
The Architecture
Tradeoff Analysis
Method

Rick Kazman

Mark Klein

Mario Barbacci

Tom Longstaff

Howard Lipson

Jeromy Carriere

July 1998

TECHNICAL REPORT
CMU/SEI-98-TR-008

ESC-TR-98-008

Pittsburgh, PA 15213-3890

The Architecture
Tradeoff Analysis
Method

CMU/SEI-98-TR-008
ESC-TR-98-008

Rick Kazman

Mark Klein

Mario Barbacci

Tom Longstaff

Howard Lipson

Jeromy Carriere

Unlimited distribution subject to the copyright.

July 1998

Product Line Systems

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in
the interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Mario Moya, Maj, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1998 by Carnegie Mellon University.

Requests for permission to reproduce this document or to prepare derivative works of this document should
be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATE-
RIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER IN-
CLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANT-
ABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has a royalty-free government-pur-
pose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or
permit others to do so, for government purposes pursuant to the copyright license under the clause at
52.227-7013.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark
holder.

This document is available through Asset Source for Software Engineering Technology (ASSET): 1350
Earl L. Core Road; PO Box 3305; Morgantown, West Virginia 26505 / Phone: (304) 284-9000 or toll-free
in the U.S. 1-800-547-8306 / FAX: (304) 284-9001 World Wide Web: http://www.asset.com / e-mail:
sei@asset.com

Copies of this document are available through the National Technical Information Service (NTIS). For in-
formation on ordering, please contact NTIS directly: National Technical Information Service, U.S. Depart-
ment of Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides
access to and transfer of scientific and technical information for DoD personnel, DoD contractors and po-
tential contractors, and other U.S. Government agency personnel and their contractors. To obtain a copy,
please contact DTIC directly: Defense Technical Information Center / Attn: BRR / 8725 John J. Kingman
Road / Suite 0944 / Ft. Belvoir, VA 22060-6218 / Phone: (703) 767-8274 or toll-free in the U.S.: 1-800
225-3842.

CMU/SEI-98-TR-008

Table of Contents
1 Architecture Tradeoff Analysis 1

2 Why Use Architecture Tradeoff Analysis? 3

3 The ATAM 5
3.1 The Steps of the Method 6
3.2 Iterations of the ATAM 8

4 An Example Analysis 9
4.1 System Description 9

5 Collect Scenarios 11

6 Collect Requirements/Constraints/Environment 13

7 Describe Architectural Views 15
7.1 Architectural Option 1 (Client-Server) 16
7.2 Architectural Option 2 (Client-Server-Server) 16
7.3 Architectural Option 3 (Client-Intelligent

Cache-Server) 17

8 Realize Scenarios/Performance
Analyses 19

8.1 Performance Analysis of Option 1 19
8.2 Performance Analysis of Option 2 20
8.3 Performance Analysis of Option 3 20
8.4 Critique of the Analysis 21

9 Realize Scenarios/Availability Analyses 23
9.1 Availability Analysis of Option 1 23
9.2 Availability Analysis of Option 2 24
9.3 Availability Analysis of Option 3 24
i

10 Critique of the Options 25
10.1 Further Investigation of Option 2 25
10.2 Action Plan 25

11 Sensitivity Analyses 27

12 Security Analyses 29
12.1 Refined Architectural Options 31

13 Sensitivities and Tradeoffs 33

14 The Implications of the ATAM 35

15 Conclusions 37

References 39
ii CMU/SEI-98-TR-008

CMU/SEI-98-TR-008

List of Figures
Figure 3-1 Steps of the Architecture Tradeoff
Analysis Method 5

Figure 7-1 The Architecture of a Furnace Server 15

Figure 7-2 Option 1’s Architecture 16

Figure 7-3 Option 2’s Architecture 17

Figure 7-4 Option 3’s Architecture (with Cache) 18

Figure 11-1 Down Time vs. Intelligent Cache Life 27

Figure 12-1 Security Modifications 31
iii

iv CMU/SEI-98-TR-008

CMU/SEI-98-TR-008

List of Tables
Table 8-1 Performance Analysis for Option 1 19

Table 8-2 Performance Analysis for Option 2 20

Table 8-3 Performance Analysis for Option 3 20

Table 9-1 Availability of Option 1 23

Table 9-2 Availability of Option 2 24

Table 9-3 Availability of Option 3 24

Table 12-1 Environmental Security Assumptions 30

Table 12-2 Anticipated Spoof-Attack
Success Rates 30

Table 12-3 Additional Security Assumptions 32

Table 12-4 Spoof Success Rates with Encryption 32

Table 12-5 Spoof Success Rates with
Intrusion Detection 32
v

vi CMU/SEI-98-TR-008

ecu-
often
 about
el of
n that
Abstract

This paper presents the Architecture Tradeoff Analysis Method (ATAM), a structured tech-
nique for understanding the tradeoffs inherent in the architectures of software-intensive sys-
tems. This method was developed to provide a principled way to evaluate a software
architecture’s fitness with respect to multiple competing quality attributes: modifiability, s
rity, performance, availability, and so forth. These attributes interact, and improving one
comes at the price of worsening one or more of the others. The method helps us reason
architectural decisions that affect quality attribute interactions. The ATAM is a spiral mod
design, one of postulating candidate architectures followed by analysis and risk mitigatio
lead to refined architectures.
CMU/SEI-98-TR-008 vii

viii CMU/SEI-98-TR-008

oft-
ance,

code-
sting,
rtant,
re

,

 96],
lity,

 expe-
acter-

ade—

izer’s
 is not
rly
ture is

 archi-
sign
n
nal-
 how

thod
ple
ight
1 Architecture Tradeoff Analysis

Quality attributes of large software systems are principally determined by the system’s s
ware architecture. That is, in large systems, the achievement of qualities such as perform
availability, and modifiability depends more on the overall software architecture than on
level practices such as language choice, detailed design, algorithms, data structures, te
and so forth. This is not to say that the choice of algorithms or data structures is unimpo
but rather that such choices are less crucial to a system’s success than its overall softwa
structure, its architecture. Thus, it is in our interest to try and determine, before it is built
whether a system is destined to satisfy its desired qualities.

Although methods for analyzing specific quality attributes exist (e.g., [Bass 98], [Kazman
[Klein 93], [Smith 93]), these analyses have typically been performed in isolation. In rea
however, the attributes of a system interact. Performance impacts modifiability. Availability
impacts safety. Security affects performance. Everything affects cost and so forth. While
rienced designers know that these tradeoffs exist, there is no principled method for char
izing them and, in particular, for characterizing the interactions among attributes.

For this reason, software architectures are often designed “in the dark.” Tradeoffs are m
they must be made if the system is to be built—but they are made in an ad hoc fashion. Imag-
ine a sound engineer being given a 28-band graphic equalizer, where each of the equal
controls has effects that interact with some subset of the other controls. But the engineer
given a spectrum analyzer, and is asked to set up a sound stage for optimal fidelity. Clea
such a task is untenable. The only difference between this analogy and software architec
that software systems have far more than 28 independent but interacting variables to be
“tuned.”

