Property Preserving Redesign of Specifications!

Artur Zawlocki?, Grzegorz Marczynski?, Piotr Kosiuczenko®

2Institute of Informatics, Warsaw University,
3Department of Computer Science, University of Leicester

Abstract. In the traditional formal approach to system specification
and implementation, the software development process consists of a num-
ber of refinement steps which transform the initial specification into its
correct realisation. This idealised view can hardly capture common situ-
ations when a specification changes in a non-incremental way, e.g. when
client requirements change or new software technologies emerge. An ex-
tra flexibility can be added to the development process by allowing for a
redesign of specifications, in addition to refinement steps. In this paper,
the notion of specification redesign is formalised for an arbitrary institu-
tion. Basic properties of redesign are investigated and the formalism is
applied to provide a formal semantics for UML class diagram transfor-
mations. As examples, two refactoring patterns are described in terms
of class diagrams and interpreted as redesigns of corresponding algebraic
specifications.

1 Introduction

In the contemporary software engineering the phases of the system specification
and design occur in a series of interleaving steps. As the system specification
changes due to a number of factors including changed or new client require-
ments, new technology enablers etc., an extensive re-engineering of the system
specification and design is often needed. In the algebraic approach to the system
specification [AKKB99] the progress of the software development process is of-
ten described in terms of refinement which by monotonicity assumption can not
express the non-incremental changes to the system structure

We perceive a signature of the system specification as a description of the
system structure. Therefore changes of the system structure should be reflected
by a changed specification over a new signature. We define in an institution-
independent way [BG92] a redesign of specifications via embeddings of two spec-
ifications to a intermediate specification over a “joint” signature. That inter-
mediate specification determines the strength of the connection between these
two.

Our definition of redesign of specifications has numerous applications. One
of them is the ability to reason about the transformation of the class structure
of the object-oriented systems.
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Fig. 1. An example of Inline Class refactoring pattern

Object-oriented modelling languages provide textual and diagrammatic means
for system specification (like UML, cf. [OMGO03]). Class diagrams specify a com-
mon structure and relationships between objects. The best known approach to
redesigning the object-oriented systems is the refactoring method [Fow99]. It
provides simple patterns to redesign the code and class structure in order to
extend, improve and modify a system without altering its behaviour. Using our
definition of redesign class diagrams (cf. Sec. 4) we make precise the otherwise
ambiguous property of “preserving the system’s behaviour”.

The paper is organised as follows. In section 2 we introduce our approach
by means of an example — we argue that an Inline Class refactoring pattern
[Fow99] is indeed a redesign. Then (Sec. 3) we formally introduce a definition
of a redesign diagram in an institution-independent way, describe a redesign of
UML class diagrams (Sec. 4) and show (Sec. 5) an elaborate example — formal
proof that an application of Composite design pattern [GHJIV95] is a redesign.
Finally we discuss related work (Sec. 6) and conclude (Sec. 7) the paper.

2 A Redesign Example — Inline Class Refactoring Pattern

In this section we present an example of system redesign, expressed on the level
of UML class diagrams [OMGO03]. The redesign is done according to the Inline
Class refactoring pattern [Fow99]. This pattern allows us to join two classes, if
one of them does not provide much functionality.

Let us consider class diagrams C'D1 and C D2 shown on Fig. 1. The class
Phone represents phone numbers, Person represents phone owners and City rep-
resents cities. Each person has a phone and every phone is located in a city.
We attach an OCL constraint [OMGO3] to the class Person, saying that every
person’s number is larger than 0. The class Phone does not provide much func-
tionality and is only used by the class Person. Therefore, we join those classes in
CD2. The class City is not affected by the redesign.



We formalise C'D1 and C' D2 as algebraic specifications SP;1 and SP5, respec-
tively. In this case the encoding is self-explanatory. More details are provided in
Sec. 4.

spec SP1 = spec SP2 =
sorts Person, Phone, Clity; sorts Person, City;
ops myPhone : Person — Phone; ops inCity : Person — Clity;
inClity : Phone — Clity; phNumber : Person — Int
phNumber : Phone — Int vars p : Person
vars p : Person e phNumber(p) > 0
o phNumber(myPhone(p)) > 0 end
end

The axioms in SP; and SPs result from the formalization of OCL constraints
attached to C' D1 and C'D2, respectively.

