<u>Übungen zu Einführung in die Informatik IV</u> (Prof. Dr. F. Kröger, Dr. P. Kosiuzcenko, D. Pattinson)

Aufgabe 1

Gegeben sei ein Alphabet Σ . Die Funktionen $f_a: \Sigma^* \to \Sigma^*$ sowie die Funktion $f: \Sigma^* \to \Sigma^*$ seien (für alle $a \in \Sigma$) rekursiv wie folgt definiert:

$$f_a(\epsilon) = a$$
 $f(\epsilon) = \epsilon$
 $f_a(xw) = \begin{cases} f_a(w) & x = a \\ af_x(w) & x \neq a \end{cases}$ $f(aw) = f_a(w)$

Zeigen Sie durch Induktion für alle $w \in \Sigma^*$:

- a) $|f(w)| \le |w|$
- b) f(w) enthält kein Teilwort der Form aa für beliebiges $a \in \Sigma$.

Aufgabe 2

Gegeben sei ein Alphabet Σ . Zeigen Sie: $L^* = (L^*)^*$ für alle Teilmengen $L \subseteq \Sigma^*$.

Aufgabe 3

Es sei $G = (V, \Sigma, P, S)$ eine Grammatik, $x, y \in (\Sigma \cup V)^*$ mit $x \Rightarrow^* y$. Zeigen Sie: Für alle $u, v \in (\Sigma \cup V)^*$ gilt $uxv \Rightarrow^* uyv$.

Gilt auch die Umkehrung dieser Aussage?

Aufgabe 4 (H, 6 Punkte)

Es sei Σ ein Alphabet. Zeigen Sie:

- a) Für alle $u, v \in \Sigma^*$ gilt $(uv)^R = v^R u^R$.
- b) Für alle $w \in \Sigma^*$ gilt $(w^R)^R = w$.
- c) Für alle $n \ge 0$ und alle $w \in \Sigma^*$ gilt $(w^R)^n = (w^n)^R$.

Aufgabe 5 (H, 6 Punkte)

Es sei die Grammatik $G = (V, \Sigma, P, S)$ gegeben, wobei

$$\Sigma = \{a, b\}$$
 $V = \{S\}$ $P = \{S \rightarrow aSbS \mid aS \mid \epsilon\}.$

Zeigen Sie: Ist $w \in \mathcal{L}(G)$ und $u \in \Sigma^*$ ein Präfix von w, so gilt $|u|_b \leq |u|_a$.

Abgabe: In der Woche vom 7. bis 11. Mai in den Übungen.