There are techniques that designers have used to try to mitigate the risks in choosing an
tecture to meet a broad palette of quality attributes. The recent activity in cataloguing de
patterns and architectural styles is an example of this. A designer will choose one patter
because it is “good for portability” and another because it is “easily modifiable.” But the a
ysis of patterns doesn’t go any deeper than that. A user of these patterns does not know
portable, modifiable, or robust an architecture is until it has been built.

To address these problems, this paper introduces the Architecture Tradeoff Analysis Me
(ATAM). ATAM is a method for evaluating architecture-level designs that considers multi
quality attributes such as modifiability, performance, reliability, and security in gaining ins
CMU/SEI-98-TR-008 1

m to
lyses
offs.
sues
as to whether the fully fleshed out incarnation of the architecture will meet its requirements.
The method identifies tradeoff points between these attributes, facilitates communication
between stakeholders (such as user, developer, customer, maintainer) from the perspective of
each attribute, clarifies and refines requirements, and provides a framework for an ongoing,
concurrent process of system design and analysis.

The ATAM has grown out of work done at the Software Engineering Institute (SEI) on the
architectural analysis of individual quality attributes. It began with the Software Architecture
Analysis Method (SAAM) [Kazman 96] for modifiability, performance analysis [Klein 93],
availability analysis, and security analysis. SAAM has already been used successfully to ana-
lyze architectures from a wide variety of domains: software tools, air traffic control, financial
management, telephony, multimedia, embedded vehicle control, and so on.

The ATAM, as with the SAAM, has both social and technical aspects. The technical aspects
deal with the kinds of data to be collected and how it is analyzed. The social aspects deal with
the interactions among the system’s stakeholders and area-specific experts, allowing the
communicate using a common framework, to make the implicit assumptions in their ana
explicit, and to provide an objective basis for negotiating the inevitable architecture trade
This paper will demonstrate the use of the method, and its benefits in clarifying design is
along multiple attribute dimensions, particularly the tradeoffs in design.
2 CMU/SEI-98-TR-008

 reso-

l
rty of
e pri-
elps

citly
out
they
ction
le-
2 Why Use Architecture
Tradeoff Analysis?

All design, in any discipline, involves tradeoffs; this is well accepted. What is less well under-
stood is the means for making informed and possibly even optimal tradeoffs. Design decisions
are often made for non-technical reasons: strategic business concerns, meeting the constraints
of cost and schedule, using available personnel, and so forth.

Having a structured method helps ensure that the right questions will be asked early, during
the requirements and design stages when discovered problems can be solved cheaply. It guides
users of the method—the stakeholders—to look for conflicts in the requirements and for
lutions to these conflicts in the software architecture.

In realizing the method, we assume that attribute-specific analyses are interdependent, and that
each quality attribute has connections with other attributes, through specific architecturaele-
ments. An architectural element is a component, a property of the component, or a prope
the relationship between components that affects some quality attribute. For example, th
ority of a process is an architectural element that could affect performance. The ATAM h
to identify these dependencies among attributes: what we call tradeoff points. This is the prin-
cipal difference between the ATAM and other software analysis techniques—that it expli
considers the connections between multiple attributes, and permits principled reasoning ab
the tradeoffs that inevitably result from such connections. Other analysis frameworks, if
consider connections at all, do so only in an informal fashion, or at a high level of abstra
(e.g., [McCall 94], [Smith 93]). As we will show, tradeoff points arise from architectural e
ments that are affected by multiple attributes.
CMU/SEI-98-TR-008 3

4 CMU/SEI-98-TR-008

3 The ATAM

The ATAM is a spiral model of design [Boehm 86], depicted in Figure 3-1. The ATAM is like
the standard spiral model in that each iteration takes one to a more complete understanding of
the system, reduces risk, and perturbs the design. It is unlike the standard spiral in that no
implementation need be involved; each iteration is motivated by the results of the analysis and
results in new, more elaborated, more informed designs.

Analyzing an architecture involves manipulating, controlling, and measuring several sets of
architectural elements, environment factors, and architectural constraints. The primary task of
an architect is to lay out an architecture that will lead to system behavior which is as close as
possible to the requirements within the cost constraints. For example, performance require-
ments are stated in terms of latency and/or throughput. However, these attributes depend on
the architectural elements pertaining to resource allocation: the policy for allocating processes
to processors, scheduling concurrent processes on a single processor, or managing access to
shared data stores. The architect must understand the impact of such architectural elements on
the ability of the system to meet its requirements and manipulate those elements appropriately.

Figure 3-1: Steps of the Architecture Tradeoff Analysis Method

PHASE IV
Tradeoffs

PHASE II
Architectural Views
& Scenario Realization

PHASE I
Scenario &
Requirements
Gathering

PHASE III
Model Building
& Analyses

Identify
Tradeoffs

Identify
Sensitivities

Attribute
Specific
Analyses

Collect
Scenarios

Collect
Requirements,
Constraints,
Environment

Describe
Architectural
Views

Realize
Scenarios
CMU/SEI-98-TR-008 5

 been
viron-

ng this
e,
dels to
t each

ng
ehold-
has
 profit-
: to
een
uld

of
eneric,
rized
sign
ces a
ccount

idate
ever

previ-
However, this task is typically approached with a dearth of tools. The best architects use their
hunches, their experience with other systems, and prototyping to guide them. Occasionally, an
explicit modeling step is also included as a design activity, or an explicit formal analysis of a
single quality attribute is performed.

3.1 The Steps of the Method
The method is divided into four main areas: scenario and requirements gathering, architectural
views and scenario realization, model building and analysis, and tradeoffs. Generally, the
method works as follows: Once a system’s initial set of scenarios and requirements has
elicited and an initial architecture or small set of architectures is proposed (subject to en
ment and other considerations), each quality attribute is evaluated in turn, and in isolation,
with respect to any proposed design. After these evaluations comes a critique step. Duri
step, tradeoff points—elements that affect multiple attributes—are found. After the critiqu
we can either: refine the models and reevaluate; refine the architectures, change the mo
reflect these refinements and reevaluate; or change some requirements. We now look a
of these steps in more detail.

Step 1 — Collect Scenarios
The first and second steps in the method—eliciting system usage scenarios and collecti
requirements, constraints, and environmental details from a representative group of stak
ers—are interchangeable. At times requirements exist before any architectural analysis
commenced. At other times scenarios drive the requirements. The analysis process can
ably begin with either. Eliciting scenarios serves the same purposes as it does in SAAM
operationalize both functional and quality requirements, to facilitate communication betw
stakeholders, and to develop a common vision of the important activities the system sho
support.

