAMING

| unit-reduction UNIT-TERM RESTRICTION

| amalgamation UNIT-TERM+

| local-unit UNIT-DEFN+ UNIT-TERM

| unit-appl UNIT-NAME FIT-ARG-UNIT*

FIT-ARG-UNIT ::= fit-arg-unit UNIT-TERM SYMB-MAP-ITEMS*

ARCH-SPEC-NAME ::= SIMPLE-ID

UNIT-NAME ::= SIMPLE-ID

A SPEC-NAME can be a SPEC-REF either directly, or indirectly via UNIT-SPEC.
This ambiguity is solved by looking up the SPEC-NAME in the global environ-
ment, which is expected to keep information about UNIT-SPECs and SPEC-REFs
separately.

