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Abstract

Abstract. Automata-based model checking is a widely used approach towards software model check-
ing. Traditionally, nondeterministic Büchi automata are used to represent the temporal logic property to
be checked. We take a look at a special kind of alternating automata, the linear weak alternating automata.
They can be constructed from LTL formula in an elegant way in linear time. The emptiness check on
linear weak alternating automata, on the other hand, requires exponential time, whereas the emptiness of
nondeterministic Büchi automata, being of exponential size with respect to the size of the LTL formula
they represent, can be checked in linear time. We try to use the advantage of the better constructability of
linear weak alternating automata in model checking by implementing a model checker using “on-the-fly
generalized Büchi automata generation”. The emptiness check is conducted using an extended version
of Tarjan’s algorithm. After obtaining promising results, we adapt the SPIN model checker to the new
algorithm.

1 Introduction

1.1 The model checking problem

Model checking of finite state systems has been popular for many years, as it can provide some significant
advantages over other verification techniques: first, it is completely automatic, requiring just the input of the
model and a temporal-logic formula. It is a “push-button-approach”, freeing the user of the need to follow
the actual proof, as required by a semi-authomatic theorem prover. Second, it conducts an exhaustive search
and can prove a model to be correct. Third, it can display a counterexample if an error is found which can
be used to understand the error and subsequently change the model.
Model checking is called “semantic verification”, indicating that the semantics of property and model are
examined to validate their conformance. To put it simple, model checking just checks if every temporal
structure that is allowed by the model satisfies the property too. However, the complexity of LTL-model
checking is known to be EXPTIME-complete (actually, linear with respect to the model size, but exponential
with respect to the formula), making model checking challenging in both runtime and memory requirements.
In practice, runtime requirements can make model checking infeasible, however memory requirements can
make it impossible. Therefore, a good model checker will try to save memory as well as try to be fast.

1.2 Approaches to the model checking problem

Model checker have been used for both hardware and software verification. Hardware verification is con-
cerned with proving the correctness of circuits to avoid undetected flaws like the faulty FDIV unit that led
to the well-remembered “Pentium bug”. As these circuits are designed using CAD systems, the model to
check can be taken from these designs directly. Software verification, however, usually uses hand-written
models of the actual algorithm to check. It is not entirely impossible to check software directly, however
with current computers and algorithms, it seems quite futile to attempt this without quite excessive automatic
abstraction.
For software model checking automata-based approaches are widely used. Because these algorithms search
for possible property violations by looking at all possible paths, they are known as explicit model checker.
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Today, SPIN is the most famous (freely available) member of this model checker class (see [Hol97, Hol03]).
In hardware verification, symbolic model checking [McM92] has gained much acceptance. Using BDDs for
state representation, the memory requirements were decreased. As hardware verification produces models
with many variables, yet usually little trace length, the symbolic model checking approach produced good
results. Another symbolic technique is known as bounded model checking [BCRZ99], which uses proposi-
tional logic formulae for fault detection. As it relies on the SAT-problem (see [Coo71] for Cook’s famous
description of the problem), it can make use of highly optimized SAT solvers. Bounded model checking
does not search for all possible traces at once, instead it just looks for those shorter than a given bound. This
enables the verification of short traces for very large models, but makes it difficult to prove a model correct.
Recently it has been shown by Clarke et al [CKSO04] that the worst case trace length to verify is exponential
in the size of the model. However, hardware model checking is concerned with finding errors rather than
proving correctness, thus bounded model checking received a lot of attention.
In this thesis we shall be concerned with software model checking. Compared to hardware model checking,
the models usually feature less variables, the traces tend to get longer and correctness proofs are desired.
Consider, for example, a mutual exclusion algorithm (like Peterson’s algorithm). The model consists of
maybe four bit variables and two program counters, but if we want to prove “single-bounded overtaking”,
counterexample traces can get quite long. We also want to show the correctness of the algorithm, as it is
pretty likely that if there exists a possibility of a flawed run, it will occur eventually.

1.3 Thesis overview

In the first section, the theoretical background is presented, which is concerned with different kinds of omega
automata and their language emptiness checks. We then discuss an implementation of a linear weak alter-
nating automata-based model checker, and present some benchmarking results. After that, we outline the
adaption of the SPIN model checker to use the new algorithm.
This paper is a shortened preliminary result presentation. It omits the reimplementation of the Gastin/Oddoux
algorithm to generate nondeterministic Büchi automata, as well as various (not very successful) attempts to
minimize the linear weak alternating automata. It also does not contain data for thelwaaspinimplementa-
tion, which is not yet ready to be tested against large models at the time of writing.

1.4 Related work

This thesis follows the paper of Merz/Sezgin [MS03] and Gastin/Oddoux [GO01]. Gastin/Oddoux present
ltl2ba, a very efficient tool to convert LTL formulae to nondeterministic Büchi automata. This approach has
been refined by Fritz [Fri03] and Tauriainen [Tau03b]. This way is the “state-of-the-art” approach towards
nondeterministic Büchi automata generation, but we shall only briefly discuss it in this paper.
In the main part we present the implementation of an emptiness check on linear weak alternating automata
based on Merz/Sezgin’s algorithm. As far as we know this has not been done before. Our algorithm performs
a combined on-the-fly generation of a generalized Büchi automaton and an emptiness check on this automa-
ton. An emptiness check based on the “CVWY”-algorithm [CVWY92] for generalized Büchi automata has
been proposed by Tauriainen [Tau03a], but our algorithm is an adaptation of the strongly connected compo-
nent detection algorithm described by Tarjan [Tar72].
We use this algorithm as a model checker and add it to SPIN [Hol97, Hol03].

