
Software Architecture: a Roadmap

David Garlan
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

(412) 268-5056
garlan@cs.cmu.edu

ABSTRACT
Over the past decade software architecture has received
increasing attention as an important subfield of software
engineering. During that time there has been considerable
progress in developing the technological and methodologi-
cal base for treating architectural design as an engineering
discipline. However, much remains to be done to achieve
that goal. Moreover, the changing face of technology raises
a number of new challenges for software architecture. This
paper examines some of the important trends of software
architecture in research and practice, and speculates on the
important emerging trends, challenges, and aspirations.

Keywords
Software architecture, software design, software
engineering

1 INTRODUCTION
A critical issue in the design and construction of any com-
plex software system is its architecture: that is, its gross
organization as a collection of interacting components. A
good architecture can help ensure that a system will satisfy
key requirements in such areas as performance, reliability,
portability, scalability, and interoperability. A bad archi-
tecture can be disastrous.

Over the past decade software architecture has received
increasing attention as an important subfield of software
engineering. Practitioners have come to realize that getting
an architecture right is a critical success factor for system
design and development. They have begun to recognize the
value of making explicit architectural choices, and lever-
aging past architectural designs in the development of new
products. Today there are numerous books on architectural

design, regular conferences and workshops devoted speci-
fically to software architecture, a growing number of com-
mercial tools to aid in aspects of architectural design,
courses in software architecture, major government and
industrial research projects centered on software architec-
ture and an increasing number of formal architectural stan-
dards. Codification of architectural principles, methods,
and practices has begun to lead to repeatable processes of
architectural design, criteria for making principled tradeoffs
among architectures, and standards for documenting, re-
viewing, and implementing architectures.

However, despite this progress, as engineering disciplines
go, the field of software architecture remains relatively
immature. While the outlines of an engineering basis for
software architecture are becoming clear, there remain nu-
merous challenges and unknowns. We can therefore expect
to see major new developments in the field over the next
decade – both in research and practice. Some of these de-
velopments will be natural extensions of the current trajec-
tory. But there are also a number of radical new opportuni-
ties, brought about by the changing face of technology.

In this paper I examine some of the important trends of
software architecture in research and practice. To set the
stage, I begin by describing the roles of architecture in
software systems development. Next I summarize the past
and current state of research and practice. Finally, after
considering some of the forces that are changing the world
of software systems themselves, I speculate on emerging
trends, challenges, and aspirations.

2 THE ROLES OF SOFTWARE ARCHITECTURE
While there are numerous definitions of software architec-
ture, at the core of all of them is the notion that the archi-
tecture of a system describes its gross structure. This
structure illuminates the top level design decisions, include-
ing things such as how the system is composed of interact-
ing parts, where are the main pathways of interaction, and
what are the key properties of the parts. Additionally, an
architectural description includes sufficient information to
allow high-level analysis and critical appraisal.

Taken From:"The Future of Software Engineering" , Anthony Finkelstein (Ed.), ACM Press 2000Order number is 592000-1, ISBN 1-58113-253-0. ACM E-Store: http://store.acm.org/acmstore

Software architecture typically plays a key role as a bridge
between requirements and implementation (see Figure 1).

By providing an abstract description of a system, the ar-
chitecture exposes certain properties, while hiding others.
Ideally this representation provides an intellectually tracta-
ble guide to the overall system, permits designers to reason
about the ability of a system to satisfy certain requirements,
and suggests a blueprint for system construction and com-
position. For example, an architecture for a signal process-
ing application might be constructed as a dataflow network
in which the nodes read input streams of data, transform
that data, and write to output streams. Designers might use
this decomposition, together with estimated values for input
data flows, computation costs, and buffering capacities, to
reason about possible bottlenecks, resource requirements,
and schedulability of the computations.

To elaborate, software architecture can play an important
role in at least six aspects of software development.

1. Understanding: Software architecture simplifies our
ability to comprehend large systems by presenting
them at a level of abstraction at which a system’s
high-level design can be easily understood [20, 35].
Moreover, at its best, architectural description ex-
poses the high-level constraints on system design, as
well as the rationale for making specific architectural
choices.

2. Reuse: Architectural descriptions support reuse at
multiple levels. Current work on reuse generally fo-
cuses on component libraries. Architectural design
supports, in addition, both reuse of large components
and also frameworks into which components can be
integrated. Existing work on domain-specific soft-
ware architectures, reference frameworks, and ar-
chitectural design patterns has already begun to pro-
vide evidence for this [8, 31].

