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Abstract

The language Casl is central to CoFI, the Common Framework Ini-
tiative for algebraic specification and development. It is a reasonably
expressive algebraic language for specifying requirements and design
for conventional software. From Casl, simpler languages (e.g., for in-
terfacing with existing tools) are to be obtained by restriction, and
Casl is to be incorporated in more advanced languages (e.g., higher-
order). Casl strikes a balance between simplicity and expressiveness.
The main features of its design are as follows:
Many-sorted basic specifications in Casl denote classes of many-sorted
partial first-order structures: algebras where the functions are partial
or total, and where also predicates are allowed. Axioms are first-order
formulae built from equations and definedness assertions. Sort gener-
ation constraints can be stated. Datatype declarations are provided
for concise specification of sorts together with some constructors and
(optional) selectors. Subsorted basic specifications provide moreover a
simple treatment of subsorts, interpreting subsort inclusion as embed-
ding.
Structured specifications allow translation, reduction, union, and ex-
tension of specifications. Extensions may be required to be free; ini-
tiality constraints are a special case. A simple form of generic speci-
fications is provided, together with instantiation involving parameter-
fitting translations and views.
Architectural specifications express that the specified software is to be
composed from separately-developed, reusable units with clear inter-
faces.
Finally, specification libraries allow the (distributed) storage and re-
trieval of named specifications.
This document gives a detailed summary of the syntax and intended
semantics of Casl. It is intended for readers who are already familiar
with the main concepts of algebraic specifications.
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About this document

This document gives a detailed summary of the syntax and intended seman-
tics of Casl. It is intended for readers who are already familiar with the
main concepts of algebraic specification. In general, it does not attempt
to motivate the design choices that have been taken; a rationale for the
design has been published separately [Mos97], as has a full exposition of
architectural specifications [BST00, BST98]. The formal semantics of Casl
is available [CoF99].

Structure

Part I (Chapters 1, 2, 3, 4) deals with basic specifications—first many-sorted,
then subsorted.

Part II (Chapters 5, 6) provides structured specifications, together with spec-
ification definitions, instantiations, and views.

Part III (Chapters 7, 8) summarizes so-called architectural and unit specifica-
tions, which, in contrast to structured specifications, prescribe the separate
development of composable, reusable implementation units.

Finally, Part IV (Chapters 9, 10) considers specification libraries.

In each part, a chapter summarizing the main semantic concepts underlying
the kind of specification concerned is followed by a chapter presenting the
(concrete and abstract) syntax of the associated Casl language constructs
and indicating their intended semantics.

The Index may facilitate locating the places in this document where termi-
nology is explained.

Appendix A provides a complete grammar for the abstract syntax of the
language, collecting the fragments that are given in the semantics summary.
Appendix B provides an abbreviated grammar (for the same abstract syn-
tax).
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Appendix C provides a complete grammar for the concrete syntax of the
language, determining how Casl specifications are to be input. (The rela-
tionship between concrete and abstract syntax is mostly rather straightfor-
ward, and left implicit here.) Appendix D summarizes the intended display
format for Casl, showing how Casl specifications appear when displayed
after parsing.

Appendix E illustrates the syntax of Casl by giving some simple examples.
(A systematic library of useful specifications is available separately [RM00].)

Versions

Version 0.95 of this document was the summary of the complete Casl Ten-
tative Design [CoF96], available since December 1996.

CoFI Note S-1 [CoF97c] extended the cited Tentative Design Language
Summary with annotations concerning some questions and doubts raised
by the Semantics task group, in connection with their development of a
formal semantics for Casl, see CoFI Note S-4 [CoF97d]; CoFI Note S-1
has since been updated with an indication of how the issues were expected
to be resolved.

Version 0.96 was the first draft of the Summary of the CASL Proposed
Design, resolving almost all the issues that had been raised concerning the
Tentative Design.

Version 0.97 [CoF97b] incorporated some relatively minor enhancements to
the Proposed Design, suggested shortly after version 0.96 became available
(April 1997). CoFI Note S-6 [CoF97e] provided a completed draft semantics
for this version. Version 0.97 was reviewed by IFIP WG1.3 [IFI97], resulting
in tentative approval of the design.

Version 0.98 showed just which bits of Casl were subject to reconsideration,
in view of the referees’ comments [CoF97a] and the recommendations made
by the CoFI Semantics Task Group [CoF97e].

Version 0.99 summarized what was almost the final Casl Design, now also
incorporating concrete syntax (the syntax of views and architectural speci-
fications was, however, still somewhat tentative).

CoFI Note M-4 [BST00] provided an updated rationale for the design of
architectural specifications in Casl.

The Summary of Casl version 1.0 reflected various minor adjustments to
the details of Casl, arising mainly from the work on the formal seman-
tics of Casl and on the implementation of parsers. It also incorporated
a significant revision of the treatment of views. The original release was
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in October 1998; a subsequent release in July 1999 incorporated numerous
minor clarifications and corrections, and was accompanied by the complete
formal semantics of Casl v1.0 [CoF99] (also available as Semantics Note
S-9).

The present Summary of Casl version 1.0.1 reflects some changes that have
been made concerning the concrete syntax of Casl v1.0 (facilitating the
use of bulleted lists of axioms and local variable declarations, and affecting
the form and position of comments and annotations). The abstract syn-
tax and semantics of Casl v1.0.1 are the same as for Casl v1.0, apart
from a relaxation concerning operations declared both as total and partial,
and an adjustment of the semantics of architectural specifications (concern-
ing whether sharing analysis affects well-formedness). Further clarifications
have been made to the wording of Summary. A list all of the changes3

relative to the Summary of Casl v1.0 is available.

The preliminary response by the Language Design task group to the IFIP
WG1.3 referees [CoF97a] has been expanded to clarify the extent to which
the referees’ recommendations have been followed [CoF00].

Contributors

The CoFI Language Design Task Group was formed at the founding meeting
of the Common Framework Initiative, in Oslo, September 1995. The work-
ing meetings held in Paris (November 1995), Munich (January 1996), Oxford
(March 1996), Paris (May 1996), Munich (July 1996), Edinburgh (Novem-
ber 1996), Paris (January and April 1997), Amsterdam (September 1997),
Bremen (January 1998), and finally Lisbon (April 1998) helped to guide the
subsequent design of Casl. The following persons have participated in some
or all of these meetings: Egidio Astesiano, Hubert Baumeister, Jan Bergstra,
Gilles Bernot, Didier Bert, Mohammed Bettaz, Michel Bidoit, Mark van
den Brand, Maria Victoria Cengarle, Maura Cerioli, Christine Choppy,
Ole-Johan Dahl, Hans-Dieter Ehrich, Hartmut Ehrig, José Fiadeiro, Marie-
Claude Gaudel, Chris George, Joseph Goguen, Radu Grosu, Magne Haver-
aaen, Anne Haxthausen, Jim Horning, Hélène Kirchner, Kolyang, Hans-Jörg
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Maibaum, Grant Malcolm, Karl Meinke, Till Mossakowski, Peter D. Mosses,
Peter Padawitz, Fernando Orejas, Olaf Owe, Gianna Reggio, Horst Reichel,
Don Sannella, Giuseppe Scollo, Amilcar Sernadas, Andrzej Tarlecki, Eelco
Visser, Frédéric Voisin, Eric Wagner, Micha l Walicki, and Martin Wirsing.

The acronym Casl for the Common Algebraic Specification Language was
3http://www.brics.dk/Projects/CoFI/Documents/CASL/v1.0.1/Summary-Changes/
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Chapter 1

Basic Concepts

First, before considering the particular concepts underlying Casl, here is a
brief reminder of how specification frameworks in general may be formalized
in terms of so-called institutions [GB92] (some category-theoretic details
are omitted) and proof systems.

A basic specification framework may be characterized by:

• a class Sig of signatures Σ, each determining the set of symbols
|Σ| whose intended interpretation is to be specified, with morphisms
between signatures;

• a class Mod(Σ) of models, with homomorphisms between them,
for each signature Σ;

• a set Sen(Σ) of sentences (or axioms), for each signature Σ;

• a relation |= of satisfaction , between models and sentences over the
same signature; and

• a proof system , for inferring sentences from sets of sentences.

A basic specification consists of a signature Σ together with a set of
sentences from Sen(Σ). The signature provided for a particular declaration
or sentence in a specification is called its local environment . It may be a
restriction of the entire signature of the specification, e.g., determined by an
order of presentation for the signature declarations and the sentences with
linear visibility , where symbols may not be used before they have been
declared; or it may be the entire signature, reflecting non-linear visibility .

The (loose) semantics of a basic specification is the class of those models in
Mod(Σ) which satisfy all the specified sentences. A specification is said to
be consistent when there are some models that satisfy all the sentences, and

2



1.1. SIGNATURES 3

inconsistent when there are no such models. A sentence is a consequence
of a basic specification if it is satisfied in all the models of the specification.

A signature morphism σ : Σ → Σ′ determines a translation function
Sen(σ) on sentences, mapping Sen(Σ) to Sen(Σ′), and a reduct function
Mod(σ) on models, mapping Mod(Σ′) to Mod(Σ).1 Satisfaction is re-
quired to be preserved by translation: for all S ∈ Sen(Σ),M ′ ∈ Mod(Σ′),

Mod(σ)(M ′) |= S ⇐⇒ M ′ |= Sen(σ)(S).

The proof system is required to be sound, i.e., sentences inferred from a
specification are always consequences; moreover, inference is to be preserved
by translation.

Sentences of basic specifications may include constraints that restrict the
class of models, e.g., to reachable ones.

The rest of this chapter considers many-sorted basic specifications of the
Casl specification framework, and indicates the underlying signatures, mod-
els, and sentences.2 Consideration of the extra features concerned with sub-
sorts is deferred to Chapter 3.

The syntax of the language constructs used for expressing many-sorted basic
specifications is described in Chapter 2; subsorting constructs are deferred
to Chapter 4. The abstract syntax of any well-formed basic specification
determines a signature and a set of sentences, the models of which provide
the semantics of the basic specification.

1.1 Signatures

A many-sorted signature Σ = (S,TF ,PF , P ) consists of:

• a set S of sorts;

• sets TFw,s, PFw,s, of total function symbols, respectively partial
function symbols, such that TFw,s ∩ PFw,s = ∅, for each function
profile (w, s) consisting of a sequence of argument sorts w ∈ S∗

and a result sort s ∈ S (constants are treated as functions with no
arguments);

• sets Pw of predicate symbols, for each predicate profile consisting of a
sequence of argument sorts w ∈ S∗.

1 In fact Sig is a category, and Sen(.) and Mod(.) are functors. The categorial aspects
of the semantics of Casl are emphasized in its formal semantics [CoF97e].

2The choice of a particular proof system for Casl has been investigated, but not yet
decided.
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Constants and functions are also referred to as operations, following the
traditions of algebraic specification.

Note that symbols used to identify sorts, operations, and predicates may be
overloaded , occurring in more than one of the above sets. To ensure that
there is no ambiguity in sentences at this level, however, function symbols f
and predicate symbols p are always qualified by profiles when used, written
fw,s and pw respectively. (The language considered in Chapter 2 allows the
omission of such qualifications when these are unambiguously determined
by the context.)

A many-sorted signature morphism σ : (S,TF ,PF , P ) → (S′,TF ′,PF ′, P ′)
consists of a mapping from S to S′, and for each w ∈ S∗, s ∈ S, a mapping
between the corresponding sets of function, resp. predicate symbols. A par-
tial function symbol may be mapped also to a total function symbol, but
not vice versa.

1.2 Models

For a many-sorted signature Σ = (S,TF ,PF , P ) a many-sorted model
M ∈ Mod(Σ) is a many-sorted first-order structure consisting of a
many-sorted partial algebra :

• a non-empty carrier set sM for each sort s ∈ S (let wM denote the
Cartesian product sM

1 × · · · × sM
n when w = s1 . . . sn),

• a partial function fM from wM to sM for each function symbol
f ∈ TFw,s or f ∈ PFw,s, the function being required to be total in
the former case,

together with:

• a predicate pM ⊆ wM for each predicate symbol p ∈ Pw.

A (weak) many-sorted homomorphism h from M1 to M2, with M1,M2 ∈
Mod(S,TF ,PF , P ), consists of a function hs : sM1 → sM2 for each s ∈ S

preserving not only the values of functions but also their definedness, and
preserving the truth of predicates.

Any signature morphism σ : Σ → Σ′ determines the many-sorted reduct
of each model M ′ ∈ Mod(Σ′) to a model M ∈ Mod(Σ), defined by inter-
preting symbols of Σ in M in the same way that their images under σ are
interpreted in M ′.
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1.3 Sentences

The many-sorted terms on a signature Σ = (S,TF ,PF , P ) and a set of
sorted, non-overloaded variables X are built from:

• variables from X;

• applications of qualified function symbols in TF ∪ PF to argument
terms of appropriate sorts.

We refer to such terms as fully-qualified terms, to avoid confusion with
the terms of the language considered in Chapter 2, which allow the omission
of qualifications and explicit sorts when these are unambiguously determined
by the context.

For a many-sorted signature Σ = (S,TF ,PF , P ) the many-sorted sen-
tences in Sen(Σ) are the usual closed many-sorted first-order logic formu-
lae, built from atomic formulae using quantification (over sorted variables)
and logical connectives. An inner quantification over a variable makes a hole
in the scope of an outer quantification over the same variable, regardless of
the sorts of the variables. Implication may be taken as primitive (in the
presence of an always-false formula), the other connectives being regarded
as derived.

The atomic formulae are:

• applications of qualified predicate symbols p ∈ P to argument terms
of appropriate sorts;

• assertions about the definedness of fully-qualified terms;

• existential and strong equations between fully-qualified terms of the
same sort.

Definedness assertions may be derived from existential equations using con-
junction, or regarded as applications of fixed predicates. Strong equations
may be derived from existential equations, using implication and conjunc-
tion; existential equations may be derived from conjunctions of strong equa-
tions and definedness assertions, or regarded as applications of fixed predi-
cates.

The sentences Sen(Σ) also include sort-generation constraints. Let Σ =
(S,TF ,PF , P ). A sort-generation constraint consists of (S′, F ′) with S′ ⊆ S
and F ′ ⊆ TF ∪ PF . 3

3The translation of such constraints along signature morphisms adds a further compo-
nent, for technical reasons.
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1.4 Satisfaction

The satisfaction of a sentence in a structure M is determined as usual by
the holding of its atomic formulae w.r.t. assignments of (defined) values to
all the variables that occur in them, the values assigned to variables of sort
s being in sM . The value of a term w.r.t. a variable assignment may be
undefined, due to the application of a partial function during the evaluation
of the term. Note, however, that the satisfaction of sentences is 2-valued (as
is the holding of open formulae with respect to variable assignments).

The application of a predicate symbol p to a sequence of argument terms
holds in M iff the values of all the terms are defined and give a tuple belong-
ing to pM . A definedness assertion concerning a term holds iff the value of
the term is defined (thus it corresponds to the application of a constantly-
true unary predicate to the term). An existential equation holds iff the
values of both terms are defined and identical, whereas a strong equation
holds also when the values of both terms are undefined.

The value of an occurrence of a variable in a term is that provided by the
given variable assignment. The value of the application of a function symbol
f to a sequence of argument terms is defined only if the values of all the
argument terms are defined and give a tuple in the domain of definedness
of fM , and then it is the associated result value.

A sort-generation constraint (S′, F ′) is satisfied in a Σ-model M if the carri-
ers of the sorts in S′ are generated by the function symbols in F ′. I.e., every
element of each sort in S′ is the value of a term built from just these symbols
(possibly using variables of sorts not in S′, with appropriate assignments of
values to them).
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Chapter 2

Basic Constructs

This chapter indicates the abstract and concrete syntax of the constructs
of many-sorted basic specifications, and describes their intended interpreta-
tion.

For an introduction to the form of grammar used here to define the abstract
syntax of language constructs, see Appendix A, which also provides the com-
plete grammar defining the abstract syntax of the entire Casl specification
language.

BASIC-SPEC ::= basic-spec BASIC-ITEMS*

A well-formed many-sorted basic specification BASIC-SPEC in the Casl
language is written simply as a sequence of BASIC-ITEMS constructs:

BI1 . . . BIn

The empty basic specification is not usually needed, but can be written ‘{ }’.

This language construct determines a basic specification within the underly-
ing many-sorted institution, consisting of a signature and a set of sentences
of the form described in Chapter 1. This signature and the class of models
over it that satisfy the set of sentences provide the semantics of the basic
specification. Thus this chapter explains well-formedness of basic specifi-
cations, and the way that they determine the underlying signatures and
sentences, rather than directly explaining the intended interpretation of the
constructs.

While well-formedness of specifications in the language can be checked stati-
cally, the question of whether the value of a term that occurs in a well-formed
specification is necessarily defined in all models may depend on the specified
axioms (and it is not decidable in general).

7
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BASIC-ITEMS ::= SIG-ITEMS | FREE-DATATYPE | SORT-GEN

| VAR-ITEMS | LOCAL-VAR-AXIOMS | AXIOM-ITEMS

A BASIC-ITEMS construct is always a list, written:

plural -keyword X1 ; . . . Xn ;

The plural -keyword may also be written in the singular (regardless of the
number of items), and the final ‘;’ may be omitted.

Each BASIC-ITEMS construct determines part of a signature and/or some
sentences (except for VAR-ITEMS, which merely declares some global vari-
ables). The order of the basic items is generally significant: there is linear
visibility of declared symbols and variables in a list of BASIC-ITEMS con-
structs (except within a list of datatype declarations). Verbatim repetition
of the declaration of a symbol is allowed, and does not affect the semantics
(some tools may however be able to locate and warn about such duplications,
in case they were not intentional).

A list of signature declarations and definitions SIG-ITEMS determines part of
a signature and possibly some sentences. A FREE-DATATYPE construct deter-
mines part of a signature together with some sentences. A sort-generation
construct SORT-GEN determines part of a signature, together with some sen-
tences including a corresponding sort generation constraint. A list of variable
declaration items VAR-ITEMS determines sorted variables that are implicitly
universally quantified in the subsequent axioms of the enclosing basic spec-
ification; note that variable declarations do not contribute to the signature
of the specification in which they occur. A LOCAL-VAR-AXIOMS construct re-
stricts the scope of the variable declarations to the indicated list of axioms.
(Variables may also be declared locally in individual axioms, by explicit
quantification.) An AXIOM-ITEMS construct determines a set of sentences.