Step 2 — Collect Requirements/Constraints/Environment
In addition to the scenarios, the attribute-based requirements, constraints, and environment
the system must be identified. A requirement can have a specific value or can be more g
as derived from scenarios of hypothetical situations. The environment must be characte
because subsequent analyses (e.g., performance or security) and constraints on the de
space, as they evolve, are recorded as these too affect attribute analyses. This step pla
strong emphasis on revisiting the scenarios from the previous step to ensure that they a
for important quality attributes.

Step 3 — Describe Architectural Views
The requirements, scenarios, and engineering design principles together generate cand
architectures and constrain the space of design possibilities. In addition, design almost n
starts from a clean slate: legacy systems, interoperability, and the successes/failures of
ous projects all constrain the space of architectures.
6 CMU/SEI-98-TR-008

ill
rchitec-
or
ting

l archi-
d
er; no

done
rns

lues of
ilure
,000
The candidate architectures must be described in terms of the architectural elements and prop-
erties that are relevant to each of the important quality attributes. For example, replication and
voting schemes are an important element for reliability; concurrency decomposition, process
priorities, throughput estimates, and queuing schemes are important for performance; firewalls
and intruder models are important for security; abstraction and encapsulation is important for
modifiability. In addition, the details required for an analysis of each of these qualities is typi-
cally captured in distinct architectural views. Bass et al [Bass 98] define several such views
for use in architectural analysis: a module view (for reasoning about work assignments and
information hiding), a process view (for reasoning about performance), a dataflow view (for
reasoning about functional requirements), a class view (for reasoning about sharing of object
definitions), and so forth.

There is another important point to make about architectural representation: in our presenta-
tion of the ATAM, we assume that multiple, competing architectures are being compared.
However, designers typically consider themselves to be working on only a single architecture
at a time. Why are these notions not aligned? From our perspective, an architecture is a collec-
tion of functionality assigned to a set of structural elements, described by a set of views.
Almost any change will mutate one of these views, thus resulting in a new architecture. While
this point might seem like a splitting of hairs, it is important hairs in this context for the fol-
lowing reason: the ATAM requires building and maintaining attribute models (both quantita-
tive and qualitative models) that reflect and help to reason about the architecture. To change
any aspect of an architecture—functionality, structural elements, coordination model—w
affect one or more of the models. Once a change has been proposed, the new and old a
tures are “competing,” and must be compared: hence the need for new models that mirr
those changes. Using the ATAM, then, is a continual process of choosing among compe
architectures, even when these look “pretty much the same” to a casual observer.

Step 4 — Attribute-Specific Analyses
Once a system’s initial set of requirements and scenarios has been elicited and an initia
tecture (or small set of architectures) is proposed, each quality attribute must be analyzein
isolation, with respect to each architecture. These analyses can be conducted in any ord
individual critique of attributes against requirements or interaction between attributes is
at this point. Allowing separate (concurrent) analysis is an important separation of conce
that allows individual attribute experts to bring their expertise to bare on the system.

The result of the analyses leads to statements about system behavior with respect to va
particular attributes: “requests are responded to in 60 ms. average”; “the mean time to fa
is 2.3 days”; “the system is resistant to known attack scripts”; “the hardware will cost $80
per platform”; “the software will require 4 people per year to maintain”; and so forth.
CMU/SEI-98-TR-008 7

ural
en var-
 that are

tec-
onal

or
 num-
serv-
ers.
cause
adeoff
chi-

o the
quately
r to

h
eases

ging
ute-
 of

an and
 of a
t been
circle:
er
Step 5 — Identify Sensitivities
This step determines the sensitivity of individual attribute analyses to particular architect
elements; that is, one or more attributes of the architecture are varied. The models are th
ied to capture these design changes, and the results are evaluated. Any modeled values
significantly affected by a change to the architecture are considered to be sensitivity points.

Step 6 — Identify Tradeoffs
The next step of the method is to critique the models built in Step 4 and to find the archi
tural tradeoff points. Although it is standard practice to critique designs, significant additi
leverage can be gained by focusing this critique on the interaction of attribute-specific analy-
ses, particularly the location of tradeoff points. Here is how this is done.

Once the architectural sensitivity points have been determined, finding tradeoff points is sim-
ply the identification of architectural elements to which multiple attributes are sensitive. F
example, the performance of a client-server architecture might be highly sensitive to the
ber of servers (performance increases, within some range, by increasing the number of
ers). The availability of that architecture might also vary directly with the number of serv
However, the security of the system might vary inversely with the number of servers (be
the system contains more potential points of attack). The number of servers, then, is a tr
point with respect to this architecture. It is an element, potentially one of many, where ar
tectural tradeoffs will be made, consciously or unconsciously.

3.2 Iterations of the ATAM
After we have completed the above steps, we can compare the results of the analyses t
requirements. When the analyses show that the system’s predicted behavior comes ade
close to its requirements, the designers can proceed to a more detailed level of design o
implementation. In practice, however, it is useful to continue to track the architecture wit
analytic models to support development, deployment, and maintenance. Design never c
in a system’s life cycle, and neither should analysis.

In the event that the analysis reveals a problem, we now develop an action plan for chan
the architecture, the models, or the requirements. The action plan will draw on the attrib
specific analyses and identification of tradeoff points. This then leads to another iteration
the method.

It should be made clear that we do not expect these steps to be followed linearly. They c
do interact with each other in complex ways: an analysis can lead to the reconsideration
requirement; the building of a model can point out places where the architecture has no
adequately thought out or documented. This is why we depict the steps as wedges in a
at the center of the circle every step touches (and exchanges information with) every oth
step.
8 CMU/SEI-98-TR-008

re done
 differ-

ol part

ail-
mplex
e
e
ber of

e are

nd
queued
 at the
4 An Example Analysis

To exemplify the ATAM, we have chosen an example that has already been analyzed exten-
sively in the research literature, that of a remote temperature sensor (discussed in [Smith 93]
and elsewhere). We have chosen this example precisely because it has been heavily scrutinized
already. The existence of other analyses focuses attention on the differences of the ATAM. We
will analyze this system with respect to its availability, security, and performance attributes.

4.1 System Description
The RTS (remote temperature sensor) system exists to measure the temperatures of a set of
furnaces, and to report those temperatures to an operator at some other location. In the original
example, the operator was located at a “host” computer. The RTS sends periodic temperature
updates to the host computer, and the host computer sends control requests to the RTS, to
change the frequency at which periodic updates are sent. These requests and updates a
on a furnace by furnace basis. That is, each furnace can be reporting its temperature at a
ent frequency. The RTS is presumably part of a larger process control system. The contr
of the system is not discussed in this example, however.

We are interested in analyzing the RTS for the qualities of performance, security, and av
ability. To illustrate these analyses, we have made the model problem richer and more co
than its original manifestation. In addition to the original set of functional requirements, w
have embedded the RTS into a system architecture based on the client-server idiom. Th
remote temperature sensor functionality is encapsulated in a server that serves some num
clients. To remain consistent with the original problem, our analysis will assume that ther
16 clients: one per furnace.