3. Construction: An architectural description provides
a partial blueprint for development by indicating the
major components and dependencies between them.
For example, a layered view of an architecture typi-
cally documents abstraction boundaries between
parts of a system’s implementation, clearly identify-
ing the major internal system interfaces, and con-
straining what parts of a system may rely on services
provided by other parts.

4. Evolution: Software architecture can expose the di-
mensions along which a system is expected to
evolve. By making explicit the "load-bearing walls"
of a system, system maintainers can better under-
stand the ramifications of changes, and thereby more
accurately estimate costs of modifications. More-
over, architectural descriptions separate concerns
about the functionality of a component from the
ways in which that component is connected to (in-
teracts with) other components, by clearly distin-
guishing between components and mechanisms that
allow them to interact. This separation permits one
to more easily change connection mechanisms to
handle evolving concerns about performance inter-
operability, prototyping, and reuse.

5. Analysis: Architectural descriptions provide new
opportunities for analysis, including system consis-
tency checking [2, 25], conformance to constraints
imposed by an architectural style [1], conformance
to quality attributes [9], dependence analysis [42],
and domain-specific analyses for architectures built
in specific styles [10, 15, 26].

6. Management: Experience has shown that successful
projects view achievement of a viable software ar-
chitecture as a key milestone in an industrial soft-
ware development process. Critical evaluation of an
architecture typically leads to a much clearer under-
standing of requirements, implementation strategies,
and potential risks [7].

3 YESTERDAY
In the distant past of ten years ago, architecture was largely
an ad hoc affair.1 Descriptions relied on informal box-and-
line diagrams, which were rarely maintained once a system
was constructed. Architectural choices were made in idio-
syncratic fashion – typically by adapting some previous
design, whether or not it was appropriate. Good architects
– even if they were classified as such within their organiza-

1 To be sure, there were some notable exceptions. Parnas
recognized the importance of system families [33], and
architectural decomposition principles based on informa-
tion hiding [34]. Others, such as Dijkstra, exposed certain
system structuring principles [12].

 Code

Figure 1: Software Architecture as a Bridge

Requirements

Software Architecture

tions – learned their craft by hard experience in particular
domains, and were unable to teach others what they knew.
It was usually impossible to analyze an architectural de-
scription for consistency or to infer non-trivial properties
about it. There was virtually no way to check that a given
system implementation faithfully represented its architec-
tural design.

However, despite their informality, architectural descrip-
tions were central to system design. As people began to
understand the critical role that architectural design plays in
determining system success, they also began to recognize
the need for a more disciplined approach. Early authors
began to observe certain unifying principles in architectural
design [36], to call out architecture as a field in need of
attention [35], and to establish a working vocabulary for
software architects [20]. Tool vendors began thinking
about explicit support for architectural design. Language
designers began to consider notations for architectural rep-
resentation [30].

Within industry, two trends highlighted the importance of
architecture. The first was the recognition of a shared rep-
ertoire of methods, techniques, patterns and idioms for
structuring complex software systems. For example, the
box-and-line-diagrams and explanatory prose that typically
accompany a high-level system description often refer to
such organizations as a "pipeline,'' a "blackboard-oriented
design,'' or a "client-server system.'' Although these terms
were rarely assigned precise definitions, they permitted
designers to describe complex systems using abstractions
that make the overall system intelligible. Moreover, they
provided significant semantic content about the kinds of
properties of concern, the expected paths of evolution, the
overall computational paradigm, and the relationship be-
tween this system and other similar systems.

The second trend was the concern with exploiting com-
monalities in specific domains to provide reusable frame-
works for product families. Such exploitation is based on
the idea that common aspects of a collection of related
systems can be extracted so that each new system can be
built at relatively low cost by "instantiating'' the shared
design. Familiar examples include the standard decomposi-
tion of a compiler (which permits undergraduates to con-
struct a new compiler in a semester), standardized commu-
nication protocols (which allow vendors to interoperate by
providing services at different layers of abstraction), fourth-
generation languages (which exploit the common patterns
of business information processing), and user interface
toolkits and frameworks (which provide both a reusable
framework for developing interfaces and sets of reusable
components, such as menus and dialogue boxes).

4 TODAY
Much has changed in the past decade. Although there is
wide variation in the state of the practice, generally speak-
ing, architecture is much more visible as an important and
explicit design activity in software development. Job titles
now routinely reflect the role of software architect; compa-
nies rely on architectural design reviews as critical staging
points; and architects recognize the importance of making
explicit tradeoffs within the architectural design space.