2.1 Signature Declarations

SIG-ITEMS ::= SORT-ITEMS | OP-ITEMS | PRED-ITEMS

| DATATYPE-ITEMS

A list SORT-ITEMS of sort declarations determines one or more sorts. A
list OP-ITEMS of operation declarations and/or definitions determines one
or more operation symbols, and possibly some sentences; similarly for a
list PRED-ITEMS of predicate declarations and/or definitions. Operation and
predicate symbols may be overloaded, being declared with several different
profiles in the same local environment. A list DATATYPE-ITEMS of datatype
declarations determines one or more sorts together with some constructor
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and (optional) selector operations, and sentences defining the selector opera-
tions on the values given by the constructors with which they are associated.

2.1.1 Sorts

SORT-ITEMS ::= sort-items SORT-ITEM+

SORT-ITEM ::= SORT-DECL

A list SORT-ITEMS of sort declarations is written:

sorts SI1 ; . . . SIn ;

2.1.1.1 Sort Declarations

SORT-DECL ::= sort-decl SORT+

SORT ::= TOKEN-ID

A sort declaration SORT-DECL is written:

s1 , . . . , sn

It declares each of the sorts in the list s1 , . . . , sn .

2.1.2 Operations

OP-ITEMS ::= op-items OP-ITEM+

OP-ITEM ::= OP-DECL | OP-DEFN

A list OP-ITEMS of operation declarations and definitions is written:

ops OI1 ; . . . OIn ;

2.1.2.1 Operation Declarations

OP-DECL ::= op-decl OP-NAME+ OP-TYPE OP-ATTR*

OP-NAME ::= ID

An operation declaration OP-DECL is written:

f1 , . . . , fn : T ,A1 , . . . ,Am

When the list A1 , . . . , Am is empty, the declaration is written simply:

f1 , . . . , fn : T
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It declares each operation name f1 , . . . , fn as a total or partial operation,
with profile as specified by the operation type T , and as having the attributes
A1 , . . . , Am (if any). If an operation is declared both as total and as
partial with the same profile, the resulting signature only contains the total
operation.

Operation Types

OP-TYPE ::= TOTAL-OP-TYPE | PARTIAL-OP-TYPE

TOTAL-OP-TYPE ::= total-op-type SORT-LIST SORT

PARTIAL-OP-TYPE ::= partial-op-type SORT-LIST SORT

SORT-LIST ::= sort-list SORT*

A total operation type TOTAL-OP-TYPE with some argument sorts is written:

s1 × . . .× sn → s

When the list of argument sorts is empty, the type is simply written ‘s’.
The sign displayed as ‘×’ may be input as ‘×’ in ISO Latin-1, or as ‘*’ in
ASCII. The sign displayed as ‘→’ is input as ‘->’.

A partial operation type PARTIAL-OP-TYPE with some argument sorts is
written:

s1 × . . .× sn →? s

When the list of argument sorts is empty, the type is simply written ‘? s’.

The operation profile determined by the type has argument sorts s1 , . . . , sn
and result sort s.

Operation Attributes

OP-ATTR ::= BINARY-OP-ATTR | UNIT-OP-ATTR

BINARY-OP-ATTR ::= assoc-op-attr | comm-op-attr | idem-op-attr

UNIT-OP-ATTR ::= unit-op-attr TERM

Operation attributes assert that the operations being declared (which must
be binary) have certain common properties, which are characterized by
strong equations, universally quantified over variables of the appropriate
sort. (This can also be used to add attributes to operations that have pre-
viously been declared without them.)

The attribute assoc-op-attr is written ‘assoc’. It asserts the associativity
of an operation f :

f (x , f (y , z )) = f (f (x , y), z )
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The attribute of associativity moreover implies a parsing annotation that
allows an infix operation f of the form ‘ t ’ (or ‘ ’) to be iterated
without explicit grouping parentheses.

The attribute comm-op-attr is written ‘comm’. It asserts the commuta-
tivity of an operation f :

f (x , y) = f (y , x )

The attribute idem-op-attr is written ‘idem’. It asserts the idempotency
of an operation f :

f (x , x ) = x

The attribute UNIT-OP-ATTR is written ‘unit T ’. It asserts that the value of
the term T is the unit (left and right) of an operation f :

f (T , x ) = x ∧ f (x ,T ) = x

In practice, the unit T is normally a constant. In any case, T must not
contain any variables.

The declaration enclosing an operation attribute is ill-formed unless the
operation profile has exactly two argument sorts, both the same as the
result sort.

2.1.2.2 Operation Definitions

OP-DEFN ::= op-defn OP-NAME OP-HEAD TERM

OP-HEAD ::= TOTAL-OP-HEAD | PARTIAL-OP-HEAD

TOTAL-OP-HEAD ::= total-op-head ARG-DECL* SORT

PARTIAL-OP-HEAD ::= partial-op-head ARG-DECL* SORT

ARG-DECL ::= arg-decl VAR+ SORT

VAR ::= SIMPLE-ID

A definition OP-DEFN of a total operation with some arguments is written:

f (v11 , . . . , v1m1 : s1 ; . . . ; vn1 , . . . , vnmn : sn) : s = T

When the list of arguments is empty, the definition is simply written:

f : s = T

A definition OP-DEFN of a partial operation with some arguments is written:

f (v11 , . . . , v1m1 : s1 ; . . . ; vn1 , . . . , vnmn : sn) :? s = T

When the list of arguments is empty, the definition is simply written:

f :? s = T
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It declares the operation name f as a total, respectively partial operation,
with a profile having argument sorts s1 (m1 times), . . . , sn (mn times) and
result sort s. It also asserts the strong equation:

f (v11 , . . . , vnmn ) = T

universally quantified over the declared argument variables (which must be
distinct, and are the only ones allowed in T ), or just ‘f = T ’ when the list
of arguments is empty.

In each of the above cases, the operation name f may occur in the term T ,
and may have any interpretation satisfying the equation—not necessarily
the least fixed point.

2.1.3 Predicates

PRED-ITEMS ::= pred-items PRED-ITEM+

PRED-ITEM ::= PRED-DECL | PRED-DEFN

PRED-NAME ::= ID

A list PRED-ITEMS of predicate declarations and definitions is written:

preds PI1 ; . . . PIn ;

2.1.3.1 Predicate Declarations

PRED-DECL ::= pred-decl PRED-NAME+ PRED-TYPE

A predicate declaration PRED-DECL is written:

p1 , . . . , pn : T

It declares each predicate name p1 , . . . , pn as a predicate, with profile as
specified by the predicate type T .

Predicate Types

PRED-TYPE ::= pred-type SORT-LIST

A predicate type PRED-TYPE with some argument sorts is written:

s1 × . . .× sn

The sign displayed as ‘×’ may be input as ‘×’ in ISO Latin-1, or as ‘*’ in
ASCII. When the list of argument sorts is empty, the type is written ‘()’.

The predicate profile determined by the type has argument sorts s1 , . . . , sn .
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2.1.3.2 Predicate Definitions

PRED-DEFN ::= pred-defn PRED-NAME PRED-HEAD FORMULA

PRED-HEAD ::= pred-head ARG-DECL*

A definition PRED-DEFN of a predicate with some arguments is written:

p(v11 , . . . , v1m1 : s1 ; . . . ; vn1 , . . . , vnmn : sn) ⇔ F

When the list of arguments is empty, the definition is simply written:

p ⇔ F

The sign displayed as ‘⇔’ is input as ‘<=>’.

It declares the predicate name p as a predicate, with a profile having argu-
ment sorts s1 (m1 times), . . . , sn (mn times). It also asserts the equivalence:

p(v11 , . . . , vnmn ) ⇔ F

universally quantified over the declared argument variables (which must be
distinct, and are the only ones allowed in F ), or just ‘p ⇔ F ’ when the list
of arguments is empty. The predicate name p may occur in the formula F ,
and may have any interpretation satisfying the equivalence.

2.1.4 Datatypes

DATATYPE-ITEMS ::= datatype-items DATATYPE-DECL+

A list DATATYPE-ITEMS of datatype declarations is written:

types DD1 ; . . . DDn ;

The order of the datatype declarations is not significant: there is non-linear
visibility of the declared sorts in a list (in contrast to the linear visibility
between the BASIC-ITEMS of a BASIC-SPEC, and between the SIG-ITEMS of
a SORT-GEN).

2.1.4.1 Datatype Declarations

DATATYPE-DECL ::= datatype-decl SORT ALTERNATIVE+

A datatype declaration DATATYPE-DECL is written:

s ::= A1 | . . . | An
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It declares the sort s. For each alternative construct A1 , . . . , An , it declares
the specified constructor and selector operations, and determines sentences
asserting the expected relationship between selectors and constructors. All
sorts used in an alternative construct must be declared in the local environ-
ment (which always includes the sort declared by the datatype declaration
itself).

Note that a datatype declaration allows models where the ranges of the
constructors are not disjoint, and where not all values are the results of
constructors. This looseness can be eliminated in a general way by use of
free extensions in structured specifications (as summarized in Part II), or by
use of free datatypes within basic specifications (see below). Unreachable
values can be eliminated also by the use of sort generation constraints.

Alternatives

ALTERNATIVE ::= TOTAL-CONSTRUCT | PARTIAL-CONSTRUCT

TOTAL-CONSTRUCT ::= total-construct OP-NAME COMPONENTS*

PARTIAL-CONSTRUCT ::= partial-construct OP-NAME COMPONENTS+

A total constructor TOTAL-CONSTRUCT with some components is written:

f (C1 ; . . . ; Cn)

When the list of components is empty, the constructor is simply written ‘f ’.

A partial constructor PARTIAL-CONSTRUCT with some components is written:

f (C1 ; . . . ; Cn)?

(Partial constructors without components are not expressible in datatype
declarations.)

The alternative declares f as an operation. Each component C1 , . . . , Cn

specifies one or more argument sorts for the profile; the result sort is the
sort s declared by the enclosing datatype declaration.

Components

COMPONENTS ::= TOTAL-SELECT | PARTIAL-SELECT | SORT

TOTAL-SELECT ::= total-select OP-NAME+ SORT

PARTIAL-SELECT ::= partial-select OP-NAME+ SORT

A declaration TOTAL-SELECT of total selectors is written:

f1 , . . . , fn : s
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A declaration PARTIAL-SELECT of partial selectors is written:

f1 , . . . , fn :? s

The remaining case is a component sort without any selector, simply written
‘s’.

In the first two cases, it provides n components: the sort s is taken as
an argument sort n times for the constructor operation declared by the
enclosing alternative, and it declares f1 , . . . , fn as selector operations for the
respective components. In the first case, each selector operation is declared
as total, and in the second case, as partial. It also determines sentences that
define the value of each selector on the values given by the constructor of
the enclosing alternative.

In the last case, it provides the sort s only once as an argument sort for the
constructor of the enclosing alternative, and it does not declare any selector
operation for that component.

Note that when there is more than one alternative construct in a datatype
declaration, selectors are usually partial, and must therefore be declared as
such; their values on constructs for which they are not declared as selectors
are left unspecified. A list of datatype declarations must not declare a
function symbol both as a constructor and selector with the same profiles.

2.1.4.2 Free Datatype Declarations

FREE-DATATYPE ::= free-datatype DATATYPE-ITEMS

A list FREE-DATATYPE of free datatype declarations is written:

free types DD1 ; . . . DDn ;

This construct is only well-formed when all the constructors declared by
the datatype declarations are total. Moreover, the constructors and selec-
tors must be distinct (as qualified symbols) from each other and from the
operations declared in the local environment.

The free datatype declarations declare the same sorts, constructors, and se-
lectors as ordinary datatype declarations. Apart from the sentences that
define the values of selectors, the free datatype declarations determine addi-
tional sentences requiring that the constructors are injective, that the ranges
of constructors of the same sort are disjoint, that all the declared sorts are
generated by the constructors, and that the value of applying a selector to
a constructor for which it has not been declared is always undefined. (The
sentences ensure that the models, if any, are the same as for a free extension
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with the datatype declarations, provided that the sorts and qualified opera-
tion symbols declared by the datatype declaration are not already declared
in the local environment.)

When the alternatives of a free datatype declaration are all constants, the
declared sort corresponds to an (unordered) enumeration type.

2.1.5 Sort Generation

SORT-GEN ::= sort-gen SIG-ITEMS+

A sort generation SORT-GEN is written:

generated { SI1 . . . SIn };

When the list of SIG-ITEMS is a single DATATYPE-ITEMS construct, writing
the grouping signs is optional:

generated types DD1 ; . . . DDn ;

(The terminating ‘;’ is optional in both cases.)

It determines the same elements of signature and sentences as SI1 , . . . , SIn ,
together with a corresponding sort generation constraint sentence: all the
declared sorts of SI1 , . . . , SIn are required to be generated by all the declared
operations—but excluding operations declared as selectors by datatype dec-
larations. A SORT-GEN is ill-formed if it does not declare any sorts.

2.2 Variables

Variables for use in terms may be declared globally, locally, or with explicit
quantification. Globally or locally declared variables are implicitly univer-
sally quantified in subsequent axioms of the enclosing basic specification.
Variables are not included in the declared signature.

Note that universal quantification over a variable that does not occur free in
an axiom is semantically irrelevant, due to the assumption that all carriers
are non-empty.
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2.2.1 Global Variable Declarations

VAR-ITEMS ::= var-items VAR-DECL+

A list VAR-ITEMS of variable declarations is written:

vars VD1 ; . . . VDn ;

Note that local variable declarations are written in a similar way, but fol-
lowed directly by a bullet ‘ • ’ instead of the optional semicolon.

VAR-DECL ::= var-decl VAR+ SORT

VAR ::= SIMPLE-ID

A variable declaration VAR-DECL is written:

v1 , . . . , vn : s

It declares the variables v1 , . . . , vn of sort s for use in subsequent axioms,
but it does not contribute to the declared signature.

The scope of a global variable declaration is the subsequent axioms of the
enclosing basic specification; a later declaration for a variable with the same
identifier overrides the earlier declaration (regardless of whether the sorts of
the variables are the same). A global declaration of a variable is equivalent to
adding a universal quantification on that variable to the subsequent axioms
of the enclosing basic specification.

2.2.2 Local Variable Declarations

LOCAL-VAR-AXIOMS ::= local-var-axioms VAR-DECL+ AXIOM+

A localization LOCAL-VAR-AXIOMS of variable declarations to a list of axioms
is written:1

∀VD1 ; . . . ; VDn • F1 . . . • Fm ;

The sign displayed as ‘ • ’ may be input as ‘·’ in ISO Latin-1, or as ‘.’ in
ASCII.

It declares variables for local use in the axioms F1 , . . . , Fm , but it does
not contribute to the declared signature. A local declaration of a variable
is equivalent to adding a universal quantification on that variable to all the
indicated axioms.

1A LOCAL-VAR-AXIOMS may still be written also vars VD1 ; . . . ; VDn • F1 . . . • Fm ; ,
for backwards compatibility with Casl version 1.0.
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2.3 Axioms

AXIOM-ITEMS ::= axiom-items AXIOM+

AXIOM ::= FORMULA

A list AXIOM-ITEMS of axioms is written:2

• F1 . . . • Fn

Each well-formed axiom determines a sentence of the underlying basic spec-
ification (closed by universal quantification over all declared variables).

FORMULA ::= QUANTIFICATION | CONJUNCTION | DISJUNCTION

| IMPLICATION | EQUIVALENCE | NEGATION | ATOM

A formula is constructed from atomic formulae of the form ATOM using quan-
tification and the usual logical connectives.

Keywords in formulae and terms are displayed in the same font as identifiers.

2.3.1 Quantifications

QUANTIFICATION ::= quantification QUANTIFIER VAR-DECL+ FORMULA

QUANTIFIER ::= universal | existential | unique-existential

A quantification with the universal quantifier is written:

∀VD1 ; . . . ; VDn • F

The sign displayed as ‘∀’ is input as ‘forall’. The sign displayed as ‘ • ’
may be input as ‘·’ in ISO Latin-1, or as ‘.’ in ASCII.

A quantification with the existential quantifier is written:

∃VD1 ; . . . ; VDn • F

A quantification with the unique-existential quantifier is written:

∃!VD1 ; . . . ; VDn • F

The sign displayed as ‘∃’ is input as ‘exists’.

The first case is universal quantification, holding when the body F holds
for all values of the quantified variables; the second case is existential quan-
tification, holding when the body F holds for some values of the quantified
variables; and the last case is unique existential quantification, abbreviat-

2An AXIOM-ITEMS may still be written also axioms F1 ; . . . Fn ; , for backwards
compatibility with Casl version 1.0.
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ing a formula that holds when the body F holds for unique values of the
quantified variables.

The formula ∀VD1 ; . . . ; VDn • F is equivalent to ∀VD1 • . . .∀VDn •
F ; and ∀v1 , . . . , vn : s • F is equivalent to ∀v1 : s • . . .∀vn : s • F .
Similarly for the other quantifiers. The scope of a variable declaration in
a quantification is the component formula F , and an inner declaration for
a variable with the same identifier as in an outer declaration overrides the
outer declaration (regardless of whether the sorts of the variables are the
same). Note that the body of a quantification extends as far as possible.

2.3.2 Logical Connectives

These formulae determine the usual logical connectives on the sub-formulae.
Conjunction and disjunction apply to lists of two or more formulae; they
both have weaker precedence than negation. When mixed, they have to be
explicitly grouped, using parentheses ‘(. . .)’.

Both implication (which may be written in two different ways) and equiva-
lence have weaker precedence than conjunction and disjunction. When the
‘forward’ version of implication is iterated, it is implicitly grouped to the
right; the ‘backward’ version is grouped to the left. When these constructs
are mixed, they have to be explicitly grouped.

2.3.2.1 Conjunction

CONJUNCTION ::= conjunction FORMULA+

A conjunction is written:

F1 ∧ . . . ∧ Fn

The sign displayed as ‘∧’ is input as ‘/\’.

2.3.2.2 Disjunction

DISJUNCTION ::= disjunction FORMULA+

A disjunction is written:

F1 ∨ . . . ∨ Fn

The sign displayed as ‘∨’ is input as ‘\/’.
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2.3.2.3 Implication

IMPLICATION ::= implication FORMULA FORMULA

An implication is written:

F1 ⇒ F2

The sign displayed as ‘⇒’ is input as ‘=>’. An implication may also be
written in reverse order:

F2 if F1

2.3.2.4 Equivalence

EQUIVALENCE ::= equivalence FORMULA FORMULA

An equivalence is written:

F1 ⇔ F2

The sign displayed as ‘⇔’ is input as ‘<=>’.