The RTS server hardware includes an analog-to-digital converter (ADC), that can read a
convert a temperature for one furnace at a time. Requests for temperature readings are
and fed, one at a time, to the ADC. The ADC measures the temperature of each furnace
frequency specified by its most recently received control request.
CMU/SEI-98-TR-008 9

10 CMU/SEI-98-TR-008

in
5 Collect Scenarios

The performance analysis is guided by two scenarios, representing the two most common uses
of the system:

• the client sends a control request and receives the first periodic update

• the client receives periodic updates at the specified rate

The availability analysis is also guided by two scenarios, representing anticipated ways
which the system could fail:

• a server suffers a software failure and is rebooted

• a server suffers a power supply failure and the power supply is replaced
CMU/SEI-98-TR-008 11

12 CMU/SEI-98-TR-008

S

a

o
6 Collect Requirements/Constraints/
Environment

In a performance analysis, we consider requirements that typically are derived from scenarios
generated through interviews with the stakeholders. In this case, the performance requirements
are:

PR1: Client must receive a temperature reading within F seconds of sending a control
request.

PR2: Given that Client X has requested a periodic update every T(i) seconds, it must
receive a temperature on the average every T(i) seconds.

PR3: The interval between consecutive periodic updates must be not more than 2T(i) sec-
onds.

In addition to these requirements, we will assume that the behavior patterns and execution
environment are as follows:

• relatively infrequent control requests

• requests are not dropped

• no message priorities

• server latency = de-queuing time (Cdq = 10 ms) + furnace task computation (Cfnc = 160
ms)

• network latency between client and server (Cnet = 1200 ms)

For the availability analysis, we will initially consider only a single requirement for the RT
system:

AR1: System must not be unavailable for more than 60 minutes per year.

Our sole environmental assumption is that the availability analysis should also consider
range of component failure rates, from 0 to 24 per year.

Because attributes “trade off” against each other, each of these assumptions is subject t
inspection, validation, and questioning as a result of the ATAM.
CMU/SEI-98-TR-008 13

14 CMU/SEI-98-TR-008

ver (or

ace
 some
ks and
nace
 the

 archi-
icating
7 Describe Architectural Views

Since the ATAM was created to illustrate architectural tradeoffs, we need some architectures to
analyze. We will consider three architectural options and will show a run-time process view of
each: a simple Client-Server architecture, a more complex version of this architecture (called
Client-Server-Server) where the server has been replicated, and finally an option called Client-
Intelligent Cache-Server. Each of these architectures will use the identical server architec-
ture—all that changes are the ways in which the rest of the system interacts with the ser
servers).

Figure 7-1: The Architecture of a Furnace Server

The server’s architecture (shown in Figure 7-1) contains three kinds of components: furn
tasks (independently scheduled units of execution), that schedule themselves to run with
period; a shared communication facility task, that accepts messages from the furnace tas
sends them to a specified client; and the ADC task, which accepts requests from the fur
tasks, interfaces with the physical furnaces to determine their temperatures, and passes
result back to the requesting furnace task.

Now that the server architecture has been described, we will present the overall system
tectures. In each system, a set of 16 clients interacts with one or more servers, commun
via a network.

Furnace Task1

Furnace Task2

Furnace Task16

. .
 .

ADC Comm

to to
furnaces clients
CMU/SEI-98-TR-008 15

rvers
 7-3,
nicates
n each
7.1 Architectural Option 1 (Client-Server)
Option 1 (shown in Figure 7-2) is the baseline: a simple and inexpensive client-server archi-
tecture, with a single server serving all 16 clients.

Figure 7-2: Option 1’s Architecture

7.2 Architectural Option 2 (Client-Server-Server)
Option 2 differs from option 1 in that it adds a second server to the system architecture. These
servers interact with clients as a “primary” server (indicated by the solid lines between se
and clients) or as a “backup” server (indicated by the dashed lines). As shown in Figure
each server has its own set of independent furnace tasks, ADC and Comm, but commu
with the same furnaces and with the same set of clients, although under normal operatio
server only serves 8 of the 16 clients.

. .
 .

RTS Server

Furnace Client 1

Furnace Client 2

Furnace Client 16

.

.

.

Furnace Client 15
16 CMU/SEI-98-TR-008

s
-4.

o the
e event

polate
ola-
r takes
Every client knows the location of both servers, and if they detect that the server is down
(because it has failed to respond for a prescribed period of time), they will automatically
switch to their specified backup.

Figure 7-3: Option 2’s Architecture

7.3 Architectural Option 3 (Client-Intelligent Cache-
Server)

Option 3 differs from option 1 in only one way: each client has a “wrapper” that intercede
between it and the server. This wrapper is an “intelligent cache,” shown as IC in Figure 7
The cache works as follows: it intercepts periodic temperature updates from the server t
client, builds a history of these updates, and then passes each update to the client. In th
of a service interruption, the cache synthesizes updates for the client. It is an intelligent cache
because the updates it provides take advantage of historical temperature trends to extra
plausible values into the future. This intelligence may be nothing more than linear extrap
tion, or it might be a sophisticated model that analyzes changes in temperature trends o
advantage of domain-specific knowledge on how furnaces heat up and cool down.

. .
 .

Furnace Server 2

Furnace Client 1

Furnace Client 2

Furnace Client 16

.

.

.

Furnace Client 15

. .
 .

Furnace Server 1
CMU/SEI-98-TR-008 17

he’s
ecome
As long as the furnaces exhibit regular behavior in terms of temperature trends, the cac
extrapolated updates will be accurate. Obviously, the cache’s synthesized updates will b
less meaningful over time.

Figure 7-4: Option 3’s Architecture (with Cache)

These then are our three initial architectural alternatives. To understand and compare them, we
will analyze them using the ATAM. This method will aid us in understanding not only the rel-
ative strengths and weaknesses of each architecture, but will also provide a structured frame-
work for eliciting and clarifying requirements. This is because each analysis technique
incorporates (often implicit) assumptions. The use of several analysis techniques together
helps to uncover these assumptions and make them explicit.

. .
 .

Furnace Server

Furnace Client 1

Furnace Client 2

Furnace Client 16

.

.

.

Furnace Client 15

IC

IC

IC

IC
18 CMU/SEI-98-TR-008

wer
an

ll peri-
-case
issed
e cal-
8 Realize Scenarios/Performance
Analyses

To do the performance analysis, we first realize the performance scenarios by mapping them
onto the software architecture and then calculate whether this realization of the scenario meets
the requirements set forth in Section 6.

In the analyses that follow, we will not show the details of doing performance, availability, or
security analyses in detail. We do this for two reasons. First, these details can be found in [Bar-
bacci 97]. Second, this paper is not intended to propose or exemplify any particular attribute-
specific analysis technique. Indeed, any technique that meets the information requirements of
the ATAM would do just as well. Our interest is in how the techniques interact, and how this
interaction minimizes risk in a rational, documented design process.