We use a dependency relationship with the ((trace)) stereotype to relate
elements of both diagrams. According to the convention introduced in [Kos04],
classes with the same names in both diagrams are implicitly related by a ({trace))
relationship. We only need to draw the dashed arrows between attribute and
link names. To represent the ((trace)) relationship at the formal level, we form a
“joint” signature X' consisting of the sum of sorts and a disjoint sum of operation
symbols from ¥; and Y5 (symbols from X; will be indexed with ; in X, for
i € {1,2}). The dependency relationship can be then translated to a set ¢ of
Y -equations:

Vp : Person - phNumber,(myPhone,(p)) = phNumber,(p)
Vp : Person - inCity, (myPhone,(p)) = inCity,(p)

Intuitively, the first equation states that for any person p, the phone number
obtained by evaluating phNumber(myPhone(p)) in the original system will be
the same as the one obtained by evaluating phNumber(p) in the redesigned
system. The second equation can be interpreted in a similar way.

SP; and SPjy can be translated to the joint signature X' simply by indexing
all operation symbols in axioms with ; and o, respectively. After putting the
translations together we add the equations from @ to obtain the specification
SP which can be treated as the encoding of the whole redesign diagram shown
on Fig. 1:

spec SP =
sorts Person, Phone, Clity;
ops myPhone; : Person — Phone;
inCity; , inCitys : Phone — City;

phNumber;, phNumbers : Phone — Int;
vars p : Person;
o phNumber; (myPhone; (p)) > 0
e phNumbers(p) > 0



o phNumber; (myPhone; (p)) = phNumbers(p)
o inCity; (myPhone; (p)) = inCitys(p)
end

Notice that we can remove either the first or the second axiom from SP with-
out changing the semantics of the specification, since @ implies their equivalence.

The important property of SP is that it is a conservative extension of both
SP, and SP3. Roughly, this means that SP does not put any constraints on
interpretations of phNumber,, myPhone, and inCity, other than those resulting
from the translation of SP;, and similarly for the operations from X5.

For the rest of this section let us adopt the usual notion of a model of a spec-
ification (X, W) as a first-order many-sorted X-structure satisfying all sentences
from ¥. Conservativeness of SP with respect to SP; means that any model M of
SP; can be extended to a model of SP by interpreting inCity, as the composition
of myPhone™ and inCity™ and interpreting phNumber, as the composition of
myPhoneM and thumberM. Such an extension can be restricted to a model of
SPs which is a “refactored” version of M. Conservativeness of SP with respect
to SPs is equivalent to the fact that every model of SP2 can be obtained as a
restriction of some model of SP.

3 A Formal Approach

As mentioned in the introduction, the redesign has to preserve the properties
of the system being restructured. To make this statement precise, we must be
able to compare the semantics of system descriptions. In the example above
this involves encoding class diagrams in some specification language, translat-
ing and putting specifications together, as well as comparing specifications that
use different signatures. Such operations can be carried out in an institutional
framework. In this section we formally define a redesign of specifications in an
institution-independent way.

3.1 Preliminaries

Let Set and Cat denote the category of all sets and the category of all categories,
respectively. An institution [BG92] is a tuple (Sig, Mod, Sen, |=), where

Sig is the category of signatures;

Mod : Sig? — Cat is the model functor, assigning a category Mod(X) of
X '-models to every signature X' € |Sig| and a functor Mod(c) : Mod(X’) — Mod(X)
to every signature morphism o : X — X';

Sen : Sig — Set is the sentence functor assigning a set Sen(X) of X'-sentences

to every X € |Sig| and a o-translation function Sen(c) : Sen(X) — Sen(X")

to every o : X — X,

= is a family { =} oe|sig| of satisfaction relations, where = »C [Mod(X)| x Sen(Y)



such that for any signature morphism o : X' — X’ the functor Mod(X) and the
translation function Sen(X') preserve the satisfaction relation, that is, for any
v € Sen(X) and M’ € |[Mod(Y")]

Mod(0)(M') Ex ¢ iff M’ s Sen(o)(p)

We write M |, for Mod(o)(M) and just o(p) for Sen(o)(y).