2.3.2.5 Negation

NEGATION ::= negation FORMULA

A negation is written:

¬F1

The sign displayed as ‘¬’ may be input as ‘¬’ in ISO Latin-1, or as ‘not’ in
ASCII.

2.3.3 Atomic Formulae

ATOM ::= TRUTH | PREDICATION | DEFINEDNESS

| EXISTL-EQUATION | STRONG-EQUATION

An atomic formula ATOM is well-formed (with respect to the local environ-
ment and variable declarations) if it is well-sorted and expands to a unique
atomic formula for constructing sentences. The notions of when an atomic
formula is well-sorted , of when a term is well-sorted for a particular sort,
and of the expansions of atomic formulae and terms, are indicated below
for the various constructs.
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Due to overloading of predicate and/or operation symbols, a well-sorted
atomic formula or term may have several expansions, preventing it from
being well-formed. Qualifications on operation and predicate symbols may
be used to determine the intended expansion and make it well-formed; ex-
plicit sorts on arguments and/or results may also help to avoid unintended
expansions.

2.3.3.1 Truth

TRUTH ::= true-atom | false-atom

The atomic formulae true-atom and false-atom are written ‘true’, ‘false’.

They are always well-sorted, and expand to primitive sentences, such that
the sentence for ‘true’ always holds, and the sentence for ‘false’ never holds.

2.3.3.2 Predicate Application

PREDICATION ::= predication PRED-SYMB TERMS

PRED-SYMB ::= PRED-NAME | QUAL-PRED-NAME

QUAL-PRED-NAME ::= qual-pred-name PRED-NAME PRED-TYPE

TERMS ::= terms TERM*

An application of a predicate symbol PS to some argument terms is written:

PS (T1 , . . . ,Tn)

When PS is a mixfix identifier, consisting of a sequence ‘t0 . . . tn ’ of
tokens or spaces ti separated by place-holders ‘ ’, the application may also
be written:

t0T1 t1 . . .Tn tn

When the predicate symbol is a constant p with no argument terms, its
application is simply written ‘p’.

A qualified predicate name QUAL-PRED-NAME with type T is written:

(pred p : T )

An unqualified predicate name PRED-NAME is simply written ‘p’.

The application of the predicate symbol is well-sorted when there is a dec-
laration of the predicate name (with the argument sorts indicated by the
indicated type in the case of a qualified predicate name) such that all the
argument terms are well-sorted for the respective argument sorts. It then ex-
pands to an application of the qualified predicate name to the fully-qualified
expansions of the argument terms for those sorts.
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2.3.3.3 Definedness

DEFINEDNESS ::= definedness TERM

A definedness formula is written:

def T

It is well-sorted when the term is well-sorted for some sort. It then expands
to a definedness assertion on the fully-qualified expansion of the term.

2.3.3.4 Equations

EXISTL-EQUATION ::= existl-equation TERM TERM

STRONG-EQUATION ::= strong-equation TERM TERM

An existential equation EXISTL-EQUATION is written:

T1
e= T2

The sign displayed as ‘ e=’ is input as ‘=e=’.

A strong equation is written:

T1 = T2

An existential equation holds when the values of the terms are both defined
and equal; a strong equation holds also when the values of both terms are
undefined (thus the two forms of equation are equivalent when the values of
both terms are always defined).

An equation is well-sorted if there is a sort such that both terms are well-
sorted for that sort. It then expands to the corresponding existential or
strong equation on the fully-qualified expansions of the terms for that sort.

2.3.4 Terms

TERM ::= SIMPLE-ID | QUAL-VAR | APPLICATION

| SORTED-TERM | CONDITIONAL

A term is constructed from constants and variables by applications of op-
erations. All names used in terms may be qualified by the intended types,
and the intended sort of the term may be specified. Note that the condition
of a conditional term is a formula, not a term.
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2.3.4.1 Identifiers

An unqualified simple identifier in a term may be a variable or a constant,
depending on the local environment and the variable declarations. Either
is well-sorted for the sort specified in its declaration; a variable expands to
the (sorted) variable itself, whereas a constant expands to an application
of the qualified symbol to the empty list of arguments. Note that when an
identifier is declared both as variable and as a constant of the same sort,
unqualified use of the identifier always makes the enclosing atomic formula
ill-formed.

2.3.4.2 Qualified Variables

QUAL-VAR ::= qual-var VAR SORT

A qualified variable QUAL-VAR is written:

(var v : s)

It is well-sorted for the sort s.

2.3.4.3 Operation Application

APPLICATION ::= application OP-SYMB TERMS

OP-SYMB ::= OP-NAME | QUAL-OP-NAME

QUAL-OP-NAME ::= qual-op-name OP-NAME OP-TYPE

TERMS ::= terms TERM*

An application of an operation symbol OS to some argument terms is written:

OS (T1 , . . . ,Tn)

When OS is a mixfix identifier, consisting of a sequence ‘t0 . . . tn ’ of
tokens or spaces ti separated by place-holders ‘ ’, the application may also
be written:

t0T1 t1 . . .Tn tn

When the operation symbol is a constant c with no argument terms, its
application is simply written ‘c’.

Declaring different mixfix identifiers that involve some common tokens may
lead to ambiguity, with different candidate groupings of the same sequence
of tokens and terms. Such ambiguity prevents the enclosing atomic formula
from being well-formed, irrespective of the declared profiles of the sym-
bols involved, and generally has to be eliminated by use of explicit grouping
parentheses. However, to allow the omission of some parentheses, infix iden-
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tifiers are given weaker precedence than prefix identifiers, which in turn are
given weaker precedence than postfix identifiers. (The mixfix identifier ‘ ’
is allowed, and regarded as an infix, although this is unlikely to be the case in
higher-order extensions of Casl, since there juxtaposition will be reserved
for function application.)

In an application, a qualified operation name QUAL-OP-NAME with f qualified
by the operation type T is written:

(op f : T )

When the qualified operation name is a constant c, its application (to no
arguments) is written (op c : T ).

The application is well-sorted for some particular sort when there is a decla-
ration of the operation name (with the argument and result sorts indicated
by the type, if specified) such that all the argument terms are well-sorted
for the respective argument sorts, and the result sort is the required sort.
It then expands to an application of the qualified operation name to the
fully-qualified expansions of the argument terms for those sorts.

2.3.4.4 Sorted Terms

SORTED-TERM ::= sorted-term TERM SORT

A sorted term is written:

T : s

It is well-sorted for some sort if the component term T is well-sorted for the
specified sort s. It then expands to those of the fully-qualified expansions
of the component term that have the specified sort.

2.3.4.5 Conditional Terms

CONDITIONAL ::= conditional TERM FORMULA TERM

A conditional term is written:

T1 when F else T2

It is well-sorted for some sort when both T1 and T2 are well-sorted for
that sort and F is a well-formed formula. The enclosing atomic formula
‘A[T1 when F else T2 ]’ expands to ‘(A[T1 ] if F ) ∧ (A[T2 ] if ¬F )’. When
several conditional terms occur in the same atomic formula, the expansions
are made in a fixed but arbitrary order (all orders yield equivalent formulae).
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2.4 Identifiers

SIMPLE-ID ::= WORDS

ID ::= TOKEN-ID

TOKEN-ID ::= TOKEN

TOKEN ::= WORDS | DOT-WORDS | SIGNS | DIGIT | QUOTED-CHAR

The internal structure of identifiers ID, used to identify sorts, operations,
and predicates, is insignificant in the abstract syntax of basic many-sorted
specifications. (ID is extended with compound identifiers, whose structure
is significant, in connection with generic specifications in Section 6.5.)

In concrete syntax, an identifier may be written as a single token : either a
sequence of letters and/or digits—possibly mixed with single underscores ( )
and/or primes (’), and possibly prefixed by a dot (.)—or a sequence of other
printable ISO Latin-1 characters (excluding ( ) ; , ‘ " %). Keywords,
and various other sequences that could be confused with separators, are not
allowed as tokens in the input syntax (however, display annotations may
be used to produce them when formatting identifiers).

ID ::= ... | MIXFIX-ID

MIXFIX-ID ::= TOKEN-PLACES

TOKEN-PLACES ::= token-places TOKEN-OR-PLACE+

TOKEN-OR-PLACE ::= TOKEN | PLACE

An identifier may also be a mixfix identifier ‘t0 . . . tn ’, consisting of a
list of tokens or spaces ti interspersed with place-holders, each place-holder
being written as a pair of underscores ‘ ’. Mixfix identifiers allow the use of
mixfix notation3 for application of operations and predicates to argument
terms in concrete syntax. A mixfix identifier such as f is a different symbol
from f. An application of the (unqualified) symbol f to x may be written
as f x, f(x), f (x); an application of f to x may only be written as
f(x). ‘Invisible’ identifiers, consisting entirely of two or more place-holders
(separated by spaces), are allowed.

Braces ‘{’, ‘}’ and square brackets ‘[’, ‘]’ are allowed as complete tokens
in identifiers; however, any occurrences of these characters in a declared
identifier must be balanced; e.g., ‘{[ }]’ and ‘{ ]’ are not allowed.

An identifier ID may be used simultaneously to identify different kinds of
entities (sorts, operations, and predicates) in the same local environment.
It would not, however, be appropriate to use it simultaneously for constants
and variables of the same sort, since its (unqualified) use would then always
be ambiguous, making the enclosing formula ill-formed.

3Mixfix notation is so-called because it generalizes infix, prefix, and postfix notation
to allow arbitrary mixing of argument positions and identifier tokens.
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Chapter 3

Subsorting Concepts

This chapter introduces the signatures, models, and sentences character-
izing basic specifications with subsorts, extending Chapter 1. The notion
of satisfaction for subsorted specifications is essentially as for many-sorted
specifications.

The intuition behind the treatment of subsorts adopted here is to repre-
sent subsort inclusion by embedding (which is not required to be identity),
commuting, as usual in order-sorted approaches, with overloaded operation
symbols. In the language described in Chapter 4, however, no conditions
such as ‘regularity’ are imposed on signatures. Instead, terms and sentences
that can be given different parses (up to the commutativity between embed-
ding and overloaded symbols) are simply rejected as ill-formed.

3.1 Signatures

A subsorted signature Σ = (S,TF ,PF , P,≤) consists of a many-sorted
signature (S,TF ,PF , P ) together with a pre-order ≤ of subsort embedding
on the set S of sorts. ≤ is extended pointwise to sequences of sorts.

For a subsorted signature, we define overloading relations for operation
and predicate symbols. Let f ∈ (TFw1,s1∪PFw1,s1)∩(TFw2,s2∪PFw2,s2) and
p ∈ Pw1 ∩ Pw2 . Two qualified operation symbols fw1,s1 and fw2,s2 are in the
overloading relation (written fw1,s1 ∼F fw2,s2) iff there exists a w ∈ S∗ and
s ∈ S such that w ≤ w1, w2 and s1, s2 ≤ s. Similarly, two qualified predicate
symbols pw1 and pw2 are in the overloading relation (written pw1 ∼P pw2)
iff there exists a w ∈ S∗ such that w ≤ w1, w2. We say that two profiles of a
symbol are in the overloading relation if the corresponding qualified symbols
are in overloading relation.
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Note that two profiles of an overloaded constant declared with different sorts
are in the overloading relation iff the two sorts have a common supersort.

A subsorted signature morphism σ : Σ → Σ′ is a many-sorted signature
morphism that preserves the subsort relation and the overloading relations.

With each subsorted signature Σ = (S,TF ,PF , P,≤) a many-sorted signa-
ture Σ# is associated, extending (S,TF ,PF , P ) for each pair of sorts s ≤ s′

by a total embedding operation (from s into s′), a partial projection opera-
tion (from s′ onto s), and a membership predicate (testing whether values
in s′ are embeddings of values in s). The symbols used for embedding,
projection, and membership are chosen arbitrarily so as not to be in Σ.

Any subsorted signature morphism σ : Σ1 → Σ2 expands to a many-sorted
signature morphism σ# : Σ#

1 → Σ#
2 , preserving the symbols used for em-

bedding, projection, and membership.

3.2 Models

For a subsorted signature Σ the subsorted models are ordinary many-
sorted models for Σ# that satisfy the following properties (which can be
formalized as a set of conditional axioms):

• Embedding operations are total and 1-1; projection operations are
partial, and 1-1 when defined.

• The embedding of a sort into itself is the identity function.

• All compositions of embedding operations between the same two sorts
are equal functions.

• Embedding followed by projection is identity; projection followed by
embedding is included in identity.

• Membership in a subsort holds just when the projection to the subsort
is defined.

• Embedding is compatible with those operations and predicates that
are in the overloading relations.

3.3 Sentences

For a subsorted signature Σ, the subsorted sentences are the ordinary
many-sorted sentences (as defined in Chapter 1) for the associated many-
sorted signature Σ#.
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Chapter 4

Subsorting Constructs

This chapter indicates the abstract and concrete syntax of the constructs of
subsorted basic specifications, and describes their intended interpretation,
extending what was provided for many-sorted specifications in Chapter 2.

A well-formed subsorted basic specification BASIC-SPEC of the Casl lan-
guage determines a basic specification of the underlying subsorted institu-
tion, consisting of a subsorted signature and a set of sentences of the form
described in Chapter 3. This signature and the class of models over it that
satisfy the set of sentences provide the semantics of the basic specification.

4.1 Signature Declarations

4.1.1 Sorts

SORT-ITEM ::= ... | SUBSORT-DECL | ISO-DECL | SUBSORT-DEFN

4.1.1.1 Subsort Declarations

SUBSORT-DECL ::= subsort-decl SORT+ SORT

A subsort declaration SUBSORT-DECL is written:

s1 , . . . , sn < s

It declares all the sorts s1 , . . . , sn , and s, as well as the embedding of each
si as a subsort of s. The si must be distinct from s.

28



4.1. SIGNATURE DECLARATIONS 29

When a subsort declaration occurs in a sort generation construct, the em-
bedding and projection operations between the subsort(s) and the supersort
are treated as declared operations with regard to generation of sorts.

Introducing an embedding relation between two sorts may cause operation
symbols to become related by the overloading relation, so that values of
terms become equated when the terms are identical up to embedding.

4.1.1.2 Isomorphism Declarations

ISO-DECL ::= iso-decl SORT+

An isomorphism declaration ISO-DECL is written:

s1 = . . . = sn

It declares all the sorts s1 , . . . , sn , as well as their embeddings as subsorts of
each other. Thus the carriers for the sorts si are required to be isomorphic.
The si must be distinct.

4.1.1.3 Subsort Definitions

SUBSORT-DEFN ::= subsort-defn SORT VAR SORT FORMULA

A subsort definition SUBSORT-DEFN is written:

s = {v : s ′ • F}

The sign displayed as ‘ • ’ may be input as ‘·’ in ISO Latin-1, or as ‘.’
in ASCII. It provides an explicit specification of the values of the subsort
s of s ′, in contrast to the implicit specification provided by using subsort
declarations and overloaded operation symbols.

The subsort definition declares the sort s; it declares the embedding of s as
a subsort of s ′, which must already be declared in the local environment;
and it asserts that the values of s are precisely (the projection of) those
values of the variable v from s ′ for which the formula F holds.

The scope of the variable v is restricted to the formula F . Any other vari-
ables occurring in F must be explicitly declared by enclosing quantifications.

Note that the terms of sort s ′ cannot generally be used as terms of sort s.
But they can be explicitly projected to s, using a cast.

Defined subsorts may be separately related using subsort (or isomorphism)
declarations—implication or equivalence between their defining formulae
does not give rise to any subsort relationship between them.
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4.1.2 Datatypes

Datatype declarations are unchanged, except for a new kind of alternative:

4.1.2.1 Alternatives

ALTERNATIVE ::= ... | SUBSORTS

SUBSORTS ::= subsorts SORT+

A subsorts alternative is written:

sorts s1 , . . . , sn

As with sort declarations, the plural keyword may be written in the singular
(regardless of the number of sorts).

The sorts si , which must be already declared in the local environment, are
declared to be embedded as subsorts of the sort declared by the enclosing
datatype declaration. (‘sorts s1 , . . . , sn ’ and ‘sort s1 | . . . | sort sn ’ are
equivalent.)

In a free datatype declaration, all the sorts that are embedded in the de-
clared sort by the alternatives must have no common subsorts. When the
alternatives of a free datatype declaration are all subsorts, the declared sort
corresponds to the disjoint union of the subsorts. Finally, consider the set of
qualified constructor and selector symbols declared by the free datatype: no
element of this set may be in the overloading relation with any other element,
nor with the qualified operation symbols from the local environment.

4.2 Axioms

4.2.1 Atomic Formulae

ATOM ::= ... | MEMBERSHIP

As for many-sorted specifications, an atomic formula is well-formed (with re-
spect to the current declarations) if it is well-sorted and expands to a unique
atomic formula for constructing sentences of the underlying institution—but
now for subsorted specifications, uniqueness is required only up to an equiv-
alence on atomic formulae and terms. This equivalence is the least one
including fully-qualified terms that are the same up to profiles of operation
symbols in the overloading relation ∼F and embedding, and fully-qualified
atomic formulae that are the same up to the profiles of predicate symbols
in the overloading relation ∼P and embedding.
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The notions of when an atomic formula or term is well-sorted and of its
expansion are indicated below for the various subsorting constructs. Due
not only to overloading of predicate and/or operation symbols, but also to
implicit embeddings from subsorts into supersorts, a well-sorted atomic for-
mula may have several non-equivalent expansions, preventing it from being
well-formed. Qualifications on operation and predicate symbols, or explicit
sorts on terms, may be used to determine the intended expansion (up to the
equivalence indicated above) and make the enclosing formula well-formed.

4.2.1.1 Membership

MEMBERSHIP ::= membership TERM SORT

A membership formula is written:

T ∈ s

The sign displayed as ‘∈’ is input as ‘in’.

It is well-sorted if the term T is well-sorted for a supersort s ′ of the specified
sort s. It expands to an application of the pre-declared predicate symbol for
testing s ′ values for membership in the embedding of s.

4.2.2 Terms

TERM ::= ... | CAST

4.2.2.1 Casts

CAST ::= cast TERM SORT

A cast term is written:

T as s

It is well-sorted if the term T is well-sorted for a supersort s ′ of s. It expands
to an application of the pre-declared operation symbol for projecting s ′ to s.