8.1 Performance Analysis of Option 1
The performance characteristics of architectural option 1 are summarized in Table 8-1.1

Table 8-1: Performance Analysis for Option 1

A worst-case control latency of 41.12 seconds sounds like a bad thing. However, is it? To
answer this question, we must understand the requirement better. How often will the worst
case occur? Is it ever tolerable to have the worst case occur? For a safety-critical application,
the answer might be “no.” For an interactive World Wide Web-based application, the ans
might be “yes,” because the price of ensuring a smaller worst case is prohibitive. Doing
analysis of a single quality attribute forces one to consider such requirements issues.

The worst-case periodic latency is 37.12 seconds. However, the worst-case scenario is
unlikely; it assumes that all furnaces are queried at the maximum rate (T(1) = 10), that a
odic updates are issued simultaneously, and that the update being measured (the worst
update) is the last one in the queue. More importantly, in this application the cost of a m
update is not great—another one will arrive in the next T(i) seconds. Given these facts, w

1. WCCL = worst-case control latency; ACPL = average-case periodic latency

WCCL ACPL Jitter

41,120 ms 5,100 ms 20,400 ms
CMU/SEI-98-TR-008 19

 can
tter be
terval
 case
orst

f 20

he
e
ould
ce

e of

.

new
 case
culate the average-case latency, to see if the system can meet its deadlines under more normal
conditions, and accept the fact that an occasional periodic update might be missed.

Finally, we turn to PR3, the “Jitter” requirement. Jitter is the amount of time variation that
occur between consecutive periodic temperature updates. The requirement is that the ji
not more than 2T(i), which translates to 20 seconds for the case where T(i) = 10. The in
between consecutive readings will be not more than 2T(i) if the difference between best
and worst case latency is not more than 2T(i), for this is an expression of jitter. So, the w
case jitter = WCPL1 - BCPL = 21,760 - 1,360 = 20,400 ms. This is greater than the value o
seconds for the case where T(i) = 10, and so option 1 cannot meet PR3 in all cases.

However, in evaluating architectural option 1’s response to PR3, we must ask “What is t
cost of a missed update?” and “Is it ever acceptable to violate this requirement?” In som
safety-critical applications, the answer would be “no.” In most applications, the answer w
be “yes,” providing that this occurrence was infrequent. The results of this evaluation for
one to reconsider the importance of meeting PR3.

8.2 Performance Analysis of Option 2
The performance characteristics of architectural option 2 are summarized in Table 8-2.

Table 8-2: Performance Analysis for Option 2

One point (which will be discussed further later in this paper) should be noted here: if on

the servers fails, option 2 has the performance and availability characteristics of option 1

8.3 Performance Analysis of Option 3
The performance characteristics of architectural option 3 are summarized in Table 8-3.

Table 8-3: Performance Analysis for Option 3

For this analysis, we have added a new factor: servicing the intelligent cache (adding a
update and recalculating the extrapolation model) takes 100 ms. In this case, the worst-

1. WCPL = worst-case periodic latency; BCPL = best-case periodic latency

WCCL ACPL Jitter

20,560 ms 2,550 ms 9,520 ms

WCCL ACPL Jitter

41,120 ms 5,200 ms ≤20,400 ms
20 CMU/SEI-98-TR-008

eter-
deoff

at
ed or
where
jitter is exactly the same as for option 1: 20,400 ms. However, the intelligent cache exists to
protect the client against some amount of lost data. As a consequence, it can bound the worst-
case jitter. When some preset time period elapses, the intelligent cache can pass a synthesized
update to the client. When the actual update arrives, the cache updates its state accordingly.
Thus, if we trust the intelligent cache, we can bound the worst-case jitter to any desired value.
The smaller the bounding value, the more likely a given update will be synthesized by the
intelligent cache rather than coming directly from the server.

8.4 Critique of the Analysis
This simple performance analysis gives insight into the characteristics of each solution early in
the design process, as befits an architectural-level analysis. As more details are required, the
analyses can be refined, using techniques such as Rate Monotonic Analysis (RMA) [Klein 93],
SPE [Smith 93], simulation, or prototyping. More importantly, a high-level analysis guides our
future investigations, highlighting potential performance “hot-spots,” and allowing us to d
mine areas of architectural sensitivity to performance, which lead us to the location of tra
points.

The ATAM thus promotes analysis at multiple resolutions as a means of minimizing risk
acceptable levels of cost. Areas of high risk are analyzed more deeply (perhaps simulat
prototyped) than the rest of the architecture. And each level of analysis helps determine
to analyze more deeply in the next iteration.
CMU/SEI-98-TR-008 21

22 CMU/SEI-98-TR-008

 tech-

, tak-

f
or the
9 Realize Scenarios/Availability
Analyses

In the availability analysis that follows, we only present the results for the case of 24 failures
per year. As specified by the availability scenarios, we consider two classes of repairs, depend-
ing on the type of failure:

• major failures, such as a burned-out power supply, that require a visit by a hardware
nician to repair, taking 1/2 a day

• minor failures, such as software bugs, that can be “repaired” by rebooting the system
ing 10 minutes

To understand the availability of each of the architectural options, we built and solved a
Markov model. In this analysis, we only considered server availability.

9.1 Availability Analysis of Option 1
Solving the Markov model for option 1 gives the results shown in Table 9-1: 279 hours o
down time per year for the burned-out power supply and almost 4 hours down per year f
faulty operating system.

Table 9-1: Availability of Option 1

Repair Time Failures/yr Availability Hrs down/yr

12 hours 24. 0.96817 278.833

10 minutes 24. 0.99954 3.9982
CMU/SEI-98-TR-008 23

9.2 Availability Analysis of Option 2
We would expect option 2 to have better availability than option 1, since each server acts as a
backup for the other, and we expect the probability of both servers being unavailable to be

small. Solving the Markov model for this architecture, we get the results shown in Table 9-2.

Table 9-2: Availability of Option 2

Table 9-2 shows that option 2 now suffers almost 18 hours of down time per year in the
burned-out power supply case. This indicates that architectural option 2 might still suffer out-
ages if it encounters frequent hardware problems. On the other hand, option 2 shows near-per-
fect availability in the operating system reboot scenario. The availability is shown as perfect
1.0 (the calculations were performed to 5 digits of accuracy). In the worst case of 24 annual
failures option 2 exhibits only 13 seconds of down time per year.

9.3 Availability Analysis of Option 3
Considering architectural option 3, we expect that it will have better availability characteristics
than option 1, but worse than option 2. This is because the intelligent cache, while providing
some resistance to server failures, is not expected to be as trustworthy as an independent
server. Solving the Markov model, we get the results shown in Table 9-3 for a cache that is
assumed to be trustworthy for 5 minutes.

Table 9-3: Availability of Option 3

The results in Table 9-3 show that the 5-minute intelligent cache does little to improve option
3 over option 1 in the scenario with the burnt-out power supply. Option 3 still suffers over 277
hours of down time per year. However, the results for the reboot scenario look more encourag-
ing. The cache reduces down time to 2.7 hours per year. Thus, it appears that the intelligent
cache, if its extrapolation was improved, might provide high availability at low cost (since this
option uses a single server, compared with the replicated servers used in option 2). We will
return to this issue shortly.