In addition, the technological basis for architectural design
has improved dramatically. Three of the important ad-
vancements have been the development of architecture de-
scription languages and tools, the emergence of product
line engineering and architectural standards, and the codifi-
cation and dissemination of architectural design expertise.

4.1 Architecture Description Languages and Tools
The informality of most box-and-line depictions of archi-
tectural designs leads to a number of problems. The
meaning of the design may not be clear. Informal diagrams
cannot be formally analyzed for consistency, completeness,
or correctness. Architectural constraints assumed in the
initial design are not enforced as a system evolves. There
are few tools to help architectural designers with their
tasks.

In response to these problems a number of researchers in
industry and academia have proposed formal notations for
representing and analyzing architectural designs. Generi-
cally referred to as "Architecture Description Languages''
(ADLs), these notations usually provide both a conceptual
framework and a concrete syntax for characterizing soft-
ware architectures [9, 30]. They also typically provide
tools for parsing, displaying, compiling, analyzing, or sim-
ulating architectural descriptions.

Examples of ADLs include Adage [10], Aesop [15], C2
[28], Darwin [26], Rapide [25], SADL [32], UniCon [39],
Meta-H [6], and Wright [3]. While all of these languages
are concerned with architectural design, each provides cer-
tain distinctive capabilities: Adage supports the description
of architectural frameworks for avionics navigation and
guidance; Aesop supports the use of architectural styles; C2
supports the description of user interface systems using an
event-based style; Darwin supports the analysis of distrib-
uted message-passing systems; Meta-H provides guidance
for designers of real-time avionics control software; Rapide
allows architectural designs to be simulated, and has tools
for analyzing the results of those simulations; SADL pro-
vides a formal basis for architectural refinement; UniCon
has a high-level compiler for architectural designs that sup-
ports a mixture of heterogeneous component and connector
types; Wright supports the formal specification and analy-
sis of interactions between architectural components.

Recently the proliferation of capabilities of ADLs has
prompted an investigation of ways to integrate the notations
and tools into larger ensembles. One of the results has been
an architectural interchange language, called Acme, which
provides a simple framework for describing architectural
structure and a flexible annotation mechanism for adding
semantics to that structure [18]. (Acme can be viewed as
the XML of architectural description.) Acme also supports
the definition of styles and enforcement of design con-
straints through its tools.

More ambitious still, a number of researchers have begun
to look at additional ways of integrating architecture-based
tools. The result promises to be a flexible "ADL Toolkit’’
that will allow practitioners to create domain-specific ar-
chitectural design environments largely by combining the
capabilities of existing tools. Other efforts have sought to
integrate architectural development tools with other tool-
supported aspects of software development, such as re-
quirements elicitation and resolution [7].

Languages explicitly designed with software architecture in
mind are not the only approach. There has been consider-
able interest in using general-purpose object design nota-
tions for architectural modeling [8, 24]. Moreover, recently
there have been a number of proposals that attempt to show
how the concepts found in ADLs can be mapped directly
into an object-oriented notation like UML [29, 23, 17].
These alternatives are illustrated in Figure 2.

Path A-D is one in which an ADL is used as the modeling
language. Path B-E is one in which UML is used as the
modeling notation. Path A-C-E, is one in which an archi-
tecture is first represented in an ADL, but then transformed
into UML before producing an implementation.

Using a more general modeling language such as UML has
the advantages of providing a notation that practitioners are
more likely to be familiar with, and providing a more direct
link to object-oriented implementations and development

tools. But general-purpose object languages suffer from the
problem that the object conceptual vocabulary may not be
ideally suited for representing architectural concepts, and
there are likely to be fewer opportunities for automated
analysis of architectural properties.

4.2 Product Lines and Standards
As noted earlier, one of the important trends has been the
desire to exploit commonality across multiple products.
Two specific manifestations of that trend are improvements
in our ability to create product lines within an organization
and the emergence of cross-vendor integration standards.

With respect to product lines, a key challenge is that a
product line approach requires different methods of devel-
opment. In a single-product approach the architecture must
be evaluated with respect to the requirements of that prod-
uct alone. Moreover, single products can be built independ-
ently, each with a different architecture.

However, in a product line approach, one must also con-
sider requirements for the family of systems, and the rela-
tionship between those requirements and the ones associ-
ated with each particular instance. Figure 3 illustrates this
relationship. In particular, there must be an up-front (and
on-going) investment in developing a reusable architecture
that can be instantiated for each product. Other reusable
assets, such as components, test suites, tools, etc., typically
accompany this.