Term formation is also extended by letting a well-sorted term of a subsort s
be regarded as a well-sorted term of a supersort s ′ as well, which provides im-
plicit embedding. It expands to the explicit application of the pre-declared
operation symbol for embedding s into s ′. (There are no implicit projec-
tions.) Also a sorted-term T : s ′ expands to an explicit application of an
embedding, provided that the apparent sort s of the component term T is
a subsort of the specified sort s ′.
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Part II

Structured Specifications
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Chapter 5

Structuring Concepts

A basic specification, as described in Part I, consists essentially of a signature
Σ (declaring symbols) and a set of sentences (axioms or constraints) over Σ.
The semantics of a well-formed basic specification is the specified signature
Σ together with the class of all Σ-models that satisfy the specified sentences.

A structured specification is formed by combining specifications in vari-
ous ways, starting from basic specifications. For instance, specifications may
be united ; a specification may be extended with further signature items
and/or sentences; parts of a signature may be hidden ; the signature may
be translated to use different symbols (with corresponding translation of
the sentences) by a signature morphism; and models may be restricted to
initial models. The abstract syntax of constructs in the Casl language for
presenting such structured specifications is described in Chapter 6.

The structuring concepts and constructs and their semantics do not depend
on a specific framework of basic specifications. This means that Part I of the
Casl language design is orthogonal to Part II (and also to Parts III and IV).
Therefore, Casl basic specifications as given in Part I can be restricted to
sublanguages or extended in various ways without the need to reconsider or
to change Parts II, III, and IV. 1

The semantics of a well-formed structured specification is of the same form
as that of a basic specification: a signature Σ together with a class of Σ-
models. Thus the structure of a specification is not reflected in its models: it
is used only to present the specification in a modular style. (Specification of
the architecture of models in the CoFI framework is addressed in Part III.)

Within a structured specification, the current signature may vary. For
1The occasional reference to the subsort and overloading relations in Part II may

simply be ignored (or replaced by the identity relation) when the framework for basic
specifications is restricted so as not to include these features.
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instance, when two specifications are united, the signature valid in the one
is generally different from that valid in the other. The association between
symbols and their declarations as given by the valid signature is called the
local environment.

Parts of structured specifications, in contrast to arbitrary parts of basic
specifications, are potentially reusable—either verbatim, or with the adjust-
ment of some parameters. Specifications may be named, so that the reuse
of a specification may be replaced by a reference to it through its name.
(Libraries of named specifications are explained in Part IV.) The current
association between names and the specifications that they reference is called
the global environment. Named specifications are implicitly closed , not de-
pending on a local environment of declared symbols. A reference to the
name of a specification is equivalent to the referenced specification itself,
provided that the closedness is explicitly ensured.

A named specification may declare some parameters, the union of which
is extended by a body ; it is then called generic. A reference to a generic
specification should instantiate it by providing, for each parameter, an
argument specification together with a fitting morphism from the pa-
rameter to the argument specification. Fitting may also be achieved by
(explicit) use of named views between the parameter and argument speci-
fications. The union of the arguments, together with the translation of the
generic specification by an expansion of the fitting morphism, corresponds
to a so-called push-out construction—taking into account any explicit im-
ports of the generic specification, which allow symbols used in the body to
be declared also by arguments.

The semantics of structured specifications involve signature morphisms and
the corresponding reducts on models. For instance, hiding some symbols in
a specification corresponds to a signature morphism that injects the non-
hidden symbols into the original signature; the models, after hiding the
symbols, are the reducts of the original models along this morphism. Trans-
lation goes the other way: the reducts of models over the translated signa-
ture back along the morphism give the original models. For the semantics
of structured specifications (in particular, those involving hiding) the axiom
of choice is assumed.

The semantics of views involves also specification morphisms, which are
signature morphisms between particular specifications such that the reduct
of each model of the target specification is a model of the source specification.

Given a signature Σ with symbols |Σ|, symbol sets and symbol mappings
determine signature morphisms as follows:

• A set of symbols in |Σ| determines the inclusion of the smallest sub-
signature of Σ that contains these symbols. (When an operation or
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predicate symbol is included, all the sorts in its profile have to be
included too.)

It also determines the inclusion of the largest subsignature of Σ that
does not contain any of these symbols. (When a sort is not included,
no operation or predicate symbol with that sort in its profile can be
included either.)

• A mapping of symbols in |Σ| determines the morphism from Σ that
extends this mapping with identity maps for all the remaining names
in |Σ|. In the case that the signature morphism does not exist, the
enclosing construct is ill-formed.

• Given another signature Σ′, a mapping of symbols in |Σ| to symbols
in |Σ′| determines the unique signature morphism from Σ to Σ′ that
extends the given mapping, and then is the identity, as far as possible,
on common names of Σ and Σ′. (Mapping an operation or predicate
symbol implies mapping the sorts in the profile consistently.) In the
case that the signature morphism does not exist or is not unique, the
enclosing construct is ill-formed.
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Chapter 6

Structuring Constructs

This chapter indicates the abstract and concrete syntax of the constructs
of structured specifications, and describes their intended interpretation, ex-
tending what was provided for basic (many-sorted and subsorted) specifica-
tions in Part I.

The summary below indicates when structured specifications are well-formed,
and how their signatures and classes of models are determined by those of
their component specifications. The interpretation is essentially based on
model classes—a “flattening” reduction to sets of sentences is not possible,
in general (due to the presence of constructs such as hiding and freeness).

A structured specification can only be well-formed when all its component
specifications are well-formed.

6.1 Structured Specifications

SPEC ::= BASIC-SPEC | TRANSLATION | REDUCTION

| UNION | EXTENSION | FREE-SPEC | LOCAL-SPEC

| CLOSED-SPEC

A translation allows the symbols declared by a specification to be renamed;
it may also be used to require that some symbols have been declared, e.g.,
when referencing a named specification. A reduction allows symbols to
be hidden; for convenience, the remaining ‘revealed’ symbols may be si-
multaneously renamed. A union combines specifications such that when
the declaration of a particular symbol is common to some of the combined
specifications, its interpretation in a model has to be a common one too.
An extension may enrich models by declaring new symbols and asserting
their properties, and/or specialize the interpretation of already-declared
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symbols. A free specification FREE-SPEC is used to restrict interpretations
to free extensions, with initiality as a special case. A local specifica-
tion LOCAL-SPEC is used to specify auxiliary symbols for local use, hiding
them afterwards. A closed specification CLOSED-SPEC ensures that the local
environment provided to a specification is empty.

When the above constructs are combined in the same specification, the
grouping is determined unambiguously by precedence rules: translations
and reductions have the highest precedence, then come local specifications,
then unions, and finally extensions have the lowest precedence. (Free spec-
ifications generally involve explicit grouping, and their relative precedence
to the other constructs is irrelevant.) A different grouping may always be
obtained by use of grouping braces: ‘{ . . . }’.

A specification SPEC may occur in a context (e.g., when it being named)
where it is required to be self-contained or closed , not depending on the
local environment at all. In that case, it determines a signature and a class
of models straightforwardly.

In structured specifications, however, a specification SPEC may also occur
in a context where it is to extend other specifications, providing itself only
part of a signature. Then it is interpreted as a (partial) function mapping
signatures Σ to the corresponding extended signatures Σ′, together with
a partial function mapping model classes over Σ to model classes over Σ′

(when defined). The signature and model class for the self-contained case
above can be obtained by applying these functions to the empty signature
and to the model class of the empty specification, respectively.

Translations and reductions in a SPEC are not allowed to affect symbols
that are already in the local environment that is being extended. The other
structuring constructs generalize straightforwardly from self-contained spec-
ifications to extensions.

6.1.1 Translations

TRANSLATION ::= translation SPEC RENAMING

RENAMING ::= renaming SYMB-MAP-ITEMS+

A translation is written:

SP with SM

Symbol mappings SM are described in Section 6.4.

The symbols mapped by SM must be among those declared by SP . The
signature Σ given by SP and the mapping SM then determine a signature
morphism to a signature Σ′, as explained in Chapter 5. The morphism must

1.0.1



6.1. STRUCTURED SPECIFICATIONS 38

not affect the symbols already declared in the local environment, which is
passed unchanged to SP .

The class of models of the translation consists exactly of those models over
Σ′ whose reducts along the morphism are models of SP .

If a partial operation symbol is renamed into a total one, this is only well-
formed in case that the resulting operation symbol is already total due to
another component of the renaming.

When the symbol mapping SM is simply a list of identity maps (which may
be abbreviated to a simple list of symbols) the only effect of the translation
on the semantics of SP is to require that the symbols listed are indeed
included in the signature given by SP , otherwise the translation is not well-
formed.

6.1.2 Reductions

REDUCTION ::= reduction SPEC RESTRICTION

RESTRICTION ::= HIDDEN | REVEALED

HIDDEN ::= hidden SYMB-ITEMS+

REVEALED ::= revealed SYMB-MAP-ITEMS+

A hiding reduction is written:

SP hide SL

A revealing reduction is written:

SP reveal SM

Symbol lists SL and symbol mappings SM are described in Section 6.4.

The symbols listed by SL, or mapped by SM , must be among those declared
by SP .

In the case of a hiding reduction, the signature Σ given by SP and the set
of symbols listed by SL determine the inclusion of the largest subsignature
Σ′ of Σ that does not contain any of the listed symbols, as explained in
Chapter 5. Note that hiding a sort entails hiding all the operations and
predicate symbols whose profiles involve that sort.

In the case of a revealing reduction, the signature Σ given by SP and the
set of symbols mapped by SM determine the inclusion of the smallest sub-
signature Σ′ of Σ that contains all of the listed symbols, as explained in
Chapter 5. Note that revealing an operation or predicate symbol entails
revealing the sorts involved in its profile.
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In both cases, the subsort embedding relation is inherited from that declared
by SP , and a model class M is given by the reducts of the models of SP
along the inclusion of Σ′ in Σ.

In the case of a hiding reduction, its model class is simply M. In the case
of a revealing reduction, however, the signature Σ′ and the mapping SM of
(all) the symbols in it determine a signature morphism to a signature Σ′′, as
explained in Chapter 5. The class of models of the reduction then consists ex-
actly of those models over Σ′′ whose reducts along this morphism are in M.

A reduction must not affect the symbols already declared in the local envi-
ronment, which is passed unchanged to SP .

6.1.3 Unions

UNION ::= union SPEC+

A union is written:

SP1 and . . . and SPn

When the current local environment is empty, each SPi must determine
a complete signature Σi. The signature of the union is obtained by the
ordinary union of the Σi (not their disjoint union). Thus all (non-localized)
occurrences of a symbol in the SPi are interpreted uniformly (rather than
being regarded as homonyms for potentially different entities). If the same
name is declared both as a total and as a partial operation with the same
profile (in different signatures), the operation becomes total in the union.

The models are those models of the union signature for which the reduct
along the signature inclusion morphism from SPi is a model of SPi , for each
i = 1, . . . , n.

When the current local environment is non-empty, each SPi must determine
an extension from it to a complete signature Σi; then the resulting signa-
ture is determined as above. Similarly, models of the local environment are
extended to models of the SPi ; then the resulting models are determined
as above. This provides the required partial functions from signatures to
signatures, and from model classes to model classes.

6.1.4 Extensions

EXTENSION ::= extension SPEC+

An extension is written:

SP1 then . . . then SPn
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When the current local environment is empty, SP1 must determine a com-
plete signature Σ1; otherwise, it must determine an extension from the local
environment to a complete signature Σ1. For i = 2, . . . , n each SPi must
determine an extension from Σi−1 to a complete signature Σi. The signature
determined by the entire extension is then Σn.

Similarly, SP1 determines a class of models M1 over Σ1. For i = 2, . . . , n
each SPi determines the class Mi of those models over Σi whose reducts to
Σi−1 are in Mi−1. The class of models determined by the entire extension
is then Mn.

An annotation is provided (see Section C.5) for indicating that a series of
extensions is conservative, i.e., every model in Mi−1 is the reduct of some
model in Mi, for i = 2, . . . , n.

6.1.5 Free Specifications

FREE-SPEC ::= free-spec SPEC

A free specification FREE-SPEC is written:

free { SP }

Note that the specification written:

free types DD1 ; . . . DDn ;

is parsed as a free datatype of a basic specification, but it usually has the
same interpretation as the free structured specification written:

free { types DD1 ; . . . DDn ; }

This equivalence holds at least in the framework for basic specifications given
in Part I, under some minor restrictions: in a datatype declaration with
more than one alternative, any selector that is declared as total for some
alternative must be declared as a total selector with the same result sort
for every other alternative; and the sorts and qualified operation symbols
declared by the datatype declaration must not be already declared in the
local environment.

When the current local environment is empty, SP must determine a com-
plete signature Σ; otherwise, it must determine an extension from the local
environment to a complete signature Σ. In both cases, Σ is the signature
determined by the free specification.

When the current local environment is empty, the free specification deter-
mines the class of initial models of SP ; otherwise, it determines the class of
models that are free extensions for SP of their own reducts to models of the
current local environment.
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6.1.6 Local Specifications

LOCAL-SPEC ::= local-spec SPEC SPEC

A local specification LOCAL-SPEC is written:

local SP1 within SP2

It is equivalent to writing:

{ SP1 then SP2 } hide SY1 , . . . , SYn

where SY1 , . . . , SYn are all the symbols declared by SP1 that are not
already in the current local environment. Thus the symbols SY1 , . . . , SYn

are only for local use in (SP1 and) SP2 . The hiding must not affect symbols
that are declared only in SP2 (thus operation or predicate symbols declared
in SP2 should not have sorts declared by SP1 in their profiles).

6.1.7 Closed Specifications

CLOSED-SPEC ::= closed-spec SPEC

A closed specification CLOSED-SPEC is written:

closed { SP }

It determines the same signature and class of models as SP determines in
the empty local environment, thus ensuring the closedness of SP .

6.2 Named and Parametrized Specifications

Specifications are named by specification definitions, and referenced by use
of the name. A named specification may also have some parameters, which
have to be instantiated when referencing the specification.

6.2.1 Specification Definitions

SPEC-DEFN ::= spec-defn SPEC-NAME GENERICITY SPEC

GENERICITY ::= genericity PARAMS IMPORTED

PARAMS ::= params SPEC*

IMPORTED ::= imported SPEC*

A generic specification definition SPEC-DEFN with some parameters and some
imports is written:
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spec SN [SP1 ] . . . [SPn ] given SP ′′
1 , . . . , SP ′′

m =
SP

end

When the list of imports SP ′′
1 , . . . , SP ′′

m is empty, the definition is written:

spec SN [SP1 ] . . . [SPn ] =
SP

end

When the list of parameters SP1 , . . . , SPn is empty, the definition merely
names a specification and is simply written:

spec SN =
SP

end

The terminating ‘end’ keyword is optional.

It defines the name SN to refer to the specification that has parameter
specifications SP1 , . . . , SPn (if any), import specifications SP ′′

1 , . . . , SP ′′
m

(if any), and body specification SP . This extends the global environment
(which must not already include a definition for SN ).

The well-formedness and semantics of a generic specification are essentially
as for the imports, extended by the union of the parameter specifications,
extended by the body:

{ SP ′′
1 and . . . and SP ′′

m } then { SP1 and . . . and SPn } then SP

The local environment given to the defined specification is empty, i.e., the
above specification is implicitly closed. The difference between declaring
parameters and leaving them implicit in an extension is that each parameter
has to be provided with a fitting argument specification in all references to
the specification name SN . The declared parameters show just which parts
of the generic specification are intended to vary between different references
to it. The imports, in contrast, are fixed, and common to the parameters,
body, and arguments.

N.B. When a declared parameter happens to be merely a specification name,
it always must refer to an existing specification definition in the global
environment—it does not declare a local name for an argument specification.

SPEC-NAME ::= SIMPLE-ID

A specification name SPEC-NAME is normally displayed in a Small-Caps
font, and input in mixed upper and lower case.
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6.2.2 Specification Instantiation

SPEC ::= ... | SPEC-INST

SPEC-INST ::= spec-inst SPEC-NAME FIT-ARG*

An instantiation SPEC-INST of a generic specification with some fitting ar-
gument specifications is written

SN [FA1 ]. . . [FAn ]

When the list of fitting arguments FA1 , . . . , FAn is empty, the instantiation
is merely a reference to the name of a specification that has no declared
parameters at all, and it is simply written ‘SN ’. Note that the grouping
braces ‘{ }’, normally required when writing free (or closed) specifications,
may always be omitted around instantiations.

The instantiation refers to the specification named SN in the global envi-
ronment, providing a fitting argument FAi for each declared parameter (in
the same order).

FIT-ARG ::= FIT-SPEC

FIT-SPEC ::= fit-spec SPEC SYMB-MAP-ITEMS*

A fitting argument specification FIT-SPEC is written:

SP ′
i fit SMi

When SMi is empty, the fitting argument specification is simply written
SP ′

i . Symbol mappings SM are described in Sections 6.4 and 6.5.

The signature Σi given by the parameter specification SPi , the signature
Σ′

i given by the corresponding argument specification, and the symbol map-
ping SM determine a signature morphism from Σi to Σ′

i, as explained in
Chapter 5. The fitting argument is well-formed only when the signature
morphism is defined, i.e., the fitting argument morphism is well-defined.
Note that mapping an operation or predicate symbol generally implies non-
identity mapping of the sorts in the profile.

When there is more than one parameter, the separate fitting argument mor-
phisms have to be compatible , and their union has to yield a single mor-
phism from the union of the parameters to the union of the arguments.
Thus any common parts of declared parameters have to be instantiated in
the same way, and it is pointless to declare the same parameter twice in a
generic specification. (Generic specifications that require two similar but in-
dependent parameters can be expressed by using a translation to distinguish
between the symbols in the signatures of the two parameters.)
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Each fitting argument FAi is regarded as an extension of the union of the
imports (the current local environment is ignored). The fitting argument
morphism has to be identity on all symbols declared by the imports SP ′′

1 ,
. . . , SP ′′

m of the generic specification, if there are any.