2 Theory

2.1 Automata-based model checking

The task of model checking is to see whether all runs allowed by a model of a system are also allowed by a
property. For example, one might wonder whether a given model of a counter will always reset to zero after
a finite number of steps. As the model is declared as a state transition system it is pretty easy to see if a run
is allowed by the model. However, it is not so easy to see the compliance of a run with a property given by
a temporal logic formula. Automata-based model checking, introduced by Vardi and Wolper (see [VW86]),
deals with this problem by using a special kind of automata.
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Let Σ be an alphabet. As a run is an infinite word (denotedw ∈ Σω), the automata used have to provide
acceptance on infinite words. Most commonly, nondeterministic Büchi-automata have been used for this.
They look almost like a common NFA, but offer a different acceptance condition:

Definition 1 (Nondeterministic Büchi Automaton). A nondeterministic Büchi automaton is a tupleB =
(Q, q0, δ, F ) where

• Q is a finite set of locations

• q0 ∈ Q is the initial location

• δ ⊆ Q× Σ×Q is the transition relation

• F ⊆ Q is the set of accepting locations

For a infinite wordw = w0w1 . . . ∈ Σω the automatonB is accepting iff there is a pathρ = p0, p1, . . . of
configurations withp0 = q0, (pi, wi, pi+1) ∈ δ for all i ∈ N andpi ∈ F for infinitely manyi.
The languageL(B) is defined asL(B) = {w ∈ Σω | B acceptsw}.

// ONMLHIJKq0
f

//
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bb

Figure 1: Nondeterministic Büchi
automaton for♦�f

Unlike finite automata, nondeterministic Büchi automata are more
expressive than deterministic ones. For example, the property♦�f
cannot be expressed by a deterministic automaton (the informal proof
idea is the lack of “guessing” capability of the point where no¬f will
occur anymore). However, nondeterminism and alternation are equal
for automata on infinite words - they both recognize the omega-regular
languages. For finite words, all three automata types are equivalent to
regular languages.
How canω-automata be used for model checking purposes? Given
a modelM and a LTL formulaϕ, we want to show that every run
allowed by the model is allowed by the propertyϕ, too:

M |= ϕ

To achieve this, we might generate the automatonAϕ and check if its language is a superset of the language
of the modelM :

L(M) ⊆ L(Aϕ)

This is equivalent to showing that no run of the automaton satisfies the inverted formula:

L(M) ∩ L(A¬ϕ) = ∅

To calculate the intersection, we can use the product automaton:

L(M ×A¬ϕ) = ∅

Thus, automata-based model checking involves two steps: First, building the product automaton, and second,
checking if its language is empty. If it is, our property holds in the model. If it is not, we can find an infinite
word that will provide an example of a run that is valid in the model, but invalid with respect to the property.
However, in practice the product automaton is far too big to be calculated in a distinct step. Therefore,
on-the-fly model checking is conducted by most automata-based model checkers: both steps are combined
and the automaton locations are calculated just when needed. This technique is the foundation of the most
popular LTL model checker, SPIN [Hol97].

2.2 Alternating automata

We are interested in other types of automata over infinite words for two reasons: First, nondeterministic
Büchi automata recognize the omega-regular languages, which are the languages describeable by theµ-
calculus. As LTL is equivalent to the omega-starfree languages and thus a proper subset of the languages
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recognized by nondeterministic Büchi automata (and many other automata like Muller-, Rabin- and Streett-
automata), nondeterministic Büchi automata are too strong for our purposes. This does not yield a problem,
however we might be faster or more memory efficient with weaker automata.
Second, nondeterministic Büchi automata have exponential size with respect to the LTL formula they rep-
resent. For simple properties this is no problem, as a human-formulated LTL property will not be very big.
However, one of the advantages of LTL (over the computation tree logic, CTL) is the ability to add fairness
constraints to the property, but this will result in larger formulas. Alternating automata do have the advantage
of being of linear size with respect to the formula. To determine whether this fact can be used to formulate
a more efficient model checking algorithm will be topic of this thesis.
Alternating automata add universal choice to nondeterministic automata. This makes them logarithmical
smaller than nondeterministic Büchi automata accepting the same language, but it also makes them far more
difficult to handle. Thus we might want to trade power of expression for easier handling: as it was shown
by Thomas [Tho97], a subclass of alternating automata is sufficient for LTL: the linear weak alternating
automata1.

Let us first introduce alternating automata as proposed by Muller and Schupp [MS84, MS87]:

Definition 2 (Alternating automata). A alternating automaton is a tupleA = (Σ, Q,∆, q0, F ) where

• Σ is the alphabet

• Q is the set of locations

• ∆ : Q × Σ → B+(Q) is the transition function, whereB+(Q) is a boolean formula containing only
positive variablesq ∈ Q.

• q0 ∈ Q is the initial location

• F ⊆ Q is the set of final locations (either co-Büchi [GO01], or Büchi [FW03, FS01])

Because of their Büchi (or co-Büchi, where each final state may be visited only finitely often in an
accepting run) acceptance, these automata are also known as alternating Büchi automata.
To make this alternating automaton linear weak, we propose a restriction on the transition function:

Definition 3 (Linear weak alternating automata). LetA be an alternating automaton.A is called a linear
weak alternating automaton iff there exists a partial order onQ such that for allq ∈ Q, all the locations
appearing inδ(q) are lower or equal toq.

For practical reasons, it is feasible to use another presentation of the transition functionδ : Q→ B(Q ∪
Σ) which is equivalent but more easily manageable. We also would like to use another formulation of the
acceptance condition, which is also equivalent, but can be derived from the LTL formula more easily. Thus,
following the definition of Merz and Sezgin [MS03], we give another definition of linear weak alternating
automata:

Definition 4 (Linear weak alternating automata, alternative definition). A linear weak alternating au-
tomaton is a tupleA = (V, Q, q0, δ, ρ) where

• V is the set of atomic propositions

• Q is the set of locations

• q0 ∈ Q is the initial location

• δ : Q → B(Q ∪ V) is the transition function that assigns a boolean formula to eachq ∈ Q; this
formula must not contain negativeq′ ∈ Q

• ρ : Q→ N is a ranking function

1also known as “very weak alternating automata”
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To make this a linear weak alternating automaton, it is required that∀q, q′ ∈ Q.q →∗ q′∧q′ →∗ q ⇒ q = q′.