Although product line engineering is not yet widespread,
we are beginning to have a better understanding of the pro-
cesses, economics, and artifacts required to achieve the
benefits of a product line approach. A number of case
studies of product line successes have been published. (For
example, see [13].) Moreover, organizations such as the
Software Engineering Institute are well on their way to-
wards providing concrete guidelines and processes for the
use of a product line approach [37].

Like product line approaches, cross-vendor integration
standards require architectural frameworks that permit a

Code

Requirements

Architecture
in an ADL

Architecture
in UML

 Figure 2: Software Architecture as a Bridge

C

A B

D E

Figure 3: Product Line Architectures

Product
Architecture

Product
Requirements

Product Line
Requirements

Product Line
Architecture

induced
 constraint

system developer to configure a wide variety of specific
systems by instantiating that framework. Integration stan-
dards typically provide the system glue (both conceptually
and through run time infrastructure) that supports integra-
tion of parts provided by multiple vendors. Such standards
may be formal international standards (such as those spon-
sored by IEEE or ISO), or ad hoc and de facto standards
promoted by an industrial leader.

A good example of the former is the High Level Architec-
ture (HLA) for Distributed Simulation [4]. This architec-
ture permits the integration of simulations produced by
many vendors. It prescribes interface standards defining
services to coordinate the behavior of multiple semi-
independent simulations. In addition, the standard pre-
scribes requirements on the simulation components that
indicate what capabilities they must have, and what con-
straints they must observe on the use of shared services.

An example of an ad hoc standard is Sun’s Enterprise Java-
BeansTM (EJB) architecture [27]. EJB is intended to sup-
port distributed, Java-based, enterprise-level applications,
such as business information management systems. Among
other things, it prescribes an architecture that defines a
vendor-neutral interface to information services, including
transactions, persistence, and security. It thereby supports
component-based implementations of business processing
software that can be easily retargeted to different imple-
mentations of those underlying services.

4.3 Codification and Dissemination
One early impediment to the emergence of architectural
design as an engineering discipline was the lack of a shared
body of knowledge about architectures and techniques for
developing good ones. Today the situation has improved,
due in part to the publication of books on architectural de-
sign [5, 8, 22, 36, 40] and courses [21].

A common theme in these books and courses is the use of
standard architectural styles. An architectural style typically
specifies a design vocabulary, constraints on how that vo-
cabulary is used, and semantic assumptions about that vo-
cabulary. For example, a pipe-and-filter style might specify
vocabulary in which the processing components are data
transformers (filters), and the interactions are via order-
preserving streams (pipes). Constraints might include the
prohibition of cycles. Semantic assumptions might include
the fact that pipes preserve order and that filters are in-
voked non-deterministically.

Other common styles include blackboard architectures,
client-server architectures, event-based architectures, and
object-based architectures. Each style is appropriate for
certain purposes, but not for others. For example, a pipe-
and-filter style would likely be appropriate for a signal
processing application, but not for an application in which

there is a significant requirement for concurrent access to
shared data [38]. Moreover, each style is typically associ-
ated with a set of associated analyses. For example, it
makes sense to analyze a pipe-and-filter system for system
latencies, whereas transaction rates would be a more ap-
propriate analysis for a repository-oriented style.

The identification and documentation of such styles (as
well as their more domain-specific variants) enables others
to adopt previous architectural patterns as a starting point.
In that respect, the architectural community has paralleled
other communities in recognizing the value of established,
well-documented patterns, such as those found in [14].

While recognizing the value of stylistic uniformity, realities
of software construction often force one to compose sys-
tems from parts that were not architected in a uniform
fashion. For example, one might combine a database from
one vendor, with middleware from another, and a user in-
terface from a third. In such cases the parts do not always
work well together – in large measure because they make
conflicting assumptions about the environments in which
they were designed to work [16]. This has led to recogni-
tion of the need to identify architectural strategies for
bridging mismatches. Although, we are far from having
well understood ways of detecting such mismatch, and of
repairing it when it is discovered, a number of techniques
have been developed [11].

5 TOMORROW
What about the future? Although software architecture is
on a much more solid footing than a decade ago, it is not
yet established as a discipline that is taught and practiced
universally across the software industry. One reason for
this is simply that it takes time for new approaches and
perceptions to propagate. Another reason is that the tech-
nological basis for architecture design (as outlined earlier)
is still immature. In both of these areas we can expect that a
natural evolution of the field will lead to steady advances.

However, the world of software development and the con-
texts in which software is being used are changing in sig-
nificant ways. These changes promise to have a major im-
pact on how architecture is practiced. In the remainder of
this section I consider three of the more prominent trends
and their implications for the field of software architecture.