Repair Time Failures/yr Availability Hrs down/yr

12 hours 24. 0.99798 17.7327

10 minutes 24. ~1.0 0.0036496

Repair Time Failures/yr Reliability Hrs down/yr

12 hours 24. 0.96839 276.91

10 minutes 24. 0.9997 2.66545
24 CMU/SEI-98-TR-008

 next

that we

(in

llent
when

1 (in
er

t
at
tion

s of

quire-

 more
10 Critique of the Options

Now that we have seen two different attribute analyses, we can comment on the level of gran-
ularity at which a system is analyzed. The ATAM advocates analysis at multiple levels of reso-
lution as a means of minimizing risk at acceptable investments of time and effort. Areas that
are deemed to be of high risk are analyzed and evaluated more deeply than the rest of the
architecture. And each level of analysis helps to determine “hot spots” to focus on in the
iteration. We will illustrate this point next.

The three architectures can be partially characterized and understood by the measures
have just derived. From this analysis, we can conclude the following:

• Option 1 has poor performance and availability. It is also the least expensive option
terms of hardware costs; the detailed cost analyses can be found in [Barbacci 97]).

• Option 2 has excellent availability, but at the cost of extra hardware. It also has exce
performance (when both servers are functioning), and the characteristics of option 1
a single server is down.

• Option 3 has slightly better availability than option 1, better performance than option
that the worst-case jitter can be bounded), slightly greater cost than option 1, and low
cost than option 2.

The conclusions of our analyses also cause us to ask some further questions.

10.1 Further Investigation of Option 2
For example, we need to consider the nature of option 2 with a server failure. Given tha
option 2 is identical to option 1 when one server fails, and we have already concluded th
option 1 has poor performance and availability, it is important to know how much time op
2 will be in that reduced state of service. When we calculate the availability of both servers,
using our worst-case assumption of 24 failures per year, we expect to suffer over 22 day
reduced service.

10.2 Action Plan
Given this understanding of options 2 and 3, we see that neither completely meets its re
ments. While option 2 meets its availability target (for failures that involve rebooting the
server), it leaves the system in a state where its performance targets can not be met for
CMU/SEI-98-TR-008 25

lligent
ility
te the

lysis.
sses

gn
than 22 days per year. Perhaps a combination of options 2 and 3—dual servers and inte
cache on clients—will be a better alternative. This option will provide the superior availab
and performance of option 2, but during the times when one server has failed, we mitiga
jitter problems of the single remaining server by using the intelligent cache.

We could not have made these design decisions without knowledge gained from the ana
Performing a multi-attribute analysis allows one to understand the strengths and weakne
of a system, and of the parts of a system, within a framework that supports making desi
decisions.
26 CMU/SEI-98-TR-008

of

te of

lity,
 way,
11 Sensitivity Analyses

Given that the performance and availability of option 2 were so much better than option 1, we
would suspect that these attributes are sensitive to the number of servers. Sensitivity analysis
confirms this: performance increases linearly as the number of servers increases (up to the
point where there is 1 server per client), and availability increases by roughly an order of mag-
nitude with each additional server [Barbacci 97].

Given that option 3 has some desirable characteristics in terms of cost and jitter, we might ask
if we can improve the intelligent cache sufficiently to make this option acceptable from an
availability perspective. To answer this, we plot option 3’s availability against the length

time during which the intelligent cache’s data is trusted. This plot is shown in Table 11-1.

Figure 11-1: Down Time vs. Intelligent Cache Life

As we can see, an improved intelligent cache does improve availability. However, the ra
improvement in availability as a function of cache life is so small that no reasonable, achiev-
able amount of cache improvement will result in the kind of availability demonstrated for
option 2. In effect, the intelligent cache is an architectural barrier with respect to availabi
because it can not be made to achieve the levels of utility required of it. To put it another
the availability of option 3 is not sensitive to cache life. To increase the availability substan-
tially, other paths must be investigated.

D
ow

n
ti

m
e

(h
ou

rs
/y

ea
r)

Cache life (minutes)
CMU/SEI-98-TR-008 27

28 CMU/SEI-98-TR-008

cur

heir
 cli-
nt from
et-
leads

.

rios:

 by the

e
onment
ment.
consid-
12 Security Analyses

Although we could have been conducting security analyses with the performance and avail-
ability analyses from the start, the ATAM does not require that all attributes be analyzed in
parallel. The ATAM allows the designer to focus on those attributes that are considered to be
primary, and then introduce others later on. This can lead to cost benefits in applying the
method, since what may be costly analyses for some secondary attributes need not be applied
to architectures that were unsuitable for the primary attributes. Though all analyses need not
occur “up front and simultaneously,” the analyses for the secondary attributes can still oc
well before implementation begins.

We will now do another iteration of the ATAM and analyze our three options in terms of t
security. In particular, we will examine the connections between the furnace servers and
ents, since this could be the subject of an attack. The object at risk is the temperature se
the server to the client, since this information is used by the client to adjust the furnace s
tings. Having the temperature tampered with could be a significant safety concern. This
us to the following security requirement:

SR1: The temperature readings must not be corrupted before they arrive at the client

From this generic requirement we will consider the following more specific security scena

• A threat object between the server and operators modifies the temperatures received
operators.

• A server is spoofed to misrepresent temperatures received by the operators.

Our initial security investigation of the architectural options must, once again, make som
environmental assumptions. These assumptions are dependent on the operational envir
of the delivered system and include factors such as operator training and patch manage
These dependencies are out of scope for the analysis at this level of detail, but must be
ered later in the design process.
CMU/SEI-98-TR-008 29

 mid-

mper-
 attack,
s for
bout

d wait
. This
of this
il (the

“kill-

 12-2.
bjective
So, to calculate the probability of a successful attack within an acceptable window of opportu-
nity for an intruder, we define initial values that are reasonable for the functions provided in
the RTS architectures. These values are shown in Table 12-1:

Table 12-1: Environmental Security Assumptions

In addition, we will posit two attack scenarios: one where the intruder uses a “man in the
dle” (MIM) attack, and one where the intruder uses a “spoof-server” attack.

For the MIM attack, the attacker uses a TCP intercept tool to modify the values of the te
atures during transmission. Since there are no specific security countermeasures to this
the only barrier is the 60-minute window of opportunity and the 0.5 probability of succes
the TCP intercept tool. Thus, the rate of successful attack is 0.025 systems/minute, or a
1.5 successful attacks expected in the window of opportunity.