As opposed to the first definition, the acceptance condition is not a Büchi condition but uses the ranking
function. The basic idea here is that even-ranked locations are accepting, while odd-ranked locations are
rejecting. This is why these automata are also known as “linear parity alternating automata”.
We will use the second definition for linear weak alternating automata during this thesis. To define accep-
tance, we first have to introduce run dags (directed acyclic graphes) and paths:

Definition 5 (Run dags and paths of linear weak alternating automaton).LetA = (V, Q, q0, δ, ρ) be a
linear weak alternating automata andσ = s0s1 . . . be a sequence of inputssi ⊆ V. A run dag ofA overσ
is represented by theω-sequence∆ = e0e1 . . . of its edgesei ⊆ Q × Q. The configurationsc0c1 . . . of ∆
are defined byc0 = {q0} andci+1 = ran(ei) with ran(r) being the range of the relationr. We require that
for all i ∈ N, dom(ei) ⊆ ci and that for allq ∈ ci, si ∪ ei(q) satisfiesδ(q).
A path in a run dag∆ is a maximal sequenceπ = p0p1 . . . of locationspi ∈ Q such thatpi ∈ ci and
(pi, pi+1) ∈ ei for all i such thatpi (respectivelypi+1) appears inπ.

A run dag is a graph of activated locations over some infinite input word. It is clear that the breadth of
this dag cannot exceed the number of locations. To avoid confusion, this dag represents just a single path
through the existential choices of the alternating automaton. The branches it takes resemble the requirements
of universal choice. Paths are only of theoretical interest here, as they do not resemble anything practical.
However, we need them to define the acceptance condition of linear weak alternating automata:

Definition 6 (Acceptance of linear weak alternating automata).LetA = (Σ, Q, q0, δ, ρ) be a linear weak
alternating automata. A run dag∆ ofA is accepting iffmin(ρ(pi) | i ∈ N) is even for every infinite path
π = p0p1 . . ..
Letw ∈ (2V)ω be an infinite word.A acceptsw iff there exists a run dag∆ overw that is accepting.

The dag of the linear weak alternating automaton has the property that for some ordering of the locations
(as given by the ranking function), there is no rising edge. Thus, the ranks occurring along any path will be
monotonically decreasing, and as there are only finite many ranks, it will eventually get trapped in one. The
basic idea of the emptiness check is to ensure that every path will get trapped in an even-ranked location, as
we will see later.

2.3 Transformation of LTL formulae into linear weak alternating automata

Translating a LTL formula into a linear weak alternating automaton is rather straight forward. LTL was
introduced by Pnueli in 1977 (see [Pnu77]); we shall omit the formal description of syntax and semantics of
LTL in this paper.

To build a LWAA for a LTL formula, we assume the formula to be given in negation normal form (NNF).
In NNF, negations must not be placed anywhere else but in front of atomic propositions. The automatonAϕ
for the LTL propertyϕ is given asAϕ = (V, Q, qϕ, δ, ρ) as follows:

• V is the set of propositions

• Q contains a location for every subformula ofϕ

• qϕ ist the location representingϕ

• δ andρ are given by the following table, wheredneodd (resp.dneeven) denotes the smallest odd (resp.
even) number that is at leastn:
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locationq δ(q) ρ(q)
qϕ (ϕ non-temporal) ϕ 0

qϕ∧ψ δ(qϕ) ∧ δ(qψ) max{ρ(qϕ, qψ)}
qϕ∨ψ δ(qϕ) ∨ δ(qψ) max{ρ(qϕ, qψ)}
q◦ϕ qϕ ρ(qϕ)

qϕ until ψ δ(qψ) ∨ (δ(qϕ) ∧ qϕ until ψ) dmax{ρ(qϕ, qψ)}eodd

qϕ releaseψ (δ(qψ) ∧ δ(qϕ)) ∨ (δ(qψ) ∧ qϕ releaseψ)) dmax{ρ(qϕ, qψ)}eeven

q�ϕ δ(qϕ) ∧ q�ϕ dρ(qϕ)eeven

q♦ϕ δ(qϕ) ∨ q♦ϕ dρ(qϕ)eodd

It is quite obvious that the resulting automaton is indeed linear weak. The correctness of this translation has
been shown by Vardi [Var95] (see also [Mer00]).
The translation decomposes the temporal operators according to their fixpoint characterizations.�ϕ cor-
responds to a greatest fixpoint, therefore it must be of even (accepting) rank. The corresponding location
“copies” the transitions of the location ofϕ and adds a “self-link” to each of them. Thus, once the�ϕ-
location is activated, it will keep itself activated forever.

2.4 Deciding emptiness on omega automata

2.4.1 Nondeterministic Büchi automata

We first give a brief introduction to the Courcoubetis, Vardi, Wolper and Yannakakis “nested depth first
search” algorithm (CVWY algorithm), which is the foundation of the algorithm used in SPIN.

void dfs(boolean cycleflag) {
State s = stack.top();
if (!visited.contains(s, cycleflag)) {

visited.insert(s, cycleflag);
if (cycleflag && s == seed) {

throw new TracefoundException(seed, stack);
}
foreach (t in successors(s)) {

stack.push(t);
dfs(cycleflag);

}
if (!cycleflag && s.isAcceptanceState()) {

seed = s;
foreach (t in successors(s)) {

stack.push(t);
dfs(true);

}

}
}
stack.pop();

}

main() {
visited = new Set();
stack = new Stack();
seed = null;
foreach (t in initialStates) {

stack.push(t);
dfs(false);