5.1 Changing Build-Versus Buy Balance
Throughout the history of software engineering a critical
issue in the development of systems has been the decision
about what parts of the system to obtain elsewhere and
what parts to build in-house. Externally acquired parts
have the advantage of saving development time. But they
also have the disadvantages of often incompletely satisfy-
ing the need, and of being less under the control of the de-
veloping organization.

While the issue itself has not changed, economic pressures
to reduce time-to-market are drastically changing the bal-
ance. For an increasing number of products, introducing a
product a month early may be the difference between suc-
cess and failure. In such situations building systems using
software that others have written becomes the only feasible
choice. It is not unusual these days for software developers
to use a thousand (or even ten thousand) lines of externally
developed code for every line they write. Indeed, many
companies are rapidly finding themselves more in the posi-
tion of system integrators than software developers. That is,
most of the code they do write is "glue" code that causes a
set of system components to work together.

For many companies the situation is exacerbated by eco-
nomic trends toward mergers and acquisitions as the pri-
mary avenue of growth. Rather than buying individual
software parts or products, companies simply absorb other
companies in total. Integration now becomes an even more
serious and difficult problem.

There are a number of consequences for software architec-
ture. First, this trend heightens the need for industry-wide
standards. The more commonality, the more likely third
party software systems will work together. This trend is
evident in the rising popularity of ’’component-based’’ soft-
ware development [43]. By picking components that agree
on a common architectural framework, such as COM,
JavaBeans, or CORBA, many of the problems of architec-
tural mismatch are alleviated.

However, ’’component-based’’ engineering is only part of
the answer. Today’s component technologies work at a
fairly low level of architectural abstraction – essentially at
the level of procedure call between objects. To obtain more
significant integration will require higher-level architec-
tural standards. This is likely to lead us from ''component-
based'' engineering to ''architecture-based'' engineering, a
shift that will emphasize the role of domain-specific inte-
gration architectures (such as EJB or HLA, mentioned ear-
lier) in promoting composability. Thus, the trend toward
architectural standards, noted earlier, is likely to become
even more pronounced.

Second, this trend is leading to new software subcontract-
ing processes. When integration is the critical issue, we can
expect that externally contracted software will be held to
much higher standards of architectural conformance. In
many cases the standards will be commercial or govern-
mental standards. In others, it is likely that sub-contractors
will need to guarantee compatibility with product line ar-
chitectures. For example, the US Department of Defense
requires that simulation subcontractors furnish products
that are ''HLA-compliant.''

Third, this trend is leading toward standardization of nota-
tions and tools across vendors. When down-stream inte-
grators are recombining systems, it is no longer acceptable
to have in-house, idiosyncratic architecture descriptions
and tools. This has led many to adopt languages like UML
and XML for architectural modeling (cf., Section 4.1).

5.2 Network-Centric Computing
There is a clear trend from a PC-centric computational
model to a network-centric model. Traditional computer
use centers on PCs, using local applications and data that
are installed and updated manually. Increasingly, the PC
and a variety of other interfaces (handheld devices, laptops,
phones) are used primarily as a user interface that provides
access to remote data and computation. This trend is not
surprising since a network-centric model offers the poten-
tial for significant advantages. It provides a much broader
base of services than is available on an individual PC. It
permits access to a rich set of computing and information
retrieval services through portable computers that can be
used almost anywhere (in the office, home, car, and fac-
tory). It promotes user mobility through ubiquitous access
to information and services.

This trend has a number of consequences for software en-
gineering, in general, and software architecture, in particu-
lar. Historically, software systems have been developed as
closed systems, developed and operated under control of
individual institutions. The constituent components may be
acquired from external sources, but when incorporated in a
system they come under control of the system designer.
Architectures for such systems are either completely static
– allowing no run time restructuring – or permit only a
limited form of run time variation.

However, within the world of pervasive services available
over networks, systems may not have such centralized
control. The Internet is an example of such an open sys-
tem: It is minimally standardized, chiefly at the level of the
protocols, addresses, and representations that allow indi-
vidual sites to interact. It admits of considerable variation
both in the hardware that lies below these standards and the
applications that lie above. There is no central authority for
control or validation. Individual sites are independently
administered. Individual developers can provide, modify,
and remove resources at will.

For such systems a new set of software architecture chal-
lenges emerges [41]. First, is the need for architectures that
scale up to the size and variability of the Internet. While
many of the same architectural paradigms will likely apply,
the details of their implementation and specification will
need to change.