In a fixed institution we can consider specifications as abstract objects, classi-
fied by signatures and defining classes of models. That is, we require the existence
of operations Sig and [_] on the class of specifications such that, for every speci-
fication SP, Sig(SP) € |Sig| and [SP] C |Mod(Sig(SP))|. Moreover, we require
that the class of specifications is closed under the following specification-building
operations ([ST88a]):

— For any X € |Sig| and @ C Sen(X), a presentation (X,d) is a specification
with Sig((X,®)) = ¥ and [(X,d)] = {M € [Mod(5)| | M = &}.

— For any signature morphism o : ¥ — X’ and a specification SP such that
Sig(SP) = X, the translation of SP along o is a specification o(SP) such
that Sig(o(SP)) = X’ and [o(SP)] = {M' € Mod(X’) | M'|,€ [SP]}.

— For any specifications SP1, SPo such that Sig(SP1) = Sig(SP3), the union
SP; U SPy is a specification with Sig(SP; U SP3) = Sig(SP;) and
[[SPl U SPQ]] = [[SPl]] N [[SPQ]]

— For any signature morphism o : ¥ — X’ and a specification SP’ such that
Sig(SP") = X', the reduct of SP' along o is a specification SP’|, such that
Sig(SP'|,) = X and [SP'|,] = {M'|,| M’ € [SP']}.

Specifications in an arbitrary institution form a category: a specification
morphism (Chapt. 4 in [AKKB99]) o : SP — SP’ is a signature morphism
o : Sig(SP) — Sig(SP') such that for every model M’ € [SP'], M'|,€ [SP].
A specification morphism o : SP — SP’ is conservative if for every M € [SP]
there exists M’ € [SP'] such that M = M’ |,. A composition of conservative
morphisms is also conservative.

By Proposition 4.22 in [AKKB99] (see also [BG92]), if the category Sig
is finitely cocomplete and the class of specifications is closed with respect to
the operations listed above, then the category of specifications is also finitely
cocomplete and every pushout diagram is of the form

O’é(SPl i(SPQ)

‘\01
SPo

SP,

From now on we consider only institutions with finitely cocomplete category
of signatures and classes of specifications closed with respect to the specification-
building operations.

YUo
P.O.
/

U
SP



Let D be a finite diagram of specifications. The functor Mod preserves a
colimit of D if it maps a colimit in Sig of the corresponding diagram of signatures
to a limit in Cat. We call such diagram D an amalgamable diagram.

3.2 An Abstract View of a Redesign

Adopting an institutional semantics encourages the formulation of concepts on
the level as general as possible, hence we look for a definition of redesign indepen-
dent of the logical system used. We view the structure of the system as described
simply by the signature of system specification. A redesign of the specification
amounts then to expressing system properties using a different signature.

Let SP; and SP5 be specifications. It would be too restrictive to require the
existence of a specification morphism from SP; to SPs in order to consider the
latter a redesign of the former. For instance, in the example of Sec. 2 there exists
no signature morphism from X7 to Xs. Instead, we require the existence of an
intermediate specification SP and two conservative morphisms o : SP; — SP
and oy : SPo — SP. Conservativity means that the specification SP does not put
any restrictions on the interpretation of symbols from Sig(SP;) and Sig(SP2)
besides those already present in SP; and SP5. However, SP can also relate the
symbols from the two signatures, for instance define the ones from Sig(SP2) in
terms of those from Sig(SP1).

Definition 1 (Redesign) Let SP be a specification. Let o1 : Sig(SP1) —
Sig(SP) and oo : Sig(SP3) — Sig(SP) be signature morphisms. SPy is a re-
design of SPy via 01,09 if 01 : SP1 — SP and o3 : SPs — SP are conservative
specification morphisms. In such a case we say, that

spy 2 sp &2 Sp, (1)
is a redesign diagram.