Let SP ′ be the extension of the imports by the generic parameters and then
by the body of the specification named SN :

{ SP ′′
1 and . . . and SP ′′

m } then { SP1 and . . . and SPn } then SP

Let FM be the morphism yielded by the fitting arguments FA1 , . . . , FAn ,
extended to a morphism applicable to the signature of SP ′ as explained
in Sections 6.4 and 6.5 (and written as a list of symbol maps). Then the
semantics of the well-formed instantiation SN [FA1 ]. . . [FAn ] is the same as
that of the specification:

{ SP ′ with FM } and SP ′
1 and . . . and SP ′

n

where each SP ′
i is the specification of the corresponding fitting argument

FAi . Each model of an argument FAi (these are models of SP ′
i reduced by

the signature morphism determined by SMi) is required to be a model of
the corresponding parameter SPi , otherwise the instantiation is undefined.
The instantiation is not well-formed if the result signature is not a push-out
of the body and argument signatures: if the translated body

{ SP ′ with FM }

and the union of the argument specifications

SP ′
1 and . . . and SP ′

n

share any symbols, these symbols have to be translations (along FM ) of
symbols that share in the extension of the imports by the generic parameters

{ SP ′′
1 and . . . and SP ′′

m } then { SP1 and . . . and SPn }

Here, two sorts share if they are identical, and two function or predicate
symbols share if they are in the overloading relation.

6.3 Views

Views between specifications are named by view definitions, and referenced
by use of the name. A named view may also have some parameters, which
have to be instantiated when referencing the view.
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6.3.1 View Definitions

VIEW-DEFN ::= view-defn VIEW-NAME GENERICITY VIEW-TYPE SYMB-MAP-ITEMS*

VIEW-TYPE ::= view-type SPEC SPEC

A view definition VIEW-DEFN with some generic parameters and some im-
ports is written:

view VN [SP1 ] . . . [SPn ] given SP ′′
1 , . . . , SP ′′

m : SP to SP ′ =
SM

end

A view definition VIEW-DEFN with some generic parameters is written:

view VN [SP1 ] . . . [SPn ] : SP to SP ′ =
SM

end

When the list of generic parameters is empty, the view definition is simply
written:

view VN : SP to SP ′ =
SM

end

The terminating ‘end’ keyword is optional.

It declares the view name VN to have the type of specification morphisms
from SP to SP ′, parameter specifications SP1 , . . . , SPn (if any), import
specifications SP ′′

1 , . . . , SP ′′
m (if any), and defines it by the symbol mapping

SM . Symbol mappings SM are described in Sections 6.4 and 6.5.

SP gets the empty local environment. The well-formedness conditions for
SP ′ are as if SP ′ were the body of a parameterized specification with formal
parameters SP1 , . . . , SPn and import specifications SP ′′

1 , . . . , SP ′′
m . The

view definition is well-formed only if the signature morphism determined by
the symbol mapping SM , as explained in Chapter 5, is defined. The view
definition extends the global environment (which must not already include
a definition for VN ).

Generic parameters in a view definition allow the same view to be instanti-
ated with different fitting arguments, giving compositions of the morphism
defined by the view with other fitting morphisms. The source SP of the
view is not in the scope of the view parameters SP1 , . . . , SPn , and view
instantiation affects only the target of the generic view.

It is required that the reduct by the specification morphism of each model
of the target
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{ SP ′′
1 and . . . and SP ′′

m } then { SP1 and . . . and SPn } then SP ′

is a model of the source SP ; otherwise the semantics is undefined.

VIEW-NAME ::= SIMPLE-ID

A view name VIEW-NAME is normally displayed in a Small-Caps font, and
input in mixed upper and lower case.

6.3.2 Fitting Views

FIT-ARG ::= ... | FIT-VIEW

FIT-VIEW ::= fit-view VIEW-NAME

A reference to a non-generic fitting argument view FIT-VIEW is simply writ-
ten:

view VN

It refers to the current global environment, and is well-formed as an ar-
gument for a parameter SPi only when the global environment includes a
view definition for VN of type from SP to SP ′, such that the signatures of
SP and of SPi are the same. The view definition then provides the fitting
morphism from the parameter SPi to the argument specification given by
the target SP ′ of the view.

If the generic specification being instantiated has imports, the fitting mor-
phism is then the union of the specification morphism given by the view and
the identity morphism on the imports. The argument specification is the
union of the target of the view and the imports.

Each model of SP is required to be a model of SPi , otherwise the instanti-
ation is undefined.

FIT-VIEW ::= ... | fit-view VIEW-NAME FIT-ARG+

A fitting argument view FIT-VIEW involving the instantiation of a generic
view to fitting arguments is written:

view VN [FA1 ]. . . [FAn ]

It refers to the current global environment, and is well-formed only when
the global environment includes a generic view definition for VN with pa-
rameters that can be instantiated by the indicated fitting arguments FA1 ,
. . . , FAn to give a view of type from SP to SP ′, such that the signatures
of SP and of SPi are the same. As with non-generic views, each model of
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SP is required to be a model of SPi , otherwise the instantiation is unde-
fined. The instantiation of a generic view with some fitting arguments is not
well-formed if the instantiation of the target SP ′ of the view with the same
fitting arguments is not well-formed.

6.4 Symbol Lists and Mappings

6.4.1 Symbol Lists

Symbol lists are used in hiding reductions.

SYMB-ITEMS ::= symb-items SYMB-KIND SYMB+

SYMB-KIND ::= implicit | sorts-kind | ops-kind | preds-kind

SYMB ::= ID | QUAL-ID

QUAL-ID ::= qual-id ID TYPE

TYPE ::= OP-TYPE | PRED-TYPE

A list of symbols SYMB-ITEMS with implicit kinds SYMB-KIND is written sim-
ply:

SY1 , . . . ,SYn

Overloaded operation symbols and predicate symbols may be disambiguated
by explicit qualification; when SYi is not qualified, the effect is as if all (sort,
operation, or predicate) symbols declared with the same name in the current
local environment are listed.

Optionally, the list may be sectioned into sub-lists by inserting the keywords
‘sorts’, ‘ops’, ‘preds’ (or their singular forms), which explicitly indicate
that the subsequent symbols are of the corresponding kind:

sorts s1 , . . . , ops f1 , . . . , preds p1 , . . .

As with signature declarations in basic specifications, there is no restriction
on the order of the various sections of the list.

A single sort occurring as a type in a qualified identifier QUAL-ID is inter-
preted as a constant operation type or unary predicate type, as determined
by the latest keyword, or, when there is none, unambiguously by the local
environment.

The list determines a set of qualified symbols, obtained from the listed sym-
bols with reference to a given signature; the order in which symbols are
listed is not significant (except regarding their position in relation to any
specified kinds).
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6.4.2 Symbol Mappings

Symbol mappings are used in translations, revealing reductions, fitting ar-
guments, and views.

SYMB-MAP-ITEMS ::= symb-map-items SYMB-KIND SYMB-OR-MAP+

SYMB-OR-MAP ::= SYMB | SYMB-MAP

SYMB-MAP ::= symb-map SYMB SYMB

A list of symbol maps SYMB-MAP-ITEMS with implicit kinds SYMB-KIND is
written simply:

SY1 7→ SY ′
1 , . . . ,SYn 7→ SY ′

n

The sign displayed as ‘7→’ is input as ‘|->’.

SYi 7→ SY ′
i denotes the map that takes the symbol SYi to the symbol SY ′

i .
The mapped symbols in the list must be distinct. Overloaded operation
symbols and predicate symbols may be disambiguated by explicit qualifi-
cation; when SYi is not qualified, the effect is as if all (sort, operation, or
predicate) symbols declared with the same name in the current environment
are mapped uniformly to SY ′

i .

Optionally, the list may be sectioned into sub-lists by inserting the keywords
‘sorts’, ‘ops’, ‘preds’ (or their singular forms), which explicitly indicate
that the subsequent symbols are of the corresponding kind:

sorts s1 7→ s ′1 , . . ., ops f1 7→ f ′1 , . . ., preds p1 7→ p ′1 , . . .

As with signature declarations in basic specifications, there is no restriction
on the order of the various sections of the list.

An identity map ‘SYi 7→ SYi ’ may be simply written ‘SYi ’. Thus a symbol
list may be regarded as a special case of a symbol mapping.

The list determines a set of qualified symbols, obtained from the first compo-
nents of the listed symbol maps with reference to a given signature, together
with a mapping of these symbols to qualified symbols obtained from the sec-
ond components of the listed symbol maps. The order in which symbol maps
are listed is not significant (except regarding their position in relation to any
specified kinds).

6.5 Compound Identifiers

TOKEN-ID ::= ... | COMP-TOKEN-ID

MIXFIX-ID ::= ... | COMP-MIXFIX-ID

COMP-TOKEN-ID ::= comp-token-id TOKEN ID+

COMP-MIXFIX-ID ::= comp-mixfix-id TOKEN-PLACES ID+
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This extension of the syntax of identifiers for sorts, operations, and predi-
cates is of relevance to generic specifications. An ordinary compound iden-
tifier COMP-TOKEN-ID is written ‘I[I1 , . . . , In ]’; a mixfix compound identifier
COMP-MIXFIX-ID is written by inserting ‘[I1 , . . . , In ]’ directly after the last
token of the identifier. (Compound ‘invisible’ identifiers without any tokens
are not allowed.) Note that declaration of both compound identifiers and
mixfix identifiers as operation symbols in the same local environment may
give rise to ambiguity, when they involve overlapping sets of tokens.

The components Ii may (but need not) themselves identify sorts, operations,
or predicates that are specified in the declared parameters of a generic spec-
ification.

When such a compound identifier is used to name, e.g., a sort in the body of
a generic specification, the translation determined by fitting arguments to
parameters applies to the components I1 ,. . . ,In as well. Thus instantiations
with different arguments generally give rise to different compound identi-
fiers for what would otherwise be the same sort, which avoids unintended
identifications when the instantiations are united.

E.g., a generic specification of sequences of arbitrary elements might use
the simple identifier Elem for a sort in the parameter, and a compound
identifier Seq[Elem] for the sort of sequences in the body. Fitting various
argument sorts to Elem in different instantiations then results in distinct
sorts of sequences.

Subsort embeddings between component sorts do not induce subsort embed-
dings between the compound sorts: when desired, these have to be declared
explicitly. For example, when Nat is declared as a subsort of Int, we do not
automatically get Seq[Nat] embedded as a subsort of Seq[Int] in signatures
containing all these sorts.

Instantiation, however, does preserve subsorts: if in a generic specification
we have Elem declared as a subsort of Seq[Elem], where Elem is a param-
eter sort, then in the result of instantiation of Elem by Nat, one does get
Nat automatically declared as a subsort of Seq[Nat]. Compound identifiers
must not be identified through the identification of components by the fit-
ting morphism. E.g., if the body of a generic specification contains both
List[Elem1] and List[Elem2], the fitting morphism must not map both
Elem1 and Elem2 to Nat.

Higher-order extensions of Casl are expected to provide a more semantic
treatment of parametrized sorts, etc.
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Architectural Specifications
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Chapter 7

Architectural Concepts

The intention with architectural specifications is primarily to impose struc-
ture on models, expressing their composition from component units—and
thereby also a decomposition of the task of developing such models from
requirements specifications. This is in contrast to the structured specifi-
cations summarized in Part II, where the specified models have no more
structure than do those of the basic specifications summarized in Part I.

The component units may all be regarded as unit functions: functions
without arguments give self-contained units; functions with arguments use
such units in constructing further units. Note that a resulting unit may be
needed for use as an argument in more than one application.

The specification of a unit function indicates the properties to be assumed
of the arguments, and the properties to be guaranteed of the result. Such
a specification provides the appropriate interfaces for the development of
the function. In Casl, self-contained units are simply models as defined in
Part I, and their properties are expressed by ordinary (perhaps structured)
specifications.

Thus a unit function maps models of argument specifications to models of a
result specification. A specification of such functions can be simply a list of
the argument specifications together with the result specification. Thinking
of argument and result specifications as types of models, a specification of a
unit function may be regarded as a function type.

An entire architectural specification is a collection of unit function spec-
ifications, together with a description of how the functions are to be com-
posed to give a resulting unit. A model of an architectural specification is a
collection of unit functions with the specified types or definitions, together
with the result of composing them as described.
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The intention is that a unit function should actually make use of its argu-
ments. In particular, it should not re-implement the argument specifications.
This is ensured by requiring the unit function to be persistent : the reduct
of the result to each argument signature yields exactly the given arguments.

As a consequence, the result signature has to include each argument sig-
nature—any desired hiding has to be left to when functions are composed.
Moreover, since each symbol in the union of the argument signatures has
to be implemented the same way in the result as in each argument where
it occurs, the arguments must already have the same implementation of all
common symbols. In the absence of subsorts, this is sufficient to allow one
to unambiguously amalgamate arguments into a single model over the union
of argument signatures. When subsorts are present, extra conditions to en-
sure that implicit subsort embeddings can be defined unambiguously in such
an amalgamated model may be necessary. Let us call arguments satisfying
such a requirement compatible .

Hence the interpretation of the specification of a unit function is as all per-
sistent functions from compatible tuples of models of the argument specifica-
tions to models of the result specification. When composing such functions,
care must be taken to ensure that arguments are indeed compatible. Notice
that if two arguments have the same signature, the arguments must be iden-
tical. It is not possible to specify a function that should take two arguments
that implement the same signature independently—although one can get
the same effect, by renaming one or both of the argument signatures.
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Chapter 8

Architectural Constructs

This chapter indicates the abstract and concrete syntax of the constructs of
architectural specifications, and describes their intended interpretation, ex-
tending what was provided for basic and structured specifications in Parts I
and II.

ARCH-SPEC-DEFN ::= arch-spec-defn ARCH-SPEC-NAME ARCH-SPEC

ARCH-SPEC ::= BASIC-ARCH-SPEC | ARCH-SPEC-NAME

An architectural specification definition ARCH-SPEC-DEFN is written:

arch spec ASN =
ASP

end

where the terminating ‘end’ keyword is optional.

It defines the name ASN to refer to the architectural specification ASP , ex-
tending the global environment (which must not already include a definition
for ASN ). The local environment given to ASP is empty.

ARCH-SPEC-NAME ::= SIMPLE-ID

An architectural specification name ARCH-SPEC-NAME is normally displayed
in a Small-Caps font, and input in mixed upper and lower case.

A reference in an architectural specification ARCH-SPEC to an architectural
specification named ASN is simply written as the name itself ‘ASN ’. It
refers to the the current global environment, and is well-formed only when
the global environment includes an architectural specification definition for
ASN . The enclosing definition then merely introduces a synonym for a
previously-defined architectural specification.
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BASIC-ARCH-SPEC ::= basic-arch-spec UNIT-DECL-DEFN+ RESULT-UNIT

UNIT-DECL-DEFN ::= UNIT-DECL | UNIT-DEFN

RESULT-UNIT ::= result-unit UNIT-EXPRESSION

A basic architectural specification BASIC-ARCH-SPEC is written:

units UD1 ; . . . UDn ; result UE ;

where both the last two semicolons are optional.

It consists of a list of unit declarations and definitions UD1 , . . . , UDn ,
together with a unit expression UE describing how such units are to be
composed. A model of such an architectural specification consists of a unit
for each UDi , and the composition of these units as described by UE .

8.1 Unit Declarations and Definitions

The visibility of unit names in architectural specifications is linear: each
name has to be declared or defined before it is used in a unit expression; and
no unit name may be introduced more than once in a particular architectural
specification. Note that declarations and definitions of units do not affect the
global environment: a unit may be referenced only within the architectural
specification in which it occurs.

8.1.1 Unit Declarations

UNIT-DECL ::= unit-decl UNIT-NAME UNIT-SPEC UNIT-IMPORTED

UNIT-IMPORTED ::= unit-imported UNIT-TERM*

UNIT-NAME ::= SIMPLE-ID

A unit declaration UNIT-DECL is written:

UN : USP given UT1 ,. . . ,UTn

When the list UNIT-TERM* of unit terms is empty, it is simply written:

UN : USP

It provides not only a unit specification USP but also a unit name UN ,
which is used for referring to the unit in subsequent unit expressions, so
that the same unit may be used more than once in a composition.

In addition, the UNIT-IMPORTED lists any units UT1 , . . . ,UTn that are im-
ported for the implementation of the declared unit (corresponding to imple-
menting a generic unit function and applying it only once, to the imported
units, the argument type of the generic function being merely the list of the
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signatures of the UTi). The unit specification USP is treated as an exten-
sion of the signatures of the imported units, thus being given a non-empty
local environment, in general.

8.1.2 Unit Definitions

UNIT-DEFN ::= unit-defn UNIT-NAME UNIT-EXPRESSION

A unit definition UNIT-DEFN is written:

UN = UE

It defines the name UN to refer to the unit resulting from the composition
described by the unit expression UE .

8.2 Unit Specifications

UNIT-SPEC-DEFN ::= unit-spec-defn SPEC-NAME UNIT-SPEC

UNIT-SPEC ::= UNIT-TYPE | SPEC-NAME | ARCH-UNIT-SPEC

| CLOSED-UNIT-SPEC

A unit specification definition UNIT-SPEC-DEFN is written:

unit spec SN =
USP

end

where the terminating ‘end’ keyword is optional.

It provides a name SN for a unit specification USP . The unit specification
may be a unit type. It may also be the name of another unit specification
(in the context-free concrete syntax, this is indistinguishable from a refer-
ence to a named structured specification in a constant unit type, but the
global environment determines how the name should be interpreted). It may
be an architectural specification (either a reference to the defined name of
an architectural specification, or an anonymous architectural specification).
Finally, it may be an explicitly-closed unit specification.

It defines the name SN to refer to the unit specification USP , extending the
global environment (which must not already include a definition for SN ).
The local environment given to USP is empty, i.e., the unit specification is
implicitly closed.
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8.2.1 Unit Types

UNIT-TYPE ::= unit-type SPEC* SPEC

A unit type is written:

SP1 × . . .× SPn → SP

When the list SPEC* of argument specifications is empty, the unit type is
simply written ‘SP ’.

A unit satisfies a unit type when it is a persistent function that maps com-
patible tuples of models of the argument specifications SP1 , . . . , SPn to
models of their extension by the result specification SP .

8.2.2 Architectural Unit Specifications

ARCH-UNIT-SPEC ::= arch-unit-spec ARCH-SPEC

An architectural unit specification ARCH-UNIT-SPEC is written:

arch spec ASP

A unit satisfies ‘arch spec ASP ’ when it is the result unit of some model
of ASP .

8.2.3 Closed Unit Specifications

CLOSED-UNIT-SPEC ::= closed-unit-spec UNIT-SPEC

A closed unit specification CLOSED-UNIT-SPEC is written:

closed USP

It determines the same type as USP determines in the empty local environ-
ment, thus ensuring the closedness of USP .