For example, one attractive form of composition is implicit
invocation – sometimes termed ''publish-subscribe.'' Within

this architectural style components are largely autonomous,
interacting with other components by broadcasting mes-
sages that may be "listened to" by other components. Most
systems that use this style, however, make many assump-
tions about properties of its use. For example, one typically
assumes that event delivery is reliable, that centralized
routing of messages will be sufficient, and that it makes
sense to define a common vocabulary of events that are
understood by all of the components. In an Internet-based
setting all of these assumptions are questionable.

Second, is the need to support computing with dynami-
cally-formed, task-specific, coalitions of distributed auton-
omous resources. The Internet hosts a wide variety of re-
sources: primary information, communication mechanisms,
applications that can be invoked, control that coordinates
the use of resources, and services such as secondary (proc-
essed) information, simulation, editorial selection, or
evaluation. These resources are independently developed
and independently supported; they may even be transient.
They can be composed to carry out specific tasks set by a
user; in many cases the resources need not be specifically
aware of the way they are being used, or even whether they
are being used. Such coalitions lack direct control over the
incorporated resources. Selection and composition of re-
sources is likely to be done afresh for each task, as re-
sources appear, change, and disappear. Unfortunately, it is
hard to automate the selection and composition activity
because of poor information about the character of services
and hence with establishing correctness.

Composition of components in this setting is difficult be-
cause it is hard to determine what assumptions each com-
ponent makes about its operating context, let alone whether
a set of components will interoperate well (or at all) and
whether their combined functionality is what you need.
Moreover, many useful resources exist but cannot be
smoothly integrated because they make incompatible as-
sumptions about component interaction. For example, it is
hard to integrate a component packaged to interact via re-
mote procedure calls with a component packaged to inter-
act via shared data in a proprietary representation.

These problems will provide new challenges for architec-
ture description and analysis. In particular, the need to han-
dle dynamically-evolving collections of components ob-
tained from a variety of sources will require new tech-
niques for managing architectural models at run time, and
for evaluating the properties of those ensembles.

Third, is the related need to find architectures that flexibly
accommodate commercial application service providers. In
the future, applications will be composed out of a mix of
local and remote computing capabilities on each desktop,
requiring architectural support that supports billing, secu-
rity, etc.

Fourth, is the need to develop architectures that permit end
users to do their own system composition. With the rapid
growth of the Internet, an increasing number of users are in
a position to assemble and tailor services. Such users may
have minimal technical expertise, and yet will still want
strong guarantees that the parts will work together in the
ways they expect.

5.3 Pervasive Computing
A third related trend is toward pervasive computing in
which the computing universe is populated by a rich vari-
ety of heterogeneous computing devices: toasters, home
heating systems, entertainment systems, smart cars, etc.
This trend is likely to lead to an explosion in the number of
devices in our local environments – from dozens of de-
vices to hundreds or thousands of devices. Moreover these
devices are likely to be quite heterogeneous, requiring spe-
cial considerations in terms of their physical resources and
computing power.

There are a number of consequent challenges for software
architectures. First, we will need architectures that are
suited to systems in which resource usage is a critical issue.
For example, it may be desirable to have an architecture
that allows us to modify the fidelity of computation based
on the power reserves at its disposal.

Second, architectures for these systems will have to be
more flexible than they are today. In particular, devices are
likely to come and go in an unpredictable fashion. Han-
dling reconfiguration dynamically, while guaranteeing un-
interrupted processing, is a hard problem.

Third, is the need for architectures that will better handle
user mobility. Currently, our computing environments are
configured manually and managed explicitly by the user.
While this may be appropriate for environments in which
we have only a few, relatively static, computing devices
(such as a couple of PCs and laptops), it does not scale to
environments with hundreds of devices. We must therefore
find architectures that provide much more automated con-
trol over the management of computational services, and
that permit users to move easily from one environment to
another.

6 CONCLUSION
The field of software architecture is one that has experi-
enced considerable growth over the past decade, and it
promises to continue that growth for the foreseeable future.
As architectural design matures into an engineering disci-
pline that is universally recognized and practiced, there are
a number of significant challenges that will need to be ad-
dressed. Many of the solutions to these challenges are
likely to arise as a natural consequence of dissemination
and maturation of the architectural practices and technol-

ogy that we know about today. Other challenges arise be-
cause of the shifting landscape of computing and the needs
for software: these will require significant new innovations.
In this paper we have attempted to provide a high-level
overview of this terrain – illustrating where we have come
over the past few years, and speculating about where we
need to go to meet the demands of the future.