}
}

Figure 2: Pseudo-Code of the CVWY algorithm

The algorithm searches for nontrivial cycles in linear time in time linear in the product of the model and
the Buchi automaton. The basic idea is to perform a nested depth-first-search: the algorithm first traverses
the tree, and if a acceptance state is found, it attempts to find a cycle. As the tree gets traversed first, and
the search for cycles is conducted later, there is no need to check an already visited state (visited in a cycle
search) again, as if it would have been in a cycle, the cycle would have been found already. Thus, each state
is visited at most twice, providing linear complexity. In addition, there are some possible optimizations to
the algorithm: the state-map, which stores each state seen, can be compressed by lossless and lossy com-
pression.
Lossy compression, called “bit-state hashing” (see [Hol03] for details), relies on using a bit-hashmap to
identify visited states. Instead of storing each state in a hashtable, only a bit is set if a state with a given
hashcode is visited. Of course, the completeness of the algorithm voids, but soundness is preserved. What
is more, it can be estimated how likely a hash collision is, providing an easy approach towards probabilistic
model checking, which allows for much larger models.
The simplicity and good performance of the CVWY algorithm make it a hard benchmark for other empti-
ness checks. However, there is another algorithm, proposed by Tarjan [Tar72] and evaluated again only
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recently by Geldenhuys and Valmari [GV04] with surprisingly good results. This algorithm, called Tarjan’s
algorithm, is intended to identify strongly connected components (SCCs) in a directed graph. A strongly
connected componentC of a graphG = (V,E) is a maximum subset of the node set (C ⊆ V ), which satis-
fies that all nodesn ∈ C are pairwise connected. It is important to note that because the subset is maximal,
all SCCs of a graphG are distinct. The nodes not inside an SCC are “one-way nodes” because in any infinite
path of the graph, they can be visited once at most.
The idea of the algorithm (see [NSS94] for a good presentation) is to maintain a stack containing all SCC
member node candidates and identify the root candidate, which is the earliest node of the stack found to be
inside the SCC. If an earlier node is found to be strongly connected (by being reachable from the SCC as
well as being on the stack, which ensures it can in turn reach the SCC), it is made the root candidate. Once
all nodes have been evaluated, all the nodes down to the root candidate can be removed from the stack, as
they are known to be inside a SCC. Letmin(a,b) return the stack element out of{a, b} closer to the stack
bottom in the following algorithm:

void visit(Node n) {
push(n);
root[n] = n;
inComp[n] = false;
for each successor s of n {

if (s not visited) visit(s);
if (not inComp[s]) root[n] = min(root[n], root[s]);

}
if (root[n] == n) {

while (top() != n) {
pop();

}
}

}

void main() {
stack = empty;
for each node n {

if (n not visited) visit(n);
}

}

Figure 3: Pseudo-Code of Tarjans algorithm

The runtime isO(|V |+ |E|), as all nodes will be visited once, and each outgoing edge will be examined.
The most interesting thing about that algorithm is that it features two stacks: a recursion stack, working as
in the CVWY algorithm, and a SCC candidate stack.
To use this algorithm for model checking, we can search for SCCs that contain all the acceptance conditions
that need to be satisfied. We can just write them into the root candidate node, and transfer them if the
root node gets predated. This works with a single acceptance condition (like with a nondeterministic Büchi
automaton) as well as with a set of acceptance conditions, like those used with generalized Büchi automata.

2.4.2 Linear weak alternating automata

Usually, linear weak alternating automata are translated into nondeterministic Büchi automata to perform
emptiness checks on them. We may, however, tackle the automaton directly by inspecting the configuration
graph. The configuration graph is nothing else but a generalized Büchi automaton (generalized, because
there are sets of acceptance conditions instead of a single condition). It contains a node for each element
of the powerset of the linear weak alternating automaton locations, and transitions between nodes where a
configuration change is possible. This is exactly the same schema as known from the conversion algorithm
of nondeterministic finite automata to deterministic finite ones. It also yields the same exponential node
blowup.
We repeat the central theorem and proof of the work of Merz/Sezgin [MS03], as it will be the basis of our
model checking algorithm:
Let GA = (V,E, λ) be the configuration graph ofA, with V ⊆ 2Q being the set of configurations andE
containing an edge(c, c′) ∈ 2Q × 2Q iff for some input states, c′ is minimal successor configuration ofc,
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void visit(Node n) {
push(n);
root[n] = n;
inComp[n] = false;
for each successor s of n {

if (s not visited) visit(s);
if (not inComp[s]) {

if (root[s] < root[n]) {
accset[root[s]] = accset[root[s]] + accset[root[n]];
root[n] = root[s];

}
accset[root[s]] += (acceptance conditions of s);
if (accset[root[s]] satisfies all acceptance conditions) {

exit("cycle found");
}

}
}
if (root[n] == n) {

while (top() != n) {
pop();

}
}

}

void main() {
stack = empty;
for each node n {

if (n not visited) visit(n);
}

}

Figure 4: Pseudo-Code of Tarjans algorithm with acceptance set enhancement

i.e. ∀q ∈ c.s ∪ c′ |= δ(q) while this holds for noc′′ ( c′. λ : E → 2Qodd is an edge labeling function that
assigns to every edge the set of odd-ranking locationsq ∈ Qodd such that no transition ofA from c to c′ can
avoid performing a self-loop atq, i.e. q ∈ e(q) holds for all transitionse from c to c′, for all possible states
s ∈ 2V .

Theorem 1. LetA be a linear weak alternating automaton. ThenL(A) 6= ∅ iff GA contains a nontrivial
strongly connected componentC reachable from configuration{q0} such that the intersection ofλ(c, c′),
for all edges(c, c′) ∈ C, is empty.

Proof. “Only if”: If L(A) 6= ∅, thenA admits a finite dag∆ satisying the conditions of the emptiness
condition on linear weak alternating automata given above.. Consider the (nontrivial) SCC ofGA containing
the configurationsck, . . . , cn of the loop of∆, which is clearly reachable fromc0 = {q0}. Because for every
q ∈ Qodd, we haveq 6∈ ej(q) for somek ≤ j ≤ n, we find thatq 6∈ λ(cj , cj+1) and thus the intersection of
all setsλ(c, c′) is empty.
“If”: Assume given a nontrivial SCC ofGA that is reachable from{q0} and such that the intersection of all
setsλ(c, c′), for edges(c, c′) between configurations inC is empty. We can construct a finite dag as follows:
first, construct a dag from{q0} to the root ofC fromGA. Second, for everyq ∈ Qodd,C must contain some
transition(c, c′) such thatq 6∈ λ(c, c′), hence there must be some transitione (for some states) from c to
c′ such thatq 6∈ e(q). BecauseC is a SCC, we can construct a finite path withinC that contains all these
transitions for everyq ∈ Qodd.