For the spoof-server attack, there are three possible ways to succeed. The intruder coul
for a server to fail, then spoof that server’s address and take over the client connections
presumes that the intruder can determine when a server has failed and take advantage
before the clients time out. Another successful method would be to cause the server to fa
“kill-server” attack), then take over the connections. A third is to disrupt the connections
between the client and server, then establish new connections as a spoofed server (the
connection” attack). For this analysis, it is presumed that the intruder is equally likely to
attempt any of these methods in a given attack, and the results are summarized in Table
Of course, these numbers appear precise, but must be treated as estimates given the su
nature of the environmental assumptions.

Table 12-2: Anticipated Spoof-Attack Success Rates

Attack Components Value
Attack Exposure Window 60 minutes

Attack Rate 0.05 systems/min
Server failure rate 24 failures/year

Prob of server failure
within 1 hour

0.0027
Pr

ob
 o

f
su

cc
es

sf
ul TCP Intercept 0.5

Spoof IP address 0.9
Kill Connection 0.75

Kill Server 0.25

Attack Type Expected Intrusions in 60 Mins

Kill Connection 2.04

Kill Server 0.66

Server Failure 0.0072
30 CMU/SEI-98-TR-008

olu-
 the
ter-

signifi-
d thus
It should be noted that if the system must deal with switching servers and reconnecting clients
when a server goes in and out of service, it will be easier for an intruder to spoof a server and
convince a client to switch to the bogus server. We will return to this point in the sensitivity
analysis.

The results of this analysis show that in each case, it is expected that a penetration will take
place within 60 minutes. For the MIM scenario, the expected number of successful attacks is
1.5, indicating that an intruder would have more than enough time to complete the attack
before detection. For the spoof attack, the number of successful attacks ranges from 0.0072 to
just over 2, again showing that a penetration using this technique is also likely.

12.1 Refined Architectural Options
To address the apparent inadequacy of the three options, we need to cycle around the steps of
the ATAM, proposing new architectures. The modified versions of the options include the
addition of encryption/decryption and the use of the intelligent cache as an intrusion detection
mechanism, as shown in Figure 12-1.

Figure 12-1: Security Modifications

Encryption/decryption needs little explanation; it is the most common security “bolt-on” s
tion. The other security enhancement is not a topological change, but rather a change in
function of the intelligent cache. In this design, the cache uses its predictive values to de
mine if the temperatures supplied by the network are reasonable. A temperature that is
cantly outside a reasonable change range is deemed to be generated by an intruder, an

. .
 .

Furnace Server

Furnace Client 1

Furnace Client 2

Furnace Client n

.

.

.

Furnace Client n-1

IC

IC

IC

IC

E/

D

E/D

E/D

E/D

E/D
CMU/SEI-98-TR-008 31

 mag-

ttack
ct and
mber
tion,
12-5:

r the
ifica-
the cache aids the operator in detecting an intrusion. Adding encryption adds some new envi-
ronmental assumptions which are listed in Table 12-3:

Table 12-3: Additional Security Assumptions

Based on these assumptions, we can calculate the expected number of intrusions. Not surpris-
ingly, the addition of encryption has reduced these substantially—by at least an order of
nitude—in each option, as shown in Table 12-4:

Table 12-4: Spoof Success Rates with Encryption

Our analysis of the intelligent cache changes only one environmental assumption: the “A
Exposure Window” goes down to 5 minutes, since we assume that an operator can dete
respond to an intrusion in that time. Using this form of intrusion detection reduces the nu
of expected intrusions by 1-2 orders of magnitude, giving a result comparable to encryp
but at substantially lower performance and software/hardware costs, as shown in Table

Table 12-5: Spoof Success Rates with Intrusion Detection

At this point, new performance and availability analyses will need to be run to account fo
additional functionality and hardware required by the intelligent cache or encryption mod
tions, thus instigating another trip around the spiral.

Attack Components Value

P
ro

b
of

su
cc

es
sf

ul Decrypt 0.0005

Replay 0.05

Key Distribution 0.09

Attack Type Expected Intrusions in 60 Mins

Kill Connection 0.18225

Kill Server 0.03375

Server Failure 0.0006

Attack Type Expected Intrusions in 60 Mins

Kill Connection 0.16875

Kill Server 0.05625

Server Failure 0.005
32 CMU/SEI-98-TR-008

 is

they
 that

 of

r-
re
e,

accept-
13 Sensitivities and Tradeoffs

Following the ATAM, we are now in a position to do further sensitivity analysis. In particular,
we noted earlier that both availability and performance correlated positively to the number of
servers. A sensitivity analysis with respect to security shows just the opposite—security
negatively correlated with the number of servers. This is for two reasons:

• Going from one to multiple servers requires additional logic within the clients, so that
are able to switch between servers. This provides an entry point for spoofing attacks
does not exist when a client is “hard-wired” to a single server.

• The probability of a server failure within one hour increases linearly with the number
servers, thus increasing the opportunities for server spoofing.

At this point, we have discovered an architectural tradeoff point in the number of servers. Pe
formance and availability are correlated positively, while security and presumably cost a
correlated negatively with the number of servers. We cannot maximize cost, performanc
availability, and security simultaneously. Using this information, we can make informed
tradeoff decisions regarding the level of the various attributes that we can achieve at an
able cost, and we can do so within an analytic framework.
CMU/SEI-98-TR-008 33

34 CMU/SEI-98-TR-008

For
rrive
nd win-
y of

swer
ce by
rance

es, los-

eve the
along
ental
ry
 never-
ithin an
ed in

over

 of

avail-
 look
as
 for

ations

itivity
ysis
f an
14 The Implications of the ATAM

For every assumption that we make in a system’s design, we trade cost for knowledge.
example, if a periodic update is supposed to arrive every 10 seconds, do we want it to a
exactly every 10 seconds, on average every 10 seconds, some time within each 10-seco
dow? To give another example, consider the requirement detailing the worst-case latenc
control packets. As discussed earlier, is this worst case ever acceptable? If so, how frequently
can we tolerate it? The process of analyzing architectural attributes forces us to try to an
these questions. Either we understand our requirements precisely or we pay for ignoran
overengineering or underengineering the system. If we overengineer, we pay for our igno
by making the system needlessly expensive. If we underengineer, we face system failur
ing customers or perhaps even lives.

We cannot believe the numbers that we generated in our analyses. However we can beli
trends—we see order of magnitude differences among designs—and these differences,
with sensitivity analysis, tell us where to investigate further, where to get better environm
information, and where to prototype, which will get us numbers that we can believe. Eve
analysis step that we take precipitates new questions. While this seems like a daunting,
ending prospect, it is manageable because these questions are posed and answered w
analytic attribute framework, and because in architectural analysis we are more interest
finding large effects than in precise estimates.

In addition to concretizing requirements, the ATAM has one other benefit: it helps to unc
implicit requirements. This occurs because attribute analyses are, as we have seen, interdepen-
dent—they depend, at least partially, on a common set of elements, such as the number
servers. However, in the past, they have been modeled as though they were independent. This
is clearly not the case.