8.3 Unit Expressions

UNIT-EXPRESSION ::= unit-expression UNIT-BINDING* UNIT-TERM

UNIT-BINDING ::= unit-binding UNIT-NAME UNIT-SPEC

A unit expression with some unit bindings is written:

λUN1 : USP1 ; . . . ; UNn : USPn • UT
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The sign displayed as ‘λ’ is input as ‘lambda’. The sign displayed as ‘ • ’
may be input as ‘·’ in ISO Latin-1, or as ‘.’ in ASCII. When the list of unit
bindings is empty, just the unit term ‘UT ’ is written.

It describes a composition of units declared (or defined) in the enclosing
architectural specification. The result unit is a function, mapping the argu-
ments specified by the unit bindings (if any) to the unit described by the
unit term UT . The unit names UN1 , . . . , UNn for the arguments must
be distinct, and not include the names of units previously declared in the
enclosing architectural specification.

The unit bindings for the arguments (which are like unit declarations but
with no possibility of importing other units) in a unit expression are for
(non-parameterized) units that are required to build the result, but are not
directly provided yet. This allows for compositions which express partial ar-
chitectural specifications that depend on additional units, and might be used
to instantiate the same composition for various realizations of the required
units.

8.3.1 Unit Terms

UNIT-TERM ::= UNIT-REDUCTION | UNIT-TRANSLATION | AMALGAMATION

| LOCAL-UNIT | UNIT-APPL

Unit terms provide counterparts to most of the constructs of structured
specifications: translations, reductions, amalgamations (corresponding to
unions), local unit definitions, and applications (corresponding to instanti-
ations).

Unit terms use the same notation as structured specifications—but with a
crucially different semantics, however. This is easiest to notice when con-
sidering the difference between union and amalgamation as well as between
translation and unit translation. For units, enough sharing is required so
that the constructs as applied to the given units will always make sense
and produce results. This is in contrast with the constructs for structured
specifications, where well-formed unions or (non-injective) translations of
consistent specifications might result in inconsistencies.

The sharing between symbols is understood here semantically: two symbols
share if they coincide semantically. However, there is also a static semantics
(with the corresponding static analysis supported by CASL tools) that ex-
ploits situations where symbols required to share in fact originate from the
same symbol in some unit declaration or definition. Such direct information
should be sufficient to discharge the verification conditions implicit in the
above semantic requirement in most typical cases. This is simplest when
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no subsorting constructs are involved. The presence of subsorts, and the
properties that subsort embeddings and overloaded operations and predi-
cates must satisfy, make the static analysis more complex [SMT+01] (but
still tractable in practical examples).

Taking the unit type of each unit name from its declaration, the unit term
must be well-typed. All the constructs involved must get argument units
over the appropriate signatures.

8.3.1.1 Unit Translations

UNIT-TRANSLATION ::= unit-translation UNIT-TERM RENAMING

A unit translation is written:

UT R

where the renaming R is written ‘with SM ’, and determines a mapping of
symbols, cf. Section 6.1.1.

It allows some of the unit symbols to be renamed. Any symbols that happen
to be glued together by the renaming must share.

8.3.1.2 Unit Reductions

UNIT-REDUCTION ::= unit-reduction UNIT-TERM RESTRICTION

A unit-reduction is written:

UT R

where the restriction R is written ‘hide SL’ or ‘reveal SM ’, and deter-
mines a set of symbols, and in the latter case also a mapping of them,
cf. Section 6.1.2.

It allows parts of the unit to be hidden and other parts to be simultaneously
renamed.

8.3.1.3 Amalgamations

AMALGAMATION ::= amalgamation UNIT-TERM+

An amalgamation is written:

UT1 and . . . and UTn
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It produces a unit that consists of the components of all the amalgamated
units put together. Compatibility of the unit terms must be ensured.

8.3.1.4 Local Units

LOCAL-UNIT ::= local-unit UNIT-DEFN+ UNIT-TERM

A local unit is written:

local UD1 ; . . . ; UDn ; within UT

where the final ‘;’ may be omitted.

This allows for naming units that are locally defined for use in a unit term,
these units being intermediate results that are not to be visible in the models
of the enclosing architectural specification.

8.3.1.5 Unit Applications

UNIT-APPL ::= unit-appl UNIT-NAME FIT-ARG-UNIT*

A unit application UNIT-APPL is written:

UN [FAU1 ]. . . [FAUn ]

It refers to a generic unit named UN that has already been declared or
defined in the enclosing architectural specification, providing a fitting argu-
ment FAUi for each declared parameter (in the same order).

FIT-ARG-UNIT ::= fit-arg-unit UNIT-TERM SYMB-MAP-ITEMS*

A fitting argument FAUi is written:

UT ′
i fit SMi

When the symbol mapping SMi is empty, just the unit term UT ′
i is written.

The fitting argument fits the argument unit given by the unit term UT ′
i to

the corresponding formal argument for the generic unit via a signature mor-
phism determined by the symbol mapping SMi . The signature morphism is
obtained in the same way as for generic specifications. Unmapped symbols
are included unchanged. Of course, the signature of the actual argument
might coincide with the corresponding signature in the generic unit type, in
which case no extra fitting is needed, and the argument unit is passed to the
generic unit directly. The compatibility of the arguments must be ensured.

Each fitting argument unit FAUi is required to be a model of the correspond-
ing argument specification, otherwise the unit application is undefined.
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Chapter 9

Library Concepts

Specifications may be named by definitions and collected in libraries.
In the context of a library, the (re)use of a specification may be replaced by
a reference to it through its name. The current association between names
and the specifications that they reference is called the global environment ;
it may vary throughout a library: with linear visibility , as in Casl, the
global environment for a named specification is determined exclusively by
the definitions that precede it. When overriding is forbidden, as in Casl,
each valid reference to a particular name refers to the same defined entity.

The local environment given to each named specification in a library should
be independent of the other specifications in the library (in Casl, it is
empty). Thus any dependence between the specifications is always apparent
from the explicit references to the names of specifications.

A library may be located at a particular site on the Internet. The library
is referenced from other sites by a name which determines the location and
perhaps identifies a particular version of the library. To allow libraries to
be relocated without this invalidating existing references to them, library
names may be interpreted relative to a global directory that maps names
to URLs. Libraries may also be referenced directly by their (relative or
absolute) URLs, independently of their registration in the global directory.

A library may incorporate the downloading of copies of named specifi-
cations from (perhaps particular versions of) other libraries, whenever the
library is used. To ensure continuous access to specifications despite tempo-
rary failures at a particular library site, registered libraries may be mirrored
at archive sites.

The semantics of a specification library is the name of the library together
with a map taking each specification name defined in it to the semantics of
that specification. The initial global environment for the library is empty.
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Chapter 10

Library Constructs

This chapter indicates the abstract and concrete syntax of the constructs of
specification libraries, and describes their intended interpretation, extending
what was provided for basic, structured, and architectural specifications in
Parts I–III.

First, the constructs of local libraries are presented. Such libraries are not
dependent on other libraries. Then constructs for referencing distributed
libraries are added. Finally, the form and intended interpretation of library
names are explained.

10.1 Local Libraries

LIB-DEFN ::= lib-defn LIB-NAME LIB-ITEM*

LIB-ITEM ::= SPEC-DEFN | VIEW-DEFN | ARCH-SPEC-DEFN | UNIT-SPEC-DEFN

A library definition LIB-DEFN is written:

library LN LI1 . . . LIn

Each library item LIi starts with a distinctive keyword, and may be termi-
nated by an optional ‘end’.

The library definition provides a collection of specification (and perhaps also
view) definitions. It is well-formed only when the defined names are distinct,
and not referenced until (strictly) after their definitions. The global envi-
ronment for each definition is that determined by the preceding definitions.
Thus a library in Casl provides linear visibility, and mutual or cyclic chains
of references are not allowed.
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The local environment for each definition is empty: the symbols declared by
the preceding specifications in the library are only made available by explicit
reference to the name of the specification concerned.

Each specification definition in a library must be self-contained (after resolv-
ing references to names defined in the current global environment), deter-
mining a complete signature—fragments of specifications cannot be named.

A local library definition determines a library name, together with a map
from names to the semantics of the named specifications.

10.2 Distributed Libraries

LIB-ITEM ::= ... | DOWNLOAD-ITEMS

DOWNLOAD-ITEMS ::= download-items LIB-NAME ITEM-NAME-OR-MAP+

ITEM-NAME-OR-MAP ::= ITEM-NAME | ITEM-NAME-MAP

ITEM-NAME-MAP ::= item-name-map ITEM-NAME ITEM-NAME

ITEM-NAME ::= SIMPLE-ID

The syntax of local libraries is here extended with a further sort of library
item, for use with distributed libraries. The DOWNLOAD-ITEMS construct is
written:

from LN get IN1 7→ IN ′
1 , . . . , INn 7→ IN ′

n end

where the terminating ‘end’ keyword is optional. An identity map ‘INn 7→
INn ’ may be simply written ‘INn ’.

It specifies which definitions to copy from the remote library named LN ,
changing the remote names INi to the local names IN ′

i .

The semantics corresponds to having already replaced all references in the
downloaded definitions by the corresponding (closed) specifications; cyclic
chains of references via remote libraries are not allowed. The download items
show exactly which specification names are added to the current global en-
vironment of the library in which they occur, allowing references to named
specifications to be checked locally (although not whether the kind of speci-
fication to be downloaded from the remote library is consistent with its local
use).
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10.3 Library Names

LIB-NAME ::= LIB-ID | LIB-VERSION

LIB-VERSION ::= lib-version LIB-ID VERSION-NUMBER

VERSION-NUMBER ::= version-number NUMBER+

A library name LIB-NAME without a VERSION-NUMBER is written simply as
a library identifier LI . A library name LIB-NAME with version numbers N1 ,
. . . , Nn is written:

LI version N1 . . . . .Nn

The lists of version numbers are ordered lexicographically on the basis of
the usual ordering between natural numbers.

The library name of a library definition determines how the library is to
be referenced from other libraries; its interpretation as a URL determines
the primary location of the library (any copies of a library are to retain the
original name).

When the name of a defined library is simply a library identifier LIB-ID, it
must be changed to an explicit library version LIB-VERSION before defining
further versions of that library. A library identifier without an explicit ver-
sion in a downloading construct always refers to the current version of the
identified library: the one with the largest list of version numbers (which
is not necessarily the last-created version, due to the lexicographic ordering
on such lists).

LIB-ID ::= DIRECT-LINK | INDIRECT-LINK

DIRECT-LINK ::= direct-link URL

INDIRECT-LINK ::= indirect-link PATH

A direct link to a library is simply written as the URL of the library. The
location of a library is always a directory, giving access not only to the indi-
vidual specifications defined by the current version of the library but also to
previously-defined versions, various indexes, and perhaps other documenta-
tion.

An indirect link is written:

FI1 /. . . /FIn

where each file identifier FIi is a valid file name, as for use in a path in a
URL. An indirect link is interpreted as a URL by the current global library
directory.
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[SMT+01] Lutz Schröder, Till Mossakowski, Andrzej Tarlecki, Piotr Hoff-
man, and Bartosz Klin. Semantics of architectural specifications
in Casl. In Fundamental Approaches to Software Engineering
(FASE2001), LNCS. Springer, 2001. To appear.

1.0.1

http://www.brics.dk/Projects/CoFI/Notes/S-6/index.html
http://www.brics.dk/Projects/CoFI/Documents/CASL/Semantics/index.html
http://www.brics.dk/Projects/CoFI/Documents/CASL/RefereeResponse/index.html
http://www.brics.dk/Projects/CoFI/Documents/CASL/RefereeReport/index.html
http://www.brics.dk/Projects/CoFI/Documents/CASL/RefereeReport/index.html
http://www.brics.dk/Projects/CoFI/Notes/C-2/index.html
http://www.brics.dk/Projects/CoFI/Notes/L-12/index.html


Index

architectural specification, 51
argument sorts, 3
argument specification, 34
associativity, 10
atomic formulae, 5
auxiliary, 37
axioms, 2

basic specification, 2
body, 34

carrier set, 4
closed, 34, 37
commutativity, 11
compatible, 43, 52
composition, 51
compound identifier, 49
consequence, 3
consistent, 2
constants, 3
constraints, 3
current signature, 33

decomposition, 51
definitions, 61
display annotations, 25
downloading, 61

enrich, 36
equivalence, 30
expansions, 20
extend, 37
extended, 33
extension, 36

fitting morphism, 34
free extensions, 37

free specification, 37
fully-qualified terms, 5
function, 4

generated, 6
generic, 34
global directory, 61
global environment, 61

hidden, 33
homomorphisms, 2

idempotency, 11
imports, 34
inconsistent, 3
initial, 33
instantiate, 34
institutions, 2

libraries, 61
linear visibility, 2, 61
local environment, 2
local specification, 37

many-sorted first-order structure,
4

many-sorted homomorphism, 4
many-sorted model, 4
many-sorted partial algebra, 4
many-sorted reduct, 4
many-sorted sentences, 5
many-sorted signature, 3
many-sorted signature morphism,

4
many-sorted terms, 5
mixfix identifier, 25
mixfix notation, 25

67



INDEX 68

models, 2
morphisms, 2

named, 61
non-linear visibility, 2, 13

operations, 4
overloaded, 4
overloading relations, 26

parameters, 34
partial, 4
partial function symbols, 3
predicate, 4
presentation, 2
profile, 3
proof system, 2

qualified, 4

reduct, 3
reduction, 36
reference, 61
result sort, 3

satisfaction, 2
self-contained, 37
semantics, 2
sentences, 2
signature morphism, 3
signatures, 2
site, 61
sort-generation constraints, 5
sorts, 3
specialize, 36
specification morphisms, 34
structured specification, 33
subsorted models, 27
subsorted sentences, 27
subsorted signature, 26
subsorted signature morphism, 27
symbol sets, 34
symbols, 2

token, 25
total function symbols, 3

translated, 33
translation, 3, 36

union, 36
unit (left and right), 11
unit functions, 51
united, 33

views, 34

well-formed, 7
well-sorted, 20

1.0.1



Appendices

69



Appendix A

Abstract Syntax

The abstract syntax is central to the definition of a formal language. It
stands between the concrete representations of documents, such as marks
on paper or images on screens, and the abstract entities, semantic relations,
and semantic functions used for defining their meaning.

The abstract syntax has the following objectives:

• to identify and separately name the abstract syntactic entities;

• to simplify and unify underlying concepts, putting like things with
like, and reducing unnecessary duplication.

There are many possible ways of constructing an abstract syntax, and the
choice of form is a matter of judgement, taking into account the somewhat
conflicting aims of simplicity and economy of semantic definition.

The abstract syntax is presented as a set of production rules in which each
sort of entity is defined in terms of its subsorts:

SOME-SORT ::= SUBSORT-1 | ... | SUBSORT-n

or in terms of its constructor and components:

SOME-CONSTRUCT ::= some-construct COMPONENT-1 ... COMPONENT-n

The productions form a context-free grammar; algebraically, the nontermi-
nal symbols of the grammar correspond to sorts (of trees), and the terminal
symbols correspond to constructor operations. The notation COMPONENT* in-
dicates repetition of COMPONENT any number of times; COMPONENT+ indicates
repetition at least once. (These repetitions could be replaced by auxiliary
sorts and constructs, after which it would be straightforward to transform
the grammar into a Casl FREE-DATATYPE specification.)
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The context conditions for well-formedness of specifications are not deter-
mined by the grammar (these are considered as part of semantics).

The grammar here has the property that there is a sort for each construct
(although an exception is made for constant constructs with no components).
Appendix B provides an abbreviated grammar defining the same abstract
syntax. It was obtained by eliminating each sort that corresponds to a single
construct, when this sort occurs only once as a subsort of another sort.

The following nonterminal symbols correspond to lexical syntax, and are
left unspecified in the abstract syntax: WORDS, DOT-WORDS, SIGNS, DIGIT,
DIGITS, NUMBER, QUOTED-CHAR, PLACE, URL, and PATH.

A.1 Basic Specifications

BASIC-SPEC ::= basic-spec BASIC-ITEMS*

BASIC-ITEMS ::= SIG-ITEMS | FREE-DATATYPE | SORT-GEN

| VAR-ITEMS | LOCAL-VAR-AXIOMS | AXIOM-ITEMS

SIG-ITEMS ::= SORT-ITEMS | OP-ITEMS | PRED-ITEMS

| DATATYPE-ITEMS

SORT-ITEMS ::= sort-items SORT-ITEM+

SORT-ITEM ::= SORT-DECL

SORT-DECL ::= sort-decl SORT+

OP-ITEMS ::= op-items OP-ITEM+

OP-ITEM ::= OP-DECL | OP-DEFN

OP-DECL ::= op-decl OP-NAME+ OP-TYPE OP-ATTR*

OP-TYPE ::= TOTAL-OP-TYPE | PARTIAL-OP-TYPE

TOTAL-OP-TYPE ::= total-op-type SORT-LIST SORT

PARTIAL-OP-TYPE ::= partial-op-type SORT-LIST SORT

SORT-LIST ::= sort-list SORT*

OP-ATTR ::= BINARY-OP-ATTR | UNIT-OP-ATTR

BINARY-OP-ATTR ::= assoc-op-attr | comm-op-attr | idem-op-attr

UNIT-OP-ATTR ::= unit-op-attr TERM

OP-DEFN ::= op-defn OP-NAME OP-HEAD TERM

OP-HEAD ::= TOTAL-OP-HEAD | PARTIAL-OP-HEAD

TOTAL-OP-HEAD ::= total-op-head ARG-DECL* SORT

PARTIAL-OP-HEAD ::= partial-op-head ARG-DECL* SORT

ARG-DECL ::= arg-decl VAR+ SORT

PRED-ITEMS ::= pred-items PRED-ITEM+

PRED-ITEM ::= PRED-DECL | PRED-DEFN

PRED-DECL ::= pred-decl PRED-NAME+ PRED-TYPE

PRED-TYPE ::= pred-type SORT-LIST
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PRED-DEFN ::= pred-defn PRED-NAME PRED-HEAD FORMULA