If we calculated the configuration graph in advance, we would get an ordinary generalized Büchi automa-
ton, exponentially sized with respect to the original linear weak alternating automaton. In fact, the algorithm
proposed by Gastin/Oddoux does exactly this. However, we will attempt to calculate the configuration graph
on the fly. As we will obtain a generalized Büchi automaton, we cannot use the CVWY algorithm and have
to use a modified version of Tarjan’s algorithm instead.

2.5 Complexity issues

As LTL model checking has been shown to be EXPTIME-complete (see [May98], see also [SC85] for a
proof of PSPACE-completeness of LTL satisfiability checking), there is no hope of getting rid of the ex-
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ponential blowup at some point of the algorithm. Using alternating automata seems feasible because it
postpones the exponential blowup to the emptiness check, whereas using nondeterministic Büchi automata
provides a linear-time emptiness check, but only on the exponential-sized automaton. In theory, the nonde-
terministic Büchi automata approach performs two steps, each with exponential time in the size of the LTL
formula (worst-case). The alternating automata approach just features one exponential timed step, plus a
linear step that should be of no concern.

BA
linear

// Emptiness Decision

LTL
linear

//
exponential

::ttttttttt
LWAA

exponential

66mmmmmmmmmmmm

Figure 5: Transformation complexity

Thus, we can hope for a few improvements by using al-
ternating automata:
First, there should be no real restriction on the size of
the formula to be checked. In almost any given sce-
nario, it should be possible to start the emptiness test,
making it possible to use abstraction techniques there.
If the formula gets too large, these techniques fail in
SPIN, as it fails to complete the generation of the au-
tomaton. It could be possible that the linear-sized au-
tomaton translation, combined with super-state hashing, can provide a probabilistic model checking algo-
rithm capable of at least attempting to solve much larger formulas on large models. However, if super-state
hashing can be applied to the linear weak alternating automaton emptiness check remains to be seen.
Second, there is hope that the overall process could be faster because of the lesser time spent on the automa-
ton generation.
Third, alternating automata might offer some approaches for taking advantage of heuristics, as the accepting
run dag is very intuitive; it might be possible to take advantage of that - which could improve fault detection,
but not correctness proofs.
However, as Holzmann [Hol03] reported, the worst-case time (and space) requirement of nondeterministic
Büchi automata is rarely seen in practice, and thus predictions are difficult to make. Whether the smaller
size of the linear weak alternating automaton can compensate for the extended complexity of the emptiness
check remains to be seen.

3 Implementation

3.1 Visiting the configuration graph

In an early attempt to familiarize ourselves with linear weak alternating automata, we reimplemented the
algorithm proposed by Gastin/Oddoux [GO01]. We recognized that almost all of the runtime went into the
conversion of the linear weak alternating automata to generalized Büchi automata, while the linear weak al-
ternating automata itself was obtained almost instantly. Even for formula which can no longer be processed
even byltl2ba (in reasonable time, say a few hours), our Java implementation obtained the linear weak al-
ternating automaton in less than a second.
Thus, we can start the emptiness check on linear weak alternating automata right away - trivial counterexam-
ples can be found fast, and with the use of probabilistic algorithms like superstate hashing we might tackle
much larger problems. However, as our algorithm is more complex, it might be slower in the average case;
the exact behaviour remains to be seen in experiments on actual model checking problems.

In the modified Tarjan’s algorithm, we perform on-the-fly-generalized Büchi automaton generation and
emptiness checking together. Tarjan’s depth-first-search has been modified to find cycles satisfying a number
of conditions - in our case, the odd-ranked locations that have been found to be “not-self-activating” in the
loop. In a nutshell, the algorithm identifies root candidates of strongly connected components andstores the
labels in this root candidates. If the strongly connected component is found to be bigger, the root candidate
is pushed further down the stack. Once all labels have been cleared, we have found an accepting cycle. If we
completed identifying the strongly connected component without finding an accepting cycle, we can mark
all nodes contained to be searched, they cannot show up in any further strongly connected component (as
the nodes of two differend strongly connected components are necessarily disjunct).
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The complexity of this algorithm is stillO(n+ e), as it still visits every node just once and then pursues all
outgoing edges once. However, the algorithm is more complicated to implement.

3.2 Extension to the model checking problem

Of course, an implementation of this algorithm for LTL satisfiability checking outperforms a Büchi-automata-
based model checker pretty much on most examples, as most LTL formulas have rather short satisfiability
examples (unless you usedϕ a lot), and the search will often succeed much faster than the generation of the
Büchi automata lasted. For a practical evaluation of the algorithm, we have to use it in a model checker. This
makes counterexamples more difficult to find, as well as nontrivial unsatisfiable formulae easier to construct.
Extending the algorithm given above to the model checking problem is rather easy: A state of the product
automaton consists of

• a configuration graph nodec ∈ 2Q (which is the set of the linear weak alternating automata locations
that are activated together) like we used in the satisfiability check

• a system statev ∈ Σ = 2V that describes the current state of the model

Unlike with satisfiability checking (where any successor configuration will do), we have to restrict the au-
tomaton successor configuration to those states that can be reached by transitions whose guards are enabled
by the system statev. Likewise, only those system state successors that can be obtained from taking an
enabled action are valid successor system states.
In a first, Java-based approach, the configuration graph successor of a configuration graph nodec ∈ 2Q in
the system statev ∈ 2V got calculated by combining all the transitions of the LWAA states contained in the
configuration graph state:

δCG(c) = {c′ ∈ 2Q | ∀q ∈ c.c′ |= δLWAA(q, v)}

This can be obtained by using all the combinations of the transitions offered by the LWAA states ofq. This
approach is quite fast, however it results in quite a lot of redundant transitions. Therefore, on-the-fly pruning
is necessary to avoid visiting the same successor configuration multiple times.
The Java version was compared to another Java model checker that uses the Büchi automata translation de-
scribed above. On unsatisfiable formulas, the linear weak alternating automata-based approach performed
about three times slower than the “traditional” Büchi automata-based approach. On satisfiable formulae,
it outperformed the traditional approach, which was encouraging enough to compare the new approach to
SPIN.
To be comparable with SPIN, the next version was written in C++ and relied heavily on efficient data struc-
tures. This version also takes advantage of a very elegant approach towards the calculation of configuration
graph successor nodes of the configurationc in system statev as proposed by Merz/Sezgin: Using BDDs to
represent propositional formulae, we create the simple formula

v ∧

(∧
q∈c

δ(q)