ACKNOWLEDGEMENTS
This article would only have been possible by virtue of
many long-standing interactions and collaborations with
numerous colleagues and students over the past decade.
Among these I would particularly like to credit past and
present members of the ABLE Research Group, Bob Bal-
zer, Barry Boehm, Drew Kompanek, Dewayne Perry, John
Salasin, Mary Shaw, Dave Wile, and Alex Wolf. Software
architecture would not have come nearly as far as it has
were it not for generous funding from DARPA, NSF, and
many industrial sponsors. My own research has been spon-
sored by DARPA under contracts F30602-97-2-0031,
F30602-96-1-0299, F30602-96-2-0224, and F33615-93-1-
1330; by NSF under contracts CCR-9109469, CCR-
9633532, and CCR-9357792; and by industrial support
from HP, Siemens Corporation, and Kodak Corporation.

Mary Shaw provided some of the ideas and text for the
section on pervasive computing architectures. The section
describing the roles of software architecture was adapted
from an introductory article on software architecture co-
authored with Dewayne Perry [19].

REFERENCES
1. G. Abowd, R. Allen, and D. Garlan. Using style to

understand descriptions of software architecture. In
Proceedings of SIGSOFT’93: Foundations of Software
Engineering. ACM Press, December 1993.

2. R. Allen and D. Garlan. Formalizing architectural
connection. In Proceeding of the 16th International
Conference on Software Engineering, pages 71-80.
Sorrento, Italy, May 1994.

3. R. Allen and D. Garlan. A formal basis for architec-
tural connection. ACM Transactions on Software En-
gineering and Methodology, July 1997.

4. S. Bachinsky, L. Mellon, G. Tarbox, and R. Fujimoto.
RTI 2.0 architecture. In Proceedings of the 1998
Spring Simulation Interoperability Workshop, 1998.

5. L. Bass, P. Clements and R. Kazman. Software Ar-
chitecture in Practice. Addison Wesley, 1099, ISBN
0-201-19930-0.

6. P. Binns and S. Vestal. Formal real-time architecture
specification and analysis. 10th IEEE Workshop on

Real-Time Operating Systems and Software, May
1993.

7. B. Boehm, P. Bose, E. Horowitz and M. J. Lee. Soft-
ware requirements negotiation and renegotiation aids:
A theory-W based spiral approach. In Proc 17th Inter-
national Conference on Software Engineering, 1994.

8. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad
and M. Stal. Pattern Oriented Software Architecture:
A System of Patterns. John Wiley & Sons, 1996.

9. P. Clements, L. Bass, R. Kazman and G. Abowd. Pre-
dicting software quality by architecture-level evalua-
tion. In Proceedings of the Fifth International Confer-
ence on Software Quality, Austin, Texas, Oct, 1995.

10. L. Coglianese and R. Szymanski, DSSA-ADAGE: An
Environment for Architecture-based Avionics Devel-
opment. In Proceedings of AGARD’93, May 1993.

11. R. Deline. Resolving Packaging Mismatch. PhD the-
sis, Carnegie Mellon University, December 1999.

12. E. W. Dijkstra. The structure of the "THE" – multi-
programming system. Communications of the ACM,
11(5):341-346, 1968.

13. P. Donohoe, editor. Software Architecture: TC2 First
Working IFIP Conference on Software Architecture
(WICSA1). Kluwer Academic Publishers, 1999.

14. E. Gamma, R. Helm, R. Johnson and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Design. Addison-Wesley, 1995.

15. D. Garlan, R. Allen and J. Ockerbloom. Exploiting
style in architectural design environments. In Proc of
SIGSOFT’94: The second ACM SIGSOFT Symposium
on the Foundations of Software Engineering, pages
170-185. ACM Press, December 1994.

16. D. Garlan, R. Allen and J. Ockerbloom. Architectural
mismatch: Why reuse is so hard. IEEE Software,
12(6):17-28, November 1995.

17. D. Garlan, A. J. Kompanek and P. Pinto. Reconciling
the needs of architectural description with object-
modeling notations. Technical report, Carnegie Mel-
lon University, December 1999.

18. D. Garlan, R. T. Monroe and D. Wile. Acme: An ar-
chitecture description interchange language. In Pro-
ceedings of CASCON’97, pages 169-183, Ontario,
Canada, November 1997.

19. D. Garlan and D. Perry. Introduction to the special
issue on software architecture. IEEE Transactions on
Software Engineering, 21(4), April 1995.