PRED-HEAD ::= pred-head ARG-DECL*

DATATYPE-ITEMS ::= datatype-items DATATYPE-DECL+

DATATYPE-DECL ::= datatype-decl SORT ALTERNATIVE+

ALTERNATIVE ::= TOTAL-CONSTRUCT | PARTIAL-CONSTRUCT

TOTAL-CONSTRUCT ::= total-construct OP-NAME COMPONENTS*

PARTIAL-CONSTRUCT::= partial-construct OP-NAME COMPONENTS+

COMPONENTS ::= TOTAL-SELECT | PARTIAL-SELECT | SORT

TOTAL-SELECT ::= total-select OP-NAME+ SORT

PARTIAL-SELECT ::= partial-select OP-NAME+ SORT

FREE-DATATYPE ::= free-datatype DATATYPE-ITEMS

SORT-GEN ::= sort-gen SIG-ITEMS+

VAR-ITEMS ::= var-items VAR-DECL+

VAR-DECL ::= var-decl VAR+ SORT

LOCAL-VAR-AXIOMS ::= local-var-axioms VAR-DECL+ AXIOM+

AXIOM-ITEMS ::= axiom-items AXIOM+

AXIOM ::= FORMULA

FORMULA ::= QUANTIFICATION | CONJUNCTION | DISJUNCTION

| IMPLICATION | EQUIVALENCE | NEGATION | ATOM

QUANTIFICATION ::= quantification QUANTIFIER VAR-DECL+ FORMULA

QUANTIFIER ::= universal | existential | unique-existential

CONJUNCTION ::= conjunction FORMULA+

DISJUNCTION ::= disjunction FORMULA+

IMPLICATION ::= implication FORMULA FORMULA

EQUIVALENCE ::= equivalence FORMULA FORMULA

NEGATION ::= negation FORMULA

ATOM ::= TRUTH | PREDICATION | DEFINEDNESS

| EXISTL-EQUATION | STRONG-EQUATION

TRUTH ::= true-atom | false-atom

PREDICATION ::= predication PRED-SYMB TERMS

PRED-SYMB ::= PRED-NAME | QUAL-PRED-NAME

QUAL-PRED-NAME ::= qual-pred-name PRED-NAME PRED-TYPE

DEFINEDNESS ::= definedness TERM

EXISTL-EQUATION ::= existl-equation TERM TERM

STRONG-EQUATION ::= strong-equation TERM TERM

TERMS ::= terms TERM*

TERM ::= SIMPLE-ID | QUAL-VAR | APPLICATION

| SORTED-TERM | CONDITIONAL

QUAL-VAR ::= qual-var VAR SORT

APPLICATION ::= application OP-SYMB TERMS

OP-SYMB ::= OP-NAME | QUAL-OP-NAME

QUAL-OP-NAME ::= qual-op-name OP-NAME OP-TYPE

SORTED-TERM ::= sorted-term TERM SORT

CONDITIONAL ::= conditional TERM FORMULA TERM
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SORT ::= TOKEN-ID

OP-NAME ::= ID

PRED-NAME ::= ID

VAR ::= SIMPLE-ID

SIMPLE-ID ::= WORDS

ID ::= TOKEN-ID | MIXFIX-ID

TOKEN-ID ::= TOKEN

TOKEN ::= WORDS | DOT-WORDS | SIGNS | DIGIT | QUOTED-CHAR

MIXFIX-ID ::= TOKEN-PLACES

TOKEN-PLACES ::= token-places TOKEN-OR-PLACE+

TOKEN-OR-PLACE ::= TOKEN | PLACE

A.2 Basic Specifications with Subsorts

SORT-ITEM ::= ... | SUBSORT-DECL | ISO-DECL | SUBSORT-DEFN

SUBSORT-DECL ::= subsort-decl SORT+ SORT

ISO-DECL ::= iso-decl SORT+

SUBSORT-DEFN ::= subsort-defn SORT VAR SORT FORMULA

ALTERNATIVE ::= ... | SUBSORTS

SUBSORTS ::= subsorts SORT+

ATOM ::= ... | MEMBERSHIP

MEMBERSHIP ::= membership TERM SORT

TERM ::= ... | CAST

CAST ::= cast TERM SORT
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A.3. STRUCTURED SPECIFICATIONS A–5

A.3 Structured Specifications

SPEC ::= BASIC-SPEC | TRANSLATION | REDUCTION

| UNION | EXTENSION | FREE-SPEC | LOCAL-SPEC

| CLOSED-SPEC | SPEC-INST

TRANSLATION ::= translation SPEC RENAMING

RENAMING ::= renaming SYMB-MAP-ITEMS+

REDUCTION ::= reduction SPEC RESTRICTION

RESTRICTION ::= HIDDEN | REVEALED

HIDDEN ::= hidden SYMB-ITEMS+

REVEALED ::= revealed SYMB-MAP-ITEMS+

UNION ::= union SPEC+

EXTENSION ::= extension SPEC+

FREE-SPEC ::= free-spec SPEC

LOCAL-SPEC ::= local-spec SPEC SPEC

CLOSED-SPEC ::= closed-spec SPEC

SPEC-DEFN ::= spec-defn SPEC-NAME GENERICITY SPEC

GENERICITY ::= genericity PARAMS IMPORTED

PARAMS ::= params SPEC*

IMPORTED ::= imported SPEC*

SPEC-INST ::= spec-inst SPEC-NAME FIT-ARG*

FIT-ARG ::= FIT-SPEC | FIT-VIEW

FIT-SPEC ::= fit-spec SPEC SYMB-MAP-ITEMS*

FIT-VIEW ::= fit-view VIEW-NAME FIT-ARG*

VIEW-DEFN ::= view-defn VIEW-NAME GENERICITY VIEW-TYPE

SYMB-MAP-ITEMS*

VIEW-TYPE ::= view-type SPEC SPEC

SYMB-ITEMS ::= symb-items SYMB-KIND SYMB+

SYMB-MAP-ITEMS ::= symb-map-items SYMB-KIND SYMB-OR-MAP+

SYMB-KIND ::= implicit | sorts-kind | ops-kind | preds-kind

SYMB ::= ID | QUAL-ID

QUAL-ID ::= qual-id ID TYPE

TYPE ::= OP-TYPE | PRED-TYPE

SYMB-MAP ::= symb-map SYMB SYMB

SYMB-OR-MAP ::= SYMB | SYMB-MAP

SPEC-NAME ::= SIMPLE-ID

VIEW-NAME ::= SIMPLE-ID

TOKEN-ID ::= ... | COMP-TOKEN-ID

MIXFIX-ID ::= ... | COMP-MIXFIX-ID

COMP-TOKEN-ID ::= comp-token-id TOKEN ID+

COMP-MIXFIX-ID ::= comp-mixfix-id TOKEN-PLACES ID+
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A.4. ARCHITECTURAL SPECIFICATIONS A–6

A.4 Architectural Specifications

ARCH-SPEC-DEFN ::= arch-spec-defn ARCH-SPEC-NAME ARCH-SPEC

ARCH-SPEC ::= BASIC-ARCH-SPEC | ARCH-SPEC-NAME

BASIC-ARCH-SPEC ::= basic-arch-spec UNIT-DECL-DEFN+ RESULT-UNIT

UNIT-DECL-DEFN ::= UNIT-DECL | UNIT-DEFN

UNIT-DECL ::= unit-decl UNIT-NAME UNIT-SPEC UNIT-IMPORTED

UNIT-IMPORTED ::= unit-imported UNIT-TERM*

UNIT-DEFN ::= unit-defn UNIT-NAME UNIT-EXPRESSION

UNIT-SPEC-DEFN ::= unit-spec-defn SPEC-NAME UNIT-SPEC

UNIT-SPEC ::= UNIT-TYPE | SPEC-NAME | ARCH-UNIT-SPEC

| CLOSED-UNIT-SPEC

ARCH-UNIT-SPEC ::= arch-unit-spec ARCH-SPEC

CLOSED-UNIT-SPEC ::= closed-unit-spec UNIT-SPEC

UNIT-TYPE ::= unit-type SPEC* SPEC

RESULT-UNIT ::= result-unit UNIT-EXPRESSION

UNIT-EXPRESSION ::= unit-expression UNIT-BINDING* UNIT-TERM

UNIT-BINDING ::= unit-binding UNIT-NAME UNIT-SPEC

UNIT-TERM ::= UNIT-REDUCTION | UNIT-TRANSLATION | AMALGAMATION

| LOCAL-UNIT | UNIT-APPL

UNIT-TRANSLATION ::= unit-translation UNIT-TERM RENAMING

UNIT-REDUCTION ::= unit-reduction UNIT-TERM RESTRICTION

AMALGAMATION ::= amalgamation UNIT-TERM+

LOCAL-UNIT ::= local-unit UNIT-DEFN+ UNIT-TERM

UNIT-APPL ::= unit-appl UNIT-NAME FIT-ARG-UNIT*

FIT-ARG-UNIT ::= fit-arg-unit UNIT-TERM SYMB-MAP-ITEMS*

ARCH-SPEC-NAME ::= SIMPLE-ID

UNIT-NAME ::= SIMPLE-ID

A.5 Specification Libraries

LIB-DEFN ::= lib-defn LIB-NAME LIB-ITEM*

LIB-ITEM ::= SPEC-DEFN | VIEW-DEFN

| ARCH-SPEC-DEFN | UNIT-SPEC-DEFN

| DOWNLOAD-ITEMS

DOWNLOAD-ITEMS ::= download-items LIB-NAME ITEM-NAME-OR-MAP+

ITEM-NAME-OR-MAP ::= ITEM-NAME | ITEM-NAME-MAP

ITEM-NAME-MAP ::= item-name-map ITEM-NAME ITEM-NAME

ITEM-NAME ::= SIMPLE-ID

LIB-NAME ::= LIB-ID | LIB-VERSION

LIB-VERSION ::= lib-version LIB-ID VERSION-NUMBER

VERSION-NUMBER ::= version-number NUMBER+

LIB-ID ::= DIRECT-LINK | INDIRECT-LINK

DIRECT-LINK ::= direct-link URL

INDIRECT-LINK ::= indirect-link PATH
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Appendix B

Abbreviated Abstract Syntax

The full grammar, defining the same (tree) language but using more non-
terminal symbols, is given in Appendix A.

The following nonterminal symbols correspond to lexical syntax, and are
left unspecified in the abstract syntax: WORDS, DOT-WORDS, SIGNS, DIGIT,
DIGITS, NUMBER, QUOTED-CHAR, PLACE, URL, and PATH.

B.1 Basic and Subsorted Specifications

BASIC-SPEC ::= basic-spec BASIC-ITEMS*

BASIC-ITEMS ::= SIG-ITEMS

| free-datatype DATATYPE-DECL+

| sort-gen SIG-ITEMS+

| var-items VAR-DECL+

| local-var-axioms VAR-DECL+ FORMULA+

| axiom-items FORMULA+

SIG-ITEMS ::= sort-items SORT-ITEM+

| op-items OP-ITEM+

| pred-items PRED-ITEM+

| datatype-items DATATYPE-DECL+

SORT-ITEM ::= sort-decl SORT+

| subsort-decl SORT+ SORT

| subsort-defn SORT VAR SORT FORMULA

| iso-decl SORT+

OP-ITEM ::= op-decl OP-NAME+ OP-TYPE OP-ATTR*

| op-defn OP-NAME OP-HEAD TERM

OP-TYPE ::= total-op-type SORT-LIST SORT

| partial-op-type SORT-LIST SORT

SORT-LIST ::= sort-list SORT*
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B.1. BASIC AND SUBSORTED SPECIFICATIONS B–2

OP-ATTR ::= assoc-op-attr | comm-op-attr | idem-op-attr

| unit-op-attr TERM

OP-HEAD ::= total-op-head ARG-DECL* SORT

| partial-op-head ARG-DECL* SORT

ARG-DECL ::= arg-decl VAR+ SORT

PRED-ITEM ::= pred-decl PRED-NAME+ PRED-TYPE

| pred-defn PRED-NAME PRED-HEAD FORMULA

PRED-TYPE ::= pred-type SORT-LIST

PRED-HEAD ::= pred-head ARG-DECL*

DATATYPE-DECL ::= datatype-decl SORT ALTERNATIVE+

ALTERNATIVE ::= total-construct OP-NAME COMPONENTS*

| partial-construct OP-NAME COMPONENTS+

| subsorts SORT+

COMPONENTS ::= total-select OP-NAME+ SORT

| partial-select OP-NAME+ SORT

| SORT

VAR-DECL ::= var-decl VAR+ SORT

FORMULA ::= quantification QUANTIFIER VAR-DECL+ FORMULA

| conjunction FORMULA+

| disjunction FORMULA+

| implication FORMULA FORMULA

| equivalence FORMULA FORMULA

| negation FORMULA

| true-atom | false-atom

| predication PRED-SYMB TERMS

| definedness TERM

| existl-equation TERM TERM

| strong-equation TERM TERM

| membership TERM SORT

QUANTIFIER ::= universal | existential | unique-existential

PRED-SYMB ::= PRED-NAME | qual-pred-name PRED-NAME PRED-TYPE

TERMS ::= terms TERM*

TERM ::= SIMPLE-ID

| qual-var VAR SORT

| application OP-SYMB TERMS

| sorted-term TERM SORT

| cast TERM SORT

| conditional TERM FORMULA TERM

OP-SYMB ::= OP-NAME | qual-op-name OP-NAME OP-TYPE

SORT ::= TOKEN-ID

OP-NAME ::= ID

PRED-NAME ::= ID

VAR ::= SIMPLE-ID

SIMPLE-ID ::= WORDS
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B.2. STRUCTURED SPECIFICATIONS B–3

ID ::= TOKEN-ID | MIXFIX-ID

TOKEN-ID ::= TOKEN

MIXFIX-ID ::= TOKEN-PLACES

TOKEN-PLACES ::= token-places TOKEN-OR-PLACE+

TOKEN-OR-PLACE ::= TOKEN | PLACE

TOKEN ::= WORDS | DOT-WORDS | SIGNS | DIGIT | QUOTED-CHAR

B.2 Structured Specifications

SPEC ::= BASIC-SPEC

| translation SPEC RENAMING

| reduction SPEC RESTRICTION

| union SPEC+

| extension SPEC+

| free-spec SPEC

| local-spec SPEC SPEC

| closed-spec SPEC

| spec-inst SPEC-NAME FIT-ARG*

RENAMING ::= renaming SYMB-MAP-ITEMS+

RESTRICTION ::= hide SYMB-ITEMS+

| reveal SYMB-MAP-ITEMS+

SPEC-DEFN ::= spec-defn SPEC-NAME GENERICITY SPEC

GENERICITY ::= genericity PARAMS IMPORTED

PARAMS ::= params SPEC*

IMPORTED ::= imported SPEC*

FIT-ARG ::= fit-spec SPEC SYMB-MAP-ITEMS*

| fit-view VIEW-NAME FIT-ARG*

VIEW-DEFN ::= view-defn VIEW-NAME GENERICITY VIEW-TYPE

SYMB-MAP-ITEMS*

VIEW-TYPE ::= view-type SPEC SPEC

SYMB-ITEMS ::= symb-items SYMB-KIND SYMB+

SYMB-MAP-ITEMS ::= symb-map-items SYMB-KIND SYMB-OR-MAP+

SYMB-KIND ::= implicit | sorts-kind | ops-kind | preds-kind

SYMB ::= ID | qual-id ID TYPE

TYPE ::= OP-TYPE | PRED-TYPE

SYMB-MAP ::= symb-map SYMB SYMB

SYMB-OR-MAP ::= SYMB | SYMB-MAP

SPEC-NAME ::= SIMPLE-ID

VIEW-NAME ::= SIMPLE-ID

TOKEN-ID ::= ... | COMP-TOKEN-ID

MIXFIX-ID ::= ... | COMP-MIXFIX-ID

COMP-TOKEN-ID ::= comp-token-id TOKEN ID+

COMP-MIXFIX-ID ::= comp-mixfix-id TOKEN-PLACES ID+
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B.3. ARCHITECTURAL SPECIFICATIONS B–4

B.3 Architectural Specifications

ARCH-SPEC-DEFN ::= arch-spec-defn ARCH-SPEC-NAME ARCH-SPEC

ARCH-SPEC ::= basic-arch-spec UNIT-DECL-DEFN+ RESULT-UNIT

| ARCH-SPEC-NAME

UNIT-DECL-DEFN ::= UNIT-DECL | UNIT-DEFN

UNIT-DECL ::= unit-decl UNIT-NAME UNIT-SPEC UNIT-IMPORTED

UNIT-IMPORTED ::= unit-imported UNIT-TERM*

UNIT-DEFN ::= unit-defn UNIT-NAME UNIT-EXPRESSION

UNIT-SPEC-DEFN ::= unit-spec-defn SPEC-NAME UNIT-SPEC

UNIT-SPEC ::= UNIT-TYPE | SPEC-NAME | arch-unit-spec ARCH-SPEC

| closed-unit-spec UNIT-SPEC

UNIT-TYPE ::= unit-type SPEC* SPEC

RESULT-UNIT ::= result-unit UNIT-EXPRESSION

UNIT-EXPRESSION ::= unit-expression UNIT-BINDING* UNIT-TERM

UNIT-BINDING ::= unit-binding UNIT-NAME UNIT-SPEC

UNIT-TERM ::= unit-translation UNIT-TERM RENAMING

| unit-reduction UNIT-TERM RESTRICTION

| amalgamation UNIT-TERM+

| local-unit UNIT-DEFN+ UNIT-TERM

| unit-appl UNIT-NAME FIT-ARG-UNIT*

FIT-ARG-UNIT ::= fit-arg-unit UNIT-TERM SYMB-MAP-ITEMS*

ARCH-SPEC-NAME ::= SIMPLE-ID

UNIT-NAME ::= SIMPLE-ID

B.4 Specification Libraries

LIB-DEFN ::= lib-defn LIB-NAME LIB-ITEM*

LIB-ITEM ::= SPEC-DEFN | VIEW-DEFN

| ARCH-SPEC-DEFN | UNIT-SPEC-DEFN

| download-items LIB-NAME ITEM-NAME-OR-MAP+

ITEM-NAME-OR-MAP ::= ITEM-NAME | item-name-map ITEM-NAME ITEM-NAME

ITEM-NAME ::= SIMPLE-ID

LIB-NAME ::= LIB-ID | LIB-VERSION

LIB-VERSION ::= lib-version LIB-ID VERSION-NUMBER

VERSION-NUMBER ::= version-number NUMBER+

LIB-ID ::= direct-link URL | indirect-link PATH
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Appendix C

Concrete Syntax

The relationship between the concrete syntax and the corresponding ab-
stract syntax is rather straightforward—except that mapping the use of
mixfix notation in a concrete ATOM to an abstract ATOM depends on the
declared operation and predicate symbols (although not on their profiles).
Here, the relationship is merely suggested by the use of the same nonterminal
symbols in the concrete and abstract grammars.

Examples of specifications illustrating the concrete syntax are given in Ap-
pendix E. Parsers for Casl are available via the CoFI Tools task group
web page.