Let us observe that the specifications SP1 and SPs play symmetric roles in
the above definition: SP5 is a redesign of SP; via o7, o9 iff SP; is a redesign of
SPy via 09, 1. Moreover, if the model functor preserves coproducts, for arbitrary
SPy and SP; there is a redesign diagram with the coproduct SP; + SP5 as the
intermediate specification. This redesign preserves a “minimal” behaviour, as
components of the two signatures remain totally unrelated. We can require more
properties to be preserved by strengthening the intermediate specification. For
instance, if the invariant properties are expressed by a specification SP’ with
specification morphisms p; : SP’ — SPy, ps : SP' — SP,, a pushout of the
diagram

8Py - SP" 2 8P,
can be a redesign, provided the pushout morphisms are conservative.

We show that under certain assumptions on the model functor, redesigns can
be composed “vertically”.



Fact 2 (Category of redesigns) If the functor Mod preserves all pushouts
then redesigns form a category in which objects are specifications and a morphism
from SPy to SPs is any redesign diagram of the form (1). Identity redesign

diagram of specification SP with a signature X is SP s, gp %2 SP. The

composition of SP1 2L, 8P" 22 SPy and SPo 22, gp" 73 SP3 is defined using
pushout construction, as shown below.

SP
/ SP//

SP P.O.
SPl SPQ SPB

3.3 Redesigning Structured Specifications

Def. 1 allows us to decide whether a given diagram of specifications is a redesign.
However, in a common scenario the specification SP2 may not be known in
advance: developers want to redesign a specification SP; to a new signature
Y5. They relate the symbols of Y5 to those of ¥y = Sig(SP1) by means of a
specification SP,. over a “joint” signature X with signature morphisms oy :
X1 — X, 09: Xy — X, such that o1 : SP; — 01(SP1) U SP, is a conservative
specification morphism. The problem now is to find a redesigned specification
SPy over X, such that o9 : SPy — 01(SP1)USP ¢ is a conservative specification
morphism. Such a specification always exists, since we assumed that the class of
specifications is closed with respect to reducts along signature morphisms.

Fact 3 Let o1 : SP1 — SP be a conservative specification morphism and let
o9 1 X9 — Sig(SP) be a signature morphism. Then

sp, 2 Sp &SP,
s a redesign diagram.

However, in many applications it is preferable to obtain SPy as a presen-
tation. For instance, if SP; is a finite presentation resulting from encoding an
UML class diagram with OCL constraints, we would also like SP5 to consist of a
list of axioms corresponding to OCL constraints for the redesigned specification.
If SP; is obtained by application of specification-building operations, then we
can use the next lemma to find SP5 by following, to some extent, the structure
of SPl

Lemma 4 Let SP; 25 SP 2 SPy be a redesign diagram.



i. (translation) Let T : SP1 — SP} be a conservative specification morphism.
If the following pushout diagram is amalgamable

SP// \
N /

then
/ g2 ;Tl
—

SP, 2L 5P 5Py

s a redesign diagram.
ii. (union) Let SP| and SPY be specifications such that Sig(SP}) = Sig(SP1)
and Sig(SPY) = Sig(SP2) and also

[SP]N [o1(SPY)] = [SP] N [o2(SP5)]

Then
SP1USP, 2% SP U0 (SP)) <& SPy U SP),

s a redesign diagram.
i1i. (coproduct) Let

spy 25 sp 22 sp),

be a redesign diagram. If the following three coproduct diagrams are amal-

gamable
SPy — SPy + SP} «— SP}
SP — SP + SP’ «— SP’
SPy — SPy + SP}, «— SP,
then

SPy + SP} 2. §p 4+ sp" £ §p, + SP),

is also a redesign diagram, where p1 and pe are universal morphisms from
coproducts SP1 + SP and SPo + SP%, respectively.
iv. (reduct) Let p: X' — Sig(SP1) be a signature morphism. Then

SP1 |, 2% SP <SP,

s a redesign diagram.