)

and retrieve all satisfying valuations from the representing BDD. This offers two advantages: first, the
successor nodes found are distinct, and second, the set of successor nodes is minimal.
We also tried to use the BDD package to calculate the system successor states, but it turned out to be slower:
the larger amount of variables used in the BDD package slowed things down. We thus reverted to calculating
the system successor by applying the enabled actions and combining it with every configuration graph node.
This also allowed for another improvement: Caching of the configuration graph successor calculation BDDs.
Once a configuration graph node has been visited, we try to save the successor BDD in a hashtable cache.
This avoids the expensive BDD rebuilding; however, the conjunction with the system state and thus the
calculation of the satisfying valuations cannot be avoided. In our current implementation this is still the
slowest part of the algorithm, and the most memory consuming too.
When comparing our implementation to SPIN using an unsatisfiable formula, SPIN usually outperforms our
implementation by a factor of 6. This is neither unexpected nor discouraging, as SPIN is heavily optimized
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and uses code generation to create a special model checker for each model and never-claim to check. On
satisfiable formulae, our implementation is sometimes slower, but sometimes even faster. As both SPIN
and our implementation use undirected search, this does not indicate much. However, if we check large,
satisfiable LTL formulae on rather small models (due to memory constraints), our implementation presents
a counterexample right beforeltl2ba, which we use to generate the never-claims, has even finished! This
result is very encouraging, as large formulae with a lot of strong fairness constraints can take quite a long
time to convert to a Büchi automaton withltl2ba (SPIN’s own algorithm ceases to work on much smaller
formulae), while the linear weak alternating automata-based approach can start checking right away.

3.3 An easier label calculation criterion

Recall the acceptance criteria of a linear weak alternating automaton: There is a run dag such that every
infinite path of this run dag has an even-ranked smallest (and due to the linearity infinitely repeated) location.
This may hold true for a run dag that has its odd-ranked locations set in every step - it is still accepting as long
as this locations do not self-loop infinitely often. Any infinite path will be forced to leave the odd-ranked
location then, and due to the linearity we can conclude the general acceptance from this fact.
Therefore, it does not suffice to check if for a given interval, every odd-ranked location is not set once - it
might be set every step and still be the looping interval of a satisfying dag. However, it is desirable to check
just for these missing locations: due to using the BDDs to calculate the configuration graph successor nodes,
we do not examine the edges of the configuration graph anymore, thus we are unable to distinguish between
self-loops and descending edges. We could still use the formula provided by Merz/Sezgin:

q ∈ λ(c, c′) iff q ∈ c and |=

(∧
p∈c

δ+(p)

)
∧

 ∧
p′∈c′

p′

⇒ lq

But this results in a rather lot of additional BDD operations which we are trying to avoid.
However, as it turns out, any linear weak alternating automatonAϕ for a formulaϕ without subformulaedψ can be checked with the “missing odd-ranked location” criteria as well. This also holds if every location
representing the a subformuladψ is even-ranked. Asd is commutative with all temporal and nontemporal
operators, we can put it right in front of the nontemporal subformulae, where it is guaranteed to be of rank 0.
The reason why this works is because the largest fixpoint operators copy the transitions of their subformulae,
thus allowing to perform a self-loop instead of forking to any lower odd-ranked state.

[]<>a (2) a

T

<>a (1) T

a

a a a a a a a . . .

�♦a ◦ //
((QQQQQ ◦ //

((QQQQQ ◦ //
((QQQQQ ◦ //

((QQQQQ ◦ //
((QQQQQ ◦ //

((QQQQQ ◦ //
))RRRRR . . .

♦a ◦
))SSSSS ◦

))SSSSS ◦
))SSSSS ◦

))SSSSS ◦
))SSSSS ◦

**TTTTT . . .

a • • • • • . . .

a a a a a a a . . .

�♦a ◦ //
((RRRRR ◦ // ◦ //

((RRRRR ◦ // ◦ //
((RRRRR ◦ // ◦ //

))SSSSS . . .

♦a × ◦
))SSSSS × ◦

))SSSSS × ◦
))SSSSS × . . .

a • • • . . .

Example of two run dags over the wordw = aω for the formula�♦a,
with × indicating a missing odd-ranked location

Actually, this observation relies on the linear weak alternating automaton to be exactly as created by the
algorithm given above. Any attempts to minimize the LTL formula have to ensure that alldϕ-subformulae
are even-ranked, and all attempts to minimize the linear weak alternating automaton must make sure they do
not destroy the transitions required.
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3.4 Results

Our implementation cannot compete with SPIN in every aspect. It has a much more simplified input lan-
guage, does not perform partial order reduction or any other kind of simplification. Like SPIN, it performs
undirected search, i.e. does not use a heuristics function to order the successors of some state in order to find
shorter trails. However, the main difference remains in the amount of memory used. SPIN is much more
efficient, and provides both lossless and lossy compression.
Thus, running benchmarks against SPIN results in two problems: To obtain comparable results, we first
need to make sure that SPIN does not use techniques that have not been implemented in our version (like the
partial order reduction), and second, we need to write the Promela input in a way that makes it comparable
to our own implementation.
Our implementation uses actions (with guard conditions) and single bits to represent the transitions of the
system. It does not support for higher-level constructs like arithmetics or processes. However, these things
can be hand-coded into our system.
A first example is a counter (or multiple, interacting counter) that allowes for easy debugging. For the SPIN
version we do not use SPINs own arithmetics (which are translated to use the CPU’s arithmetics) but imple-
ment the same bit-switching as we do with our own implementation.
We give some pretty unsorted results first:

Model Model Size Formula Size satisfiable ltl2ba time SPIN pan time our time

twocounter 11 37 no 0.025s 0.653s 3.621s
3.2.SAT 21 45 yes 0.257s 7.240s 32.542s
3.3.SAT 21 65 yes 75.592s 22.300s 43.908s
2.2.UNSAT 14 45 no 0.631s 3.960s 16.566s

We can draw some conclusions from this early data: Our implementation is not as fast as SPIN, however
with larger search times these disadvantage seems to cease (due to memory constraints, we cannot check
larger models yet). The 3.3.SAT-example is very promising: Our implementation finishes searching faster
than ltl2ba finishes generating the never claim. This raises hope that for large LTL-formulae (we have to
admit that, compared to the model, these formulae are really large, as they incorporate a lot of strong fairness
constraints) our implementation can start right away, and has the chance of finding a counterexample without
having to create the Büchi automaton first.
We try to reproduce that result on a different, more practical model. However, most models available are
pushing the limits with respect to the model size, but either do not have “real” temporal properties at all
(only checking of safety properties, where a single depth-first search is sufficient) or just pretty small ones
that do not incorporate fairness constraints.
We thus modify the dining philosophers model to be checked with large formulae. We claim that if every
philosopher attempts to eat infinitely often, philosopher one will (eventually) eat infinitely often. Of course,
the standard example with every philosopher starting with his left fork will result in a deadlock, providing a
counterexample. To obtain a correct model, the last philosopher is modified to begin with his right fork. We
compare a different number of philosophers, both normal and inverted:

Model Model Size Formula Size satisfiable ltl2ba time SPIN pan time our time

dinphil4 16 39 yes 0.008s 0.067s 0.125s
dinphil8 32 71 yes 34.586s 0.142s 0.419s
dinphil9 36 79 yes 284.170s 0.376s 0.541s
dinphil10 40 87 yes 3686.357s 2.023s 2.221s
dinphil12 48 103 yes DNF2 16.000s
dinphil15 60 127 yes 328.081s
dinphil16 64 135 yes DNF1

dinphil4i 16 39 no 0.007s 0.070s 0.128s
dinphil8i 32 71 no 35.949s 5.218s 82.238s
dinphil9i 36 79 no 284.172s 52.802s DNF1

dinphil10i 40 87 no 3686.357s DNF1

1 - out of memory (1 GB primary memory, OS started swapping)
2 - timeout (would take about a week)
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Of course, the generated never claim can be preserved for further tests, which is not possible with our
model. However, this example illustrates even more clearly that once the LTL formulae get too big, our
implementation is far more efficient on finding counterexamples. It is slower on unsatisfiable models, but
memory constraints (mostly imposed by the BDD package) are a bigger problem.
Thus, the next step in evaluating the use of linear weak alternating automata in model checking is an attempt
to reduce the memory requirement. Apart from the BDD package, much memory is lost because we cannot
use fixed-sized arrays in our model checker, as the size of the automaton is not known at compile time. SPIN
evades this problem by generating C code for a model, which can take advantage of knowing the required
array sizes at compile time. As a final test of the adaptability of our algorithm, we chose to modify SPIN to
use our new algorithm.

4 Adapting SPIN

4.1 SPIN architecture

The SPIN core architecture has been documented in [Hol91], chapter 13. SPIN itself is not a model checker,
but a model checker generator. The process of LTL model checking is diverted into some stages: First, the
LTL formula is translated into a so-called never claim. This can be done by SPIN itself, but it is highly
advisable to useltl2ba instead, as it is much faster on large formulae. Then, the model (written in Promela,
short forProtocoll meta language) and the never claim (in fact also written in Promela) are combined, and
five source files (namedpan.b , pan.c , pan.f , pan.h andpan.t ) are generated. After compiling them
with a common C-compiler, the resulting pan (short forprotocol analyzer) executable can be invoked to
perform the actual model checking. If a witness trace of a property violation is found, it can than be fed back
to SPIN as a “guide” for simulation, which shows the behaviour of the model on its way to the error.

The process of LTL model checking with SPIN

SPIN combines a lot of algorithms, some of them mutual exclusive (like breadth-depth-first search and
liveness property checking). Luckily for us, almost all algorithms are generated into the pan sources, where
they are enabled or disabled by preprocessor commands; thus all pan sources contain the code for all the
algorithms. In other words, the code generated specially for a problem is kept to a minimum.
Promela describes processes that are allowed to run concurrently, access global variables or communicate
by using channels. The “class” of a process is called the “proctype”. For any given proctype, a number of
processes can be instantiated.
The never claim itself is nothing but a special proctype, which has only one instance. Instead of doing
synchronized automaton- and model-steps, SPIN takes the steps alternatingly. This also allows SPIN to
handle atomic sequences easily: While inside an atomic block the claim-steps are skipped. Although each
step in the atomic block is performed sequentially, it appears as one atomic step to the automaton. Likewise,
channel rendevouz blocking is done just like that: the initiating process moves, and after that all movement
(including the never claim) not contributing to the rendevouz is suspended.
This architecture is both positive and negative for our attempt to combine our approach with SPIN: As the
automaton is handled as a “slightly special” process, we can easily find the places where it is accessed and
do not have to change a lot of code. As a matter of fact, there is little need to skip that “slightly special
process” approach at all: We can adopt it and just change the depth-first search where the label criterium has
to be added.
The disadvantage of using a process for the automaton is that this does not work with alternating automata.
A process as well as a Büchi automaton have one single state, and for every state they do have a number
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of transitions, which lead to other states. An alternating automaton, on the other hand, has a set of active
states, and the transitions lead to other sets. By identifying a set of states with a distinct state, we build our
on-the-fly generalized Büchi automaton; we cannot use a (precompiled) process for that. Instead, the set of
successor sets has to be calculated dynamically (and this is what our whole approach is all about). Thus,
our automaton process has to be a little more special than the never claim process was. Actually, it has to
calculate the transitions (normally precalculated by SPIN and stored inpan.t ) on-the-fly.

4.2 Inserting our algorithm

We insert the code in two successive steps. First, we replace the CVWY-algorithm with a special kind of
Tarjan’s algorithm. This requires a few changes:

• We have to add a second stack, storing the SCC member candidates.