20. D. Garlan and M. Shaw. An Introduction to software
architecture. In Advances in Software Engineering and
Knowledge Engineering, pages 1-39, Singapore, 1993.
World Scientific Publishing Company.

21. D. Garlan, M. Shaw, C. Okasaki, C. Scott, and R.
Swonger. Experience with a course on architectures
for software systems. In Proceedings of the Sixth SEI
Conference on Software Engineering Education.
Springer Verlag, LNCS 376, October 1992.

22. C. Hofmeister, R. Nord and D. Soni. Applied Software
Architecture. Addison Wesley, 2000.

23. C. Hofmeister, R. L. Nord and D. Soni. Describing
software architecture with UML. In Proceedings of
the First Working IFIP Conference on Software Ar-
chitecture (WICSA1), San Antonio, TX, February
1999.

24. P. B. Kruchten. The 4+1 view model of architecture.
IEEE Software, pages 42-50, November 1995.

25. D. C. Luckham, L. M. Augustin, J. J. Kenny, J. Veera,
D. Bryan, and W. Mann. Specification and analysis of
system architecture using Rapide. IEEE Transactions
on Software Engineering, 21(4): 336-355, April 1995.

26. J. Magee, N. Dulay, S. Eisenbach and J. Kramer.
Specifying distributed software architectures. In Pro-
ceedings of the Fifth European Software Engineering
Conference, ESEC’95, September 1995.

27. V. Matena and M. Hapner. Enterprise JavaBeans™.
Sun Microsystems Inc., Palo Alto, California, 1998.

28. N. Medvidovic, P. Oreizy, J. E. Robbins and R. N.
Taylor. Using object-oriented typing to support archi-
tectural design in the C2 style. In SIGSOFT’96: Pro-
ceedings of the 4th ACM Symposium on the Founda-
tions of Software Engineering. ACM Press. Oct 1996.

29. N. Medvidovic and D. S. Rosenblum. Assessing the
suitability of a standard design method for modeling
software architectures. In Proceedings of the First
Working IFIP Conference on Software Architecture
(WICSA1), San Antonio, TX, February 1999.

30. N. Medvidovic and R. N. Taylor. Architecture de-
scription languages. In Software Engineering
ESEC/FSE’97, Lecture Notes in Computer Science,
Vol. 1301, Zurich, Switzerland, Sept 1997. Springer.

31. E. Mettala and M. H. Graham. The domain-specific
software architecture program. Technical Report
CMU/SEI-92-SR-9. Carnegie Mellon Univ., Jun 1992.

32. M. Moriconi, X. Qian and R. Riemenschneider. Cor-
rect architecture refinement. IEEE Transactions on
Software Engineering, Special Issue on Software Ar-
chitecture, 21(4):356-372, April 1995.

33. D. L. Parnas. Designing software for ease of extension
and contraction. IEEE Transactions on Software En-
gineering, 5:128-138, March 1979.

34. D. L. Parnas, P. C. Clements and D. M. Weiss. The
modular structure of complex systems. IEEE Trans-
actions on Software Engineering. SE-11(3):259-266,
March 1985.

35. D. E. Perry and A. L. Wolf. Foundations for the study
of software architecture. ACM SIGSOFT Software
Engineering Notes, 17(4):40-52, October 1992.

36. E. Rechtin. Systems architecting: Creating and
Building Complex Systems. Prentice Hall, 1991.

37. CMU Software Engineering Institute Product Line
Program. http://www.sei.cmu.edu/activities/plp/, 1999.

38. M. Shaw and P. Clements. A field guide to boxology:
Preliminary classification of architectural styles for
software systems. In Proceedings of COMPSAC 1997,
August 1997.

39. M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M.
Young and G. Zelesnick. Abstractions for software ar-
chitecture and tools to support them. IEEE Trans on
Software Engineering. 21(4):314-335. April 1995.

40. M. Shaw and D. Garlan. Software Architecture: Per-
spectives on an Emerging Discipline. Prentice Hall,
1996.

41. Mary Shaw. Architectural Requirements for Comput-
ing with Coalitions of Resources. 1st Working IFIP
Conf. on Software Architecture, Feb 1999
http://www.cs.cmu.edu/~Vit/paper_abstracts/Shaw-
Coalitions.html.

42. J. A. Stafford, D. J. Richardson, A. L. Wolf. Aladdin:
A Tool for Architecture-Level Dependence Analysis of
Software. University of Colorado at Boulder, Techni-
cal Report CU-CS-858-98, April, 1998.

43. C. Szyperski. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley, 1998.