The property (i) allows us to translate either the original or the redesigned
specification via a conservative specification morphism and obtain a redesign
diagram. This covers situations such as renaming symbols in a signature via an



injective signature morphism or extending the specification with new symbols
and axioms concerning only the new symbols. By (ii), both SP; and SP5 can be
enriched as long as the enriching parts “correspond to each other modulo SP”.
The property (7i7) states that if the original specification is a disjoint sum of two
components, each of the components can be redesigned separately in order to
obtain a redesign of the sum. Finally, by (iv), either the original or the redesigned
specification can be reduced along an arbitrary signature morphism.

The above lemma can be applied to the example of Sec. 2. By the property
(i) in order to conclude that the diagram in Fig. 1 describes a redesign it suffices
to show that

(Z1,0) 75 (2, 8) <= (25,0)

is a redesign diagram, and then to check that
phNumber, (myPhone; (p)) > 0 <= phNumbery(p) > 0

follows from .

3.4 Interpretation Functions

Let us present a partial solution to the problem of finding Y»s-sentences equiva-
lent to given X;-sentences for the case of institutions with sentences containing
term equalities. Interpretation functions [Kos04] (see also [Kos01]) can be very
useful as a vehicle for an automatic transformation of OCL constraints when
changes to class diagrams are performed.

An interpretation function is a partial function generated by term mappings
with ortogonal domain [Kos04]. These functions have several useful properties.
They preserve equational proofs, proofs using propositional tautologies, resolu-
tion rule and proofs by induction [Kos04]. From our perspective, the following
property is the most important: Let the redesign diagram like the one in Def.
1 be given. If the interpretation function f : Sen(X;) —? Sen(Xy) translates a
Y1-sentence ¢1 to a Ys-sentence ¢o, then we have

[SPUai(¢1)] = [SP Uoa(2)]

Lemma 4, (i7), can then be applied in order to add ¢; to SP; and ¢ to SPs.
We use an interpretation function to automatically transform the OCL con-
straint in the example in Sec. 5.

4 Redesign of UML Class Diagrams

We apply the notions developed in previous sections for reasoning about trans-
formations of UML class diagrams. The idea is to formalise such diagrams as
specifications in the institution of CASL ([CoF04]) — a variant of order sorted,
partial first-order logic — and then to generate an intermediate specification
from dependency relationships between elements of the diagrams. Note that
since the category of CASL signatures is finitely cocomplete such intermediate
specification always exists. A transformation preserves essential system proper-
ties if it gives raise to a redesign diagram in the category of CASL specifications.



4.1 Formalising UML Class Diagrams

We represent UML class diagrams annotated with OCL constraints (cf. [OMGO03])
as algebraic specifications in CASL institution following [BHTW99]. The only
difference is that in order to make the presentation more readable we omit the
concept of environements used there to represent methods with side-effects.

For a class diagram C'D we create a specification SP. In the corresponding
signature X each sort name corresponds to a class name from CD. These sorts
represent collections of objects of that class.

Class inheritance is handled by the ordering on corresponding sorts. Carriers
of abstract classes are disjoint unions (up to an isomorphism) of carriers of all
its direct subclasses. We additionally require (it wasn’t required in [BHTW99)])
that in every specification there is an appropriate axiom guaranteeing that.

As we are aware that this kind of encoding does not permit to express over-
riding we refer the reader to e.g. [ACZ99] for a possible solutions of this problem
(see also [Mar04]).

All query methods (these that do not change system state) and attributes
are encoded as functions with additional first parameter representing self ob-
ject. We claim that all problems related to side effects, local object states, global
system environement etc. are orthogonal to the problems described herein. Thus
we do not care about encoding of any non-query methods. For the similar rea-
son we assume that the only OCL constraints contained in class diagrams are
class invariants (i.e. there are no method pre- and postconditions). Translation
of these OCL constraints to CASL logic is straightforward using the method
described in [BHTW99]. As in [Kos04] we call the function that takes an OCL
annotated UML class diagram and produces a specification in CASL institution
a translation function Trans. Formally, since the whole class diagram can be de-
scribed as an OCL sentence, Trans is a mapping of OCL terms to CASL formulas.
Specifications SP1 and SP2 in Sec. 2 are example results of this translation.