• We have to add a reference from the hash table entries to that second stack to recognize members
of the currently evaluated SCC, as well as closed SCCs (it is possible to find edges leading into an
already closed SCC).

• We have to add two blocks of code; one that predates the root candidate and checks the (right now,
only one) acceptance condition, right after the recursion was conducted, and another one right before
stepping out of the recursion, which processes completely explored SCCs.

This changes are all to be made to static code and do not require model-specific changes.
The second step replaces the use of a never claim with the on-the-fly calculation of configuration graph
nodes. This requires a fair amount of precalculated code, which is concerned with calculating the successor
configurations, extracting the label and evaluating them and many other things. We chose to abandon the
transition table for the linear weak alternating automaton moves, and use a lot of case differentation to
handle the normal processes and the automaton. This step also requires the inclusion of a BDD package, so
we wrote a small BDD package specialized for our needs, which also helps to reduce memory requirements.

4.3 Results

4.3.1 SPIN and the Tarjan algorithm

In the first stage of the adaption, we enhanced SPIN with the Tarjan algorithm. Like discussed above, there
are no dynamic changes (generated code dependent on the model used) and little static changes to be made,
and the algorithm fits quite well into the concept of SPIN.
We use some models to compare both algorithms:

Model CVWY algorithm Tarjans algorithm
name SAT? time states max depth time states max depth

dinphil10 yes 0.50 129058 258094 0.57 129058 258094
dinphil8i no 7.30 774413 320719 7.37 774413 320719
mobile1 no 0.57 44455 1833 0.53 42807 1667
mobile2 no 0.15 16191 1942 0.16 15932 1874

Steam Generator Control [Zha99] yes 0.16 3115 11478 0.21 3115 11478

Needham-Schroeder-Protocol [MS02]
Model 1, fixed no 0.10 379 30 0.11 379 30
Model 2, fixed no 0.60 7179 43 0.49 7179 43
Model 2, original, Claim 2 yes 0.8 2593 43 0.8 2591 43

These values are not very spectacular - most of the time, we see the same depth and state number - as
expected, as the complete state space needs to be explored to verify correctness. When detecting errors, the
algorithm takes the same path, but instead of searching for cycles, it searches for SCCs. Therefore, it should
find the same witness cycle anyway. After all, both algorithms do not seem to be very different at all.
This contradicts the results of Geltenhuys/Valmari [GV04], which reported their algorithm to be much faster
than the CVWY algorithm, although they do not mention which implementation they used to obtain the
CVWY times, and they admit their approach is not likely to be very practical, as it did not involve on-the-fly
statespace exloration.



LWAA and the MC problem 15

4.3.2 SPIN with linear weak alternating automata

Currently, the linear weak alternating automata extension to SPIN is under testing, and there are still some
issues to be resolved: Currently, neither memory nor time are a problem, but the C code we generate gets
too big to be compiled.
First tests indicate that the SPIN-linear weak alternating automata combination is faster than our own ap-
proach, but is not as fast as the original SPIN algorithm. Until the C code becomes uncompileable, we also
use much less memory. If these results hold and we find a way to generate less code, we can hope to verify
the results we had with our own implementation and be able to check larger models.
We will present our results in our final thesis, however we can expect them to be similar to the ones we
already obtained.

5 Discussion and further work

At this point of writing, we can assume that out algorithm does not provide an improvement to SPIN for
average case problems. However, for large LTL formulae, significantly lower search times can be archived.
Currently, most examples of Promela models either do only use safety assertions, or they use very small
LTL formulae. Our approach might be encouraging to use bigger LTL formulae, which could be useful for
abstraction. As to our knowledge, little research has been done about this abstraction possibility.
For the remaining time of this thesis, we will attempt to solve two problems with our algorithm in SPIN:

• Extracting counterexamples is far more difficult, and has not yet been implemented. Because of
using multiple acceptance criteria, the recursion stack does not neccesarily contain a complete loop
of the SCC. The SCC-stack, however does not contain a continuous path of the product automaton.
Therefore, a more sophisticated method of extracting the counterexample has to be devised.

• The BDD package imposes a big problem due to the unpredictable amount of memory required and
time consumed. For very large models, the BDD package slows the checking process down to a point
of infeasibility. Therefore it seems profitable to abandon the BDD package in favour of a more direct
approach.
The BDD package is used to combine all the possible successor state sets for a given set of linear weak
alternating automaton locations. It helps us by identifying minimal successor sets. However, we can
calculate all combinations directly and identify non-minimal successors by finding subsets within the
list of other successors. We will attempt to find an algorithm that is faster or at least more predictable
than the BDD package we use right now.

Of course, there are many topics beyond the scope of this thesis, some of which include:

• Bit-state hashing is compromised by our algorithm because of the necessity of storing a reference to
the SCC-stack element in the hash table. We might, however, use a second hash-table as an access
index on the SCC-stack, and use bit-state hashing on the main hashtable. This approach relies on the
assumption that SCCs are usually much smaller than the complete state set. In our experiments, we
found this to be true for some models, whereas other models in fact provided a SCC containing the
whole state space. Whether bit-state hashing is feasible in such an environment, and which models do
provide us with a number of smaller SCCs instead of a single big one, remains to be seen.

• Heuristic search is traditionally concerned with selecting the best model action. However, using gen-
eralized Büchi automata provides us with some additional information that gets discarded in the trans-
lation of generalized Büchi automata to nondeterministic Büchi automata: the multiple acceptance
conditions. Although our naive attempt to use this additional information (by selecting the claim
move that leads towards a not yet satisfied acceptance condition) failed, there might still be some
potential to use that information.

• Minimization of the linear weak alternating automaton: Our attempts at this indicate this is hard and
most likely infeasible to do. There are a lot of approaches towards LTL formula minimization (see
[SB00] for an interesting approach we implemented in our own model checker), but little has been
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done on linear weak alternating automata that claims to be very successful. However, there are good
minimization algorithms for generalized Büchi automata, including delayed simulation [Fri03]. They
might be applied to the on-the-fly automata generation as well.
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