Each analyzed attribute has implications for other attributes. For example, although the
ability analysis was only focused on server availability, in a complete analysis, we would
at potential failures of all components, and we would look at different failure types such
dropping a message. If the communication channel is not reliable, we might want to plan
re-sending messages. To do this involves additional computation. Thus one of the implic
of this availability concern is that the performance models of the options under consideration
need to be modified. To recap, we discover attribute interactions in two ways: using sens
analysis to find tradeoff points, and by examining the assumptions that we make for analA
while performing analysis B. The “no re-sending messages” assumption is one example o
CMU/SEI-98-TR-008 35

interaction. This assumption, if false, may have implications for safety, and availability. A
solution will have implications for performance.

In the ATAM, attribute experts create and analyze their models independently and then
exchange information (clarifying or creating new requirements). On the basis of this informa-
tion, they refine their models. The interaction of their analyses and the identification of
tradeoffs has a greater effect on system understanding and stakeholder communication than
any of those analyses could do on their own.

The complexity inherent in most real-world software design implies that an architecture
tradeoff analysis will rarely be a straightforward activity that allows you to proceed linearly to
a perfect solution. Each step of the method answers some design questions and brings some
issues into sharper focus. However, each step often raises new questions and reveals new inter-
actions between attributes which may require further analysis, sometimes at different levels of
abstraction. Such obstacles are an intrinsic part of a detailed methodical exploration of the
design space and cannot be avoided. Managing the conflicts and interactions that are revealed
by the ATAM places heavy demands on the analysis skills of the individual attribute experts.
Success depends largely on the ability of those experts to transcend barriers of differing termi-
nology and methodology to understand the implications of inter-attribute dependencies, and to
jointly devise candidate architectural solutions for further analysis. As burdensome as this may
appear to be, it is better to intensively manage these attribute interactions early in the design
process than to wait until some unfortunate consequences of the interactions are revealed in a
deployed system.
36 CMU/SEI-98-TR-008

 have
rios

 archi-
 each
tures.
ts,
ction

15 Conclusions

The ATAM was motivated by a desire to make rational choices among competing architec-
tures, based upon well-documented analyses of system attributes, concentrating on the identi-
fication of tradeoff points. The ATAM also serves as a vehicle for the early clarification of
requirements. As a result of performing an architecture tradeoff analysis, we have an enhanced
understanding of, and confidence in, a system’s ability to meet its requirements. We also
a documented rationale for the architectural choices made, consisting of both the scena
used to motivate the attribute-specific analyses and the results of those analyses.

Consider the RTS case study: we began with vague requirements and enumerated three
tectural options. The analytical framework helped determine the useful characteristics of
of the architectural options and highlighted the costs and benefits of the architectural fea
More importantly, the ATAM helped determine the locations of architectural tradeoff poin
which helped us understand the limits of each option. This helped us develop informed a
plans for modifying the architecture, leading to new evaluations and new iterations of the
method.
CMU/SEI-98-TR-008 37

38 CMU/SEI-98-TR-008

n
References

[Barbacci 97] Barbacci, M.; Carriere, J.; Kazman, R.; Klein, M.; Lipson, H.;
Longstaff, T.; Weinstock, C. Steps in an Architecture Tradeoff
Analysis Method: Quality Attribute Models and Analysis.
(CMU/SEI-97-TR-29 ADA188100). Pittsburgh, PA: Carnegie
Mellon University, Software Engineering Institute, 1997.

[Bass 98] Bass, L.; Clements, P.; Kazman, R. Software Architecture in
Practice, Reading, MA: Addison-Wesley, 1998.

[Boehm 86] Boehm, B. “A Spiral Model of Software Development and
Enhancement.” ACM Software Eng. Notes 11, 4 (August 1986):
22-42.

[Kazman 96] Kazman, R.; Abowd, G.; Bass, L.; & Clements, P. “Scenario-
Based Analysis of Software Architecture.” IEEE Software 13, 6
(November 1996): 47-55.

[Klein 93] Klein, M.; Ralya, T.; Pollak, B.; Obenza, R.; & Gonzales Har-
bour, M. A Practitioner’s Handbook for Real-Time Analysis.
Boston, MA: Kluwer Academic, 1993.

[McCall 94] McCall, J. “Quality Factors”, 958-969. Encyclopedia of Soft-
ware Engineering (Marciniak, J., ed.). Vol. 2. New York, NY:
Wiley, 1994.

[Smith 93] Smith, C. & Williams, L. “Software Performance Engineering:
A Case Study Including Performance Comparison with Desig
Alternatives.” IEEE Transactions on Software Engineering 19,
7 (July 1993): 720-741.
CMU/SEI-98-TR-008 39

40 CMU/SEI-98-TR-008

ll

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE

July 1998

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

The Architecture Tradeoff Analysis Method

5. FUNDING NUMBERS

C — F19628-95-C-0003

6. AUTHOR(S)

Rick Kazman, Mark Klein, Mario Barbacci, Tom Longstaff, Howard Lipson,
Jeromy Carriere

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-98-TR-008

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-98-008

11. SUPPLEMENTARY NOTES

12.a DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.b DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This paper presents the Architecture Tradeoff Analysis Method (ATAM), a structured technique for
understanding the tradeoffs inherent in the architectures of software-intensive systems. This method was
developed to provide a principled way to evaluate a software architecture’s fitness with respect to multiple
competing quality attributes: modifiability, security, performance, availability, and so forth. These attributes
interact, and improving one often comes at the price of worsening one or more of the others. The method
helps us reason about architectural decisions that affect quality attribute interactions. The ATAM is a spiral
model of design, one of postulating candidate architectures followed by analysis and risk mitigation that lead
to refined architectures.

14. SUBJECT TERMS

architecture analysis, software architecture, tradeoffs

15. NUMBER OF PAGES

40
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY
CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Architecture Tradeoff Analysis
	2 Why Use Architecture Tradeoff Analysis?
	3 The ATAM
	3.1 The Steps of the Method
	3.2 Iterations of the ATAM

	4 An Example Analysis
	4.1 System Description

	5 Collect Scenarios
	6 Collect Requirements/Constraints/ Environment
	7 Describe Architectural Views
	7.1 Architectural Option 1 (Client-Server)
	7.2 Architectural Option 2 (Client-Server-Server)
	7.3 Architectural Option 3 (Client-Intelligent Cac...

	8 Realize Scenarios/Performance Analyses
	8.1 Performance Analysis of Option 1
	8.2 Performance Analysis of Option 2
	8.3 Performance Analysis of Option 3
	8.4 Critique of the Analysis

	9 Realize Scenarios/Availability Analyses
	9.1 Availability Analysis of Option 1
	9.2 Availability Analysis of Option 2
	9.3 Availability Analysis of Option 3

	10 Critique of the Options
	10.1 Further Investigation of Option 2
	10.2 Action Plan

	11 Sensitivity Analyses
	12 Security Analyses
	12.1 Refined Architectural Options

	13 Sensitivities and Tradeoffs
	14 The Implications of the ATAM
	15 Conclusions
	References