In what follows we only consider diagrams consisting of two class diagrams,
say CD1 and CD2, with trace relationships (dependencies marked with the
({trace)) stereotype) connecting corresponding components in both of them (Fig. 1
contains an example of such a diagram). Let us call such diagrams class diagrams
with traces.

All UML trace dependencies have a mappingExpression attribute used to cap-
ture the relationship between elements linked by trace dependencies. In our
examples only two values of mappingExpression are used — composition and
product. For instance a trace dependency linking myPhone and inCity in CD1
with inCity in CD2 on Fig. 1 has mappingExpression set to composition, which
means that inCity in CD2 is a composition of myPhone and inCity in CD1.
In cases when the intended relationship is obvious, mappingExpression may be
omitted from the class diagram.

4.2 Redesign Class Diagrams

Given an UML class diagram with traces C' DT that consists of two class dia-
grams CDI and CD2 such that the CD2 is some transformation of CDI we



would like to decide whether the transformation is a redesign. We assume that
CD2 is already annotated with OCL constraints e.g. by use of some interpre-
tation function (cf. Sec. 3.4). We use the translation Trans (described in Sec.
4.1) to represent CD1 as a specification SP; with a signature X7, and CD2 as
a specification SPo with a signature Xs.

Let X be a countable set of variables. Let us use traces connecting classes
on CDT to generate a partial sort mapping sm : Sorts(Xq) —?7 Sorts(Xs2). We
require that sm preserve the subsort relation and be injective (for the reasons
described below). Similarily, using traces connecting methods and/or attributes
and using the deriviation strategy described by mappingExpression of each trace,
we define a partial many sorted term mapping tm : T, (X) —7 T, (X) such that
sm is a sort mapping associated with ¢m (i.e. sm and tm coincide on sorts). The
way of translation of trace endpoints to terms is straightforward (e.g. the compo-
sition of myPhone and phNumber is translated to a term phNumber(myPhone(x))
where & € Person as in Sec. 2)

The term mapping t¢m forms a connection between terms over two differ-
ent signatures. We require the denotations of corresponding terms to be equal.
In general it is impossible to express such property as a sentence from either
Sen(X;) or Sen(Xs). Thus we construct a bigger signature X containing all
that is needed to express the equality of terms being mapped by ¢m.

Let signature X,;s describe the “rest of the system” i.e. translation of all
classes, attributes, methods etc. depicted neither in C'D1 nor in C'D2. We assume
that X, is part of both X7 and Y5. As the sort mapping sm is functional
and injective we can assume also that all sorts connected by sm are common
(up to renaming) to them both. Thus let us define the signature X/ as X,
and additionally all sorts from dom(sm) (X and dom(sm) are disjoint). The
perfect candidate for a “joint” signature X' is the pushout of X7 and X5 over the
signature X’

X
AN
Y1 PO. X
N
El

where 7 is a signature morphism mapping all X,;s symbols to themselves and
additionally mapping all sorts in s € dom(sm) to sm(s). Since we require that sm
preserves the subsort relation, v is indeed a CASL subsorted signature morphism.
Having Y’ we can express the desired equality on terms. We define the following
set of equations:

& = {VX - 01(t) = o2(tm(t)) | t € T, (X),t € dom(m)}

Note that ¢ C Sen(X).
Finally, we are able to formalise the requirements that need to be imposed
on a class diagram to represent a redesign.



Definition 5 (Redesign class diagram) Using the notation introduced above,
the class diagram C DT is a redesign class diagram over an signature X’ if trans-
lations of C'D1 and C'D2 to the CASL institution together with the specification
o1(SPy) U (X, ®) and signature morphisms o1, o2 form the following redesign
diagram (in the sense of Def. 1)

SP, EN O'1(SP1) U <E,€I)> 2 SP,
Note that the requirement that sm is injective is very sensible since every

non-injective sort mapping leads to a non-conservativeness of o .

5 An Elaborate Redesign Example — Composite Pattern

v |
! Cs <<abstract>>
as | « | * C
I
I
I

bs
B le—m—mm< A —
*/‘\ T :7 777777

. let children(obj:A) =
== obj.as->union(obj.as->collect(a|children(a)))
in not children(self)->includes(self) ‘

In the above figure the class diagram C'D1 describes Directed Acyclic Graph
(DAG) data structure. Objects of the class A represent internal graph nodes,
objects of the class B represent leaves. The OCL invariant of A guarantees that
the structure is indeed a DAG (i.e. it doesn’t contain a cycle).

The class diagram C'D2 is a result of the application of the Composite de-
sign pattern [GHJV95] to the system described by C'D1. Note the lack of OCL
constraint describing an invariant of the class A in C'D2. Thus CD2 does not
necessarily describe a DAG. To fix the problem we use the interpretation func-
tion to generate the appropriate invariant (cf. Sec. 3.4 and [Kos04] for details).
The following mapping

x.as — x.cs—> collect(a | a.isKind0f(4))
x.bs — x.cs—> collect(b | b.isKind0f(B))

is orthogonal and thus it could be extended [Kos04] to the interpretation function
that we use to transform the invariant of A in CD1

context A inv:
let
children(obj:A) = obj.as—> union(obj.as—> collect(a| children(a)))
in not children(self)—> includes(self)



to the following invariant in C' D2

context A inv:
let
children(obj: A) = obj.cs—> collect(a | a.isKindOf(A))—> union(
obj.cs—> collect(a| a.isKind0f(A))—> collect(a | children(a)))
in not children(self)—> includes(self)

To decide whether the above class diagram with an additional invariant for
A in CD2 is a redesign class diagram we translate C' D1 and C'D2 augmented
with an invariant to SP; and SP3, respectively.

spec SP1 = spec SP2 =
sorts A, B sorts A,B,C;A< C;B < C,
ops as . A — Set[A]; ops ¢s i A — Set[C];
bs : A — Set[B]; children : A — Set[A];

children : A — Set[A];
vars a,a’ : A
o a € children(a) &
(a' € as(a) vV
da” e o” € as(a) A
o' € children(a’))
e a & children(a)

vars a,a’: A; ¢ : C

a’ € children(a) <
(o € AN (d € cs(a)V
Ja” o a” € cs(a) A
a' € children(a")))
a ¢ children(a)
c € Asc ¢ B

end end

Note that the function children defined locally in the OCL invariant has been
added the global function to both specifications. We know by (iv) of Lemma 4
that it is enough to prove that specifications with global children are mutual re-
designs to conclude that their versions with children defined locally are redesigns
as well (via the same intermediate specification).

First two axioms of both specifications are translations of invariants of A.
The last axiom in SP2 says that C' is a disjoint union of A and B (the encoding
of the ({abstract)) stereotype on C).

The trace relationships (the omitted mappingExpression clearly signifies that
they are of product type, cf. Sec. 4.1) result in the following sort mapping s and
term mapping m

s={Am A m = {as(x) — w1 (i(cs(x)));
B+ B} bs(x) = ma(i(es(x)));
children(x) v~ children(z)}

where 7 is an obvious isomorphism between Set[C] and Set[A] x Set[B] (justified
by the requirement expressed by axioms in SP; saying that C = AW B), m; and
mo are product projections defined elsewhere.

We use the procedure described in Sec. 4.2 to define a signature X’ common
to both SP; and SP, X' = {4, B} U X4, where Xy, is a signature with all



standard sorts (e.g. integers, booleans, etc.) and operations on them (it was
implicitly assumed to be a part of signatures of SP; and SP,). Let X be a
pushout of ¥; and X5 over X’. The joint specification SP is the following:

spec SP =
sorts A,B,C;A< C;B < C,
ops as; . A — Set[A];
bs; : A — Set[B];
Sz : A — Set[C];
[A];

childreny, childreng : A — Set[A];
vars a,a’ : A,c: C

e ass(a) = my(i(csz(a)))

o bsi(a) = ma(i(esz(a)))

e children; (a) = childreng(a)

o a' € childrens(a) < (o' € as(a) V Aa” o a” € as(a) A a' € children;(a"))

e a & childrens(a)

e c€ Asc ¢ B
end
Note that the first three axioms are equalities resulting from the term mapping
m (set @ in Sec. 4.2).

It is clear that o; : SP; — SP and o3 : SP, — SP are specification mor-
phisms. In the following we show that they are conservative.

First we prove it for o;. Let us assume M; € [SPi]. We need to find a
model M € [SP] such that M |,,= M;. M can be constructed by putting
AM = AMi pM — BMi_ M = qsMi| gimilarly bsM and childreni!. Let
CM = AM @y BM | The function csy : AM — P(CM) is the only function that
causes the commutativity of the following diagram in Set (by P(S) we mean set
of all finite subsets of S — i.e. the CASL sort Set[S]).

P(CM) = P(AM) x P(BM)

g

sz P(AM)

P(BM)

AM

The existence of cso follows from the universal property of the product P(AM) x
P(BM). Obviously M = M |,, .

To show that o is conservative let us assume My € [SP:]. We need to
find such M € [SP] that M |,,= Ms. As C is an abstract class i.e. CM2 =
AMz g BM2 we construct M as My and additionally interpret two functions
asy : AM — P(AM) and bs; : AM — P(BM) as compositions of csg;i with m;
and 7o respectively. Again is easy to see that My = M |,,.



5.1 Changing a Redesign Diagram

Imagine the situation that just after we have proved that the above class diagram
is a redesign class diagram we discovered that actually the names of classes on
C D2 were written incorrectly. They should have been (a it is in [GHIV95]) Com-
ponent instead of C, Composite instead of A and Leaf instead of B and also there
should have been additional method name in a class Component. We do not need
to redo a proof that a transformation is a redesign. Since all above described
changes are conservative, we can use? property (i) of Lemma 4 that any trans-
lation of SP, by a conservative specification morphism leads to a specification
that is also a redesign of SP; (via the same intermediate specification).

6 Related Work

A number of approaches to redesigning UML class models exist already. The best
known is the refactoring [Fow99]. This approach provides simple patterns for
code and class structure redesign to extend, improve and modify a system with-
out altering its behavior. Model transformation gain a lot of interest in recent
time (see [MCGO3]). Interpretation functions, used to formalise UML class di-
gram transformations in [Kos01,Kos04] originate in abstract algebra. In [Tay73],
an interpretation function transforms a single operation symbol into a complex
term. Lano’s approach [Lan95] uses a form of interpretation function and some
axiomatic/equational extension of theories to define the notion of refinement for
the Real Time Action Logic; it is based on the Object Calculus [FM91]. Graph
rewriting systems may be used to describe transformation of a specification (cf.
e.g. [GRPPS98]).

Our notion of redesign is related to the concept of implementation (JONS96,ST88b]).
The implementation of SP; by SP3, as defined in [ONS96], is also parametrised
by an intermediate specification. The main difference between the two notions
is the constructive nature of the implementation: a constructor operation must
be provided that transforms every model of SP5 to a model of the intermediate
specification that can be then reduced to the model of SP;. A redesign dia-
gram SP; 2% SP <2 SP, does not prescribe how to provide such operations,
it merely guarantees that any persistent constructors ([ST88b]) from [SP2] to
[SP] would implement SP; by SPs.

7 Conclusion and Future Work

In our paper we have defined a formal notion of the redesign of specifications. Our
approach allows one to reason about such transformation of the system structure
that are incomparable by means of a signature morphism. We have also shown
(see Lemma 4) that, under certain assumptions, a structured specification can
be redesigned in a step-by-step manner, to a specification structured similary to
the initial one.

4 As it is easy to prove that the resulting pushout diagram is amalgamable in CASL



As a practical application of our work we have presented a formalisation of
the redesign of UML class diagrams. We have defined the conditions that need to
be imposed on a class diagram for it to describe a property preserving redesign.

Translating of UML class diagrams to CASL we cared about query methods
only. Moreover we did not handle method overriding in the subclasses. We plan
to investigate these issues in coming future.
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