C.1 Introduction

The concrete syntax of Casl involves both input syntax (for writing and
editing, and subsequent parsing) and display format (for browsing on the
screen, and publication on paper). The input syntax is easy to relate to the
display format, and also sufficiently readable for use in (plain-text) e-mail
messages.

Section C.2 below provides a context-free grammar for the Casl input syn-
tax. It has been derived systematically from the ‘abbreviated’ abstract syn-
tax grammar in Appendix B, except for the productions for mixfix formulae
and terms. The context-free grammar is ambiguous; Section C.3 explains
various precedence rules for disambiguation, and the intended grouping of
mixfix formulae and terms. Section C.4 specifies the lexical symbols of the
concrete syntax. Section C.5 shows how comments and various kinds of
annotations may be written. Finally, Section C.6 introduces several anno-
tations used to provide literal syntax for numbers, strings, and lists. The
Casl display format is described in Appendix D.
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C.2. CONTEXT-FREE SYNTAX C–2

C.2 Context-Free Syntax

The grammar in this section uses uppercase words for nonterminal symbols,
allowing also hyphens. All other characters stand for themselves, with the
following exceptions:

• ‘::=’ and ‘|’ are generally used as meta-notation, as in BNF;

• A string of characters enclosed in double quotation marks ‘"..."’ al-
ways stands for the enclosed characters themselves;

• ‘N t...t N ’ indicates one or more repetitions of the nonterminal
symbol N separated by the terminal symbol t (which is usually a
comma or semicolon);

• ‘N ...N ’ is simply one or more repetitions of N (occasionally, N here
is a sequence of terminal and nonterminal symbols, such as ‘[ SPEC ]’);

• ‘var/vars’ indicates that the singular and plural forms may be used
interchangeably, and similarly for other keywords; ‘end/’ indicates that
the use of ‘end’ is optional, and similarly for semicolons: ‘;/’.

The following nonterminal symbols are for lexical syntax, and defined in Sec-
tion C.4: WORDS, DOT-WORDS, NO-BRACKET-SIGNS, DIGIT, DIGITS, QUOTED-
CHAR, FRACTION, FLOATING, STRING; the lexical syntax of URL and PATH is
left open. Lexical analysis for Casl is generally independent of the context-
free parsing (apart from the recognition of URL and PATH, which may appear
in libraries but not within individual specifications).

Context-free parsing of Casl specifications according to the grammar in this
section yields a parse tree where terms and formulae occurring in axioms
and definitions have been grouped with respect to explicit parentheses and
brackets, but where the intended applicative structure has not yet been
recognized. A further phase of mixfix grouping analysis is needed, dependent
on the identifiers declared in the specification and on parsing annotations,
before the parse tree can be mapped to a complete abstract syntax tree.
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C.2. CONTEXT-FREE SYNTAX C–3

C.2.1 Basic Specifications with Subsorts

BASIC-SPEC ::= BASIC-ITEMS...BASIC-ITEMS | { }

BASIC-ITEMS ::= SIG-ITEMS

| free type/types DATATYPE-DECL ;...; DATATYPE-DECL ;/

| generated type/types DATATYPE-DECL ;...; DATATYPE-DECL ;/

| generated { SIG-ITEMS...SIG-ITEMS } ;/

| var/vars VAR-DECL ;...; VAR-DECL ;/

| forall VAR-DECL ;...; VAR-DECL

"." FORMULA "."..."." FORMULA ;/

| "." FORMULA "."..."." FORMULA ;/

The following alternative concrete syntax productions:

BASIC-ITEMS ::= var/vars VAR-DECL ;...; VAR-DECL

"." FORMULA "."..."." FORMULA ;/

| axiom/axioms FORMULA ;...; FORMULA ;/

are included in Casl v1.0.1 for backwards compatibility with v1.0, but may
be removed in some future version.

SIG-ITEMS ::= sort/sorts SORT-ITEM ;...; SORT-ITEM ;/

| op/ops OP-ITEM ;...; OP-ITEM ;/

| pred/preds PRED-ITEM ;...; PRED-ITEM ;/

| type/types DATATYPE-DECL ;...; DATATYPE-DECL ;/

SORT-ITEM ::= SORT ,..., SORT

| SORT ,..., SORT < SORT

| SORT = { VAR : SORT "." FORMULA }
| SORT =...= SORT

OP-ITEM ::= OP-NAME ,..., OP-NAME : OP-TYPE

| OP-NAME ,..., OP-NAME : OP-TYPE , OP-ATTR ,..., OP-ATTR

| OP-NAME OP-HEAD = TERM

OP-TYPE ::= SOME-SORTS -> SORT | SORT

| SOME-SORTS -> ? SORT | ? SORT

SOME-SORTS ::= SORT *...* SORT

OP-ATTR ::= assoc | comm | idem | unit TERM

OP-HEAD ::= ( ARG-DECL ;...; ARG-DECL ) : SORT | : SORT

| ( ARG-DECL ;...; ARG-DECL ) : ? SORT | : ? SORT

ARG-DECL ::= VAR ,..., VAR : SORT

PRED-ITEM ::= PRED-NAME ,..., PRED-NAME : PRED-TYPE

| PRED-NAME PRED-HEAD <=> FORMULA

| PRED-NAME <=> FORMULA

PRED-TYPE ::= SOME-SORTS | ( )

PRED-HEAD ::= ( ARG-DECL ;...; ARG-DECL )
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C.2. CONTEXT-FREE SYNTAX C–4

DATATYPE-DECL ::= SORT "::=" ALTERNATIVE "|"..."|" ALTERNATIVE

ALTERNATIVE ::= OP-NAME ( COMPONENT ;...; COMPONENT )

| OP-NAME ( COMPONENT ;...; COMPONENT ) ?

| OP-NAME

| sort/sorts SORT ,..., SORT

COMPONENT ::= OP-NAME ,..., OP-NAME : SORT

| OP-NAME ,..., OP-NAME : ? SORT

| SORT

VAR-DECL ::= VAR ,..., VAR : SORT

FORMULA ::= QUANTIFIER VAR-DECL ;...; VAR-DECL "." FORMULA

| FORMULA /\ FORMULA /\.../\ FORMULA

| FORMULA \/ FORMULA \/...\/ FORMULA

| FORMULA => FORMULA

| FORMULA if FORMULA

| FORMULA <=> FORMULA

| not FORMULA

| true | false

| def TERM

| TERM =e= TERM

| TERM = TERM

| TERM in SORT

| ( FORMULA )

| MIXFIX...MIXFIX

QUANTIFIER ::= forall | exists | exists!

TERMS ::= TERM ,..., TERM

TERM ::= MIXFIX...MIXFIX

MIXFIX ::= NO-BRACKET-TOKEN | LITERAL | PLACE

| QUAL-PRED-NAME | QUAL-VAR-NAME | QUAL-OP-NAME

| TERM : SORT

| TERM as SORT

| TERM when FORMULA else TERM

| ( TERMS )

| [ TERMS ] | [ ]

| { TERMS } | { }

QUAL-VAR-NAME ::= ( var VAR : SORT )

QUAL-PRED-NAME ::= ( pred PRED-NAME : PRED-TYPE )

QUAL-OP-NAME ::= ( op OP-NAME : OP-TYPE )

SORT ::= TOKEN-ID

OP-NAME ::= ID

PRED-NAME ::= ID

VAR ::= SIMPLE-ID
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C.2. CONTEXT-FREE SYNTAX C–5

SIMPLE-ID ::= WORDS

ID ::= TOKEN-ID | MIXFIX-ID

TOKEN-ID ::= TOKEN

MIXFIX-ID ::= TOKEN-ID PLACE-TOKEN-ID ... PLACE-TOKEN-ID

| PLACE-TOKEN-ID ... PLACE-TOKEN-ID

PLACE-TOKEN-ID ::= PLACE TOKEN-ID

| PLACE

PLACE ::=

TOKEN ::= WORDS | DOT-WORDS | DIGIT | QUOTED-CHAR

| SIGNS

NO-BRACKET-TOKEN::= WORDS | DOT-WORDS | DIGIT | QUOTED-CHAR

| NO-BRACKET-SIGNS

SIGNS ::= NO-BRACKET-SIGNS | BRACKET-SIGNS

| NO-BRACKET-SIGNS BRACKET-SIGNS

BRACKET-SIGNS ::= BRACKET SIGNS

| BRACKET

BRACKET ::= [ | ] | { | }

LITERAL ::= DIGITS | FRACTION | FLOATING | STRING
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C.2. CONTEXT-FREE SYNTAX C–6

C.2.2 Structured Specifications

SPEC ::= BASIC-SPEC

| SPEC RENAMING

| SPEC RESTRICTION

| SPEC and SPEC and...and SPEC

| SPEC then SPEC then...then SPEC

| free GROUP-SPEC

| local SPEC within SPEC

| closed GROUP-SPEC

| GROUP-SPEC

GROUP-SPEC ::= { SPEC }
| SPEC-NAME

| SPEC-NAME [ FIT-ARG ]...[ FIT-ARG ]

RENAMING ::= with SYMB-MAP-ITEMS ,..., SYMB-MAP-ITEMS

RESTRICTION ::= hide SYMB-ITEMS ,..., SYMB-ITEMS

| reveal SYMB-MAP-ITEMS ,..., SYMB-MAP-ITEMS

SPEC-DEFN ::= spec SPEC-NAME = SPEC end/

| spec SPEC-NAME SOME-GENERICS = SPEC end/

SOME-GENERICS ::= SOME-PARAMS | SOME-PARAMS SOME-IMPORTED

SOME-PARAMS ::= [ SPEC ]...[ SPEC ]

SOME-IMPORTED ::= given GROUP-SPEC ,..., GROUP-SPEC

FIT-ARG ::= SPEC fit SYMB-MAP-ITEMS ,..., SYMB-MAP-ITEMS

| SPEC

| view VIEW-NAME

| view VIEW-NAME [ FIT-ARG ]...[ FIT-ARG ]

VIEW-DEFN ::= view VIEW-NAME : VIEW-TYPE end/

| view VIEW-NAME : VIEW-TYPE =

SYMB-MAP-ITEMS ,..., SYMB-MAP-ITEMS end/

| view VIEW-NAME SOME-GENERICS : VIEW-TYPE end/

| view VIEW-NAME SOME-GENERICS : VIEW-TYPE =

SYMB-MAP-ITEMS ,..., SYMB-MAP-ITEMS end/

VIEW-TYPE ::= GROUP-SPEC to GROUP-SPEC

SYMB-ITEMS ::= SYMB

| SOME-SYMB-KIND SYMB ,..., SYMB

SYMB-MAP-ITEMS ::= SYMB-OR-MAP

| SOME-SYMB-KIND SYMB-OR-MAP ,..., SYMB-OR-MAP

SOME-SYMB-KIND ::= sort/sorts | op/ops | pred/preds

SYMB ::= ID | ID : TYPE

TYPE ::= OP-TYPE | PRED-TYPE

SYMB-MAP ::= SYMB "|->" SYMB

SYMB-OR-MAP ::= SYMB | SYMB-MAP

SPEC-NAME ::= SIMPLE-ID

VIEW-NAME ::= SIMPLE-ID

TOKEN-ID ::= ... | TOKEN [ ID ,..., ID ]
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C.2. CONTEXT-FREE SYNTAX C–7

C.2.3 Architectural Specifications

ARCH-SPEC-DEFN ::= arch spec ARCH-SPEC-NAME = ARCH-SPEC end/

ARCH-SPEC ::= BASIC-ARCH-SPEC | GROUP-ARCH-SPEC

GROUP-ARCH-SPEC ::= { ARCH-SPEC } | ARCH-SPEC-NAME

BASIC-ARCH-SPEC ::= unit/units UNIT-DECL-DEFN ;...; UNIT-DECL-DEFN ;/

result UNIT-EXPRESSION ;/

UNIT-DECL-DEFN ::= UNIT-DECL | UNIT-DEFN

UNIT-DECL ::= UNIT-NAME : UNIT-SPEC

given GROUP-UNIT-TERM ,..., GROUP-UNIT-TERM

| UNIT-NAME : UNIT-SPEC

UNIT-DEFN ::= UNIT-NAME = UNIT-EXPRESSION

UNIT-SPEC-DEFN ::= unit spec SPEC-NAME = UNIT-SPEC end/

UNIT-SPEC ::= GROUP-SPEC

| GROUP-SPEC *...* GROUP-SPEC -> GROUP-SPEC

| arch spec GROUP-ARCH-SPEC

| closed UNIT-SPEC

UNIT-EXPRESSION ::= lambda UNIT-BINDING ;...; UNIT-BINDING "." UNIT-TERM

| UNIT-TERM

UNIT-BINDING ::= UNIT-NAME : UNIT-SPEC

UNIT-TERM ::= UNIT-TERM RENAMING

| UNIT-TERM RESTRICTION

| UNIT-TERM and...and UNIT-TERM

| local UNIT-DEFN ;...; UNIT-DEFN ;/ within UNIT-TERM

| GROUP-UNIT-TERM

GROUP-UNIT-TERM ::= { UNIT-TERM }
| UNIT-NAME

| UNIT-NAME [ FIT-ARG-UNIT ]...[ FIT-ARG-UNIT ]

FIT-ARG-UNIT ::= UNIT-TERM

| UNIT-TERM fit SYMB-MAP-ITEMS ,..., SYMB-MAP-ITEMS

ARCH-SPEC-NAME ::= SIMPLE-ID

UNIT-NAME ::= SIMPLE-ID

C.2.4 Specification Libraries

LIB-DEFN ::= library LIB-NAME LIB-ITEM...LIB-ITEM

LIB-ITEM ::= SPEC-DEFN | VIEW-DEFN

| ARCH-SPEC-DEFN | UNIT-SPEC-DEFN

| from LIB-NAME

get ITEM-NAME-OR-MAP ,..., ITEM-NAME-OR-MAP end/

ITEM-NAME-OR-MAP::= ITEM-NAME | ITEM-NAME "|->" ITEM-NAME

ITEM-NAME ::= SIMPLE-ID

LIB-NAME ::= LIB-ID | LIB-ID VERSION-NUMBER

LIB-ID ::= URL | PATH

VERSION-NUMBER ::= version NUMBER "."..."." NUMBER

NUMBER ::= DIGIT | DIGITS

1.0.1



C.3. DISAMBIGUATION C–8

C.3 Disambiguation

The context-free grammar given in Section C.2 for input syntax is quite
ambiguous. This section explains various precedence rules for disambigua-
tion, and the intended grouping of mixfix formulae and terms (which is to
be recognized in a separate phrase, dependent on the declared symbols and
parsing annotations).

C.3.1 Precedence

At the level of structured specifications, ambiguities of grouping are resolved
as follows:

• ‘free’ and ‘closed’ have the highest precedence;

• ‘with’, ‘reveal’, and ‘hide’ have lower precedence;

• ‘within’ has still lower precedence;

• ‘and’ has lower precedence than all the above; and

• ‘then’ has the lowest precedence of all.

At the level of architectural specifications, ambiguities of grouping in unit
terms are resolved in the same way as for structured specifications. More-
over, a SPEC-NAME occurring as a UNIT-SPEC gives rise to just the SPEC-NAME
itself in the abstract syntax tree, rather than a UNIT-TYPE with an empty
list SPEC* of argument specifications.

In BASIC-ITEMS, a list of ‘. FORMULA ... . FORMULA’ extends as far to
the right as possible. Within a FORMULA, the use of prefix and infix notation
for the logical connectives gives rise to some potential ambiguities. These
are resolved as follows:

• ‘not FORMULA’ has the highest precedence;

• ‘FORMULA /\.../\ FORMULA’ and ‘FORMULA \/...\/ FORMULA’ both
have lower precedence, but may not be combined without explicit
grouping;

• The connectives ‘FORMULA => FORMULA’, ‘FORMULA if FORMULA’,
‘FORMULA <=> FORMULA’ all have even lower precedence. When re-
peated, ‘=>’ groups to the right, whereas ‘if’ groups to the left; ‘<=>’
may not be repeated without explicit grouping. These constructs may
not be combined without explicit grouping.

• ‘QUANTIFIER VAR-DECL;... . FORMULA’ has the lowest precedence
of the logical constructs, with the last FORMULA extending as far to the
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right as possible, e.g., ‘forall x:S . F => G’ is disambiguated as
‘forall x:S . (F => G)’, not as ‘(forall x:S . F) => G’.

Moreover, a quantification may be used on the right of a logical con-
nective without grouping parentheses. For instance,

‘F <=> exists x:s . G <=> H’ is parsed as
‘F <=> (exists x:s . G <=> H)’.

The declaration1 of infix, prefix, postfix, and general mixfix operation sym-
bols may introduce further potential ambiguities, which are partially re-
solved as follows (remaining ambiguities have to be eliminated by explicit
use of grouping parentheses in terms, or by use of parsing annotations):

• Ordinary function application ‘OP-SYMB(TERMS)’ has the highest prece-
dence.

• Applications of all postfix symbols have the next-highest precedence
within terms after ordinary function application. This extends to all
mixfix operation symbols of the form ‘ ... TOKEN’, and to sorted
terms and casts.

• Applications of all prefix symbols have the next-highest precedence
within terms after postfixes. This extends to all mixfix operation sym-
bols of the form ‘TOKEN ... ’.

• Applications of infix symbols have the next-highest precedence within
terms after prefixes. This extends to all mixfix symbols of the form
‘ ... ... ’. Mixtures of different infix symbols and iterations
of the same infix symbol have to be explicitly grouped—although the
attribute of associativity implies a parsing annotation that allows it-
erated applications of that symbol to be written without grouping.

• The conditional ‘TERM when FORMULA else TERM’ has the weakest
precedence within terms, and iterations such as:

T1 when F1 else T2 when F2 else T3

are implicitly grouped to the right:

T1 when F1 else (T2 when F2 else T3)

Various other techniques for allowing the omission of grouping parentheses
and/or list-separators in input (and display) are familiar from previous speci-
fication and programming languages, e.g., user-specified precedence (relative
or absolute), and the “offside” rule. Moreover, not all parsers are expected to
implement full mixfix notation. Casl therefore allows parsing annotations

1Declarations occurring anywhere in the enclosing list of basic items are taken into
account when disambiguating the grouping of symbols in a term.
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on (libraries of) specifications, to indicate the possible omission of grouping
parentheses, and the degree of use of mixfix notation. (Such annotations
are expected to apply uniformly to Casl sublanguages, and to most exten-
sions.) Parsing annotations may even override the rules given above for the
relative precedence of postfix, prefix, and infix symbols. See Section C.5.2.3
for details of the available parsing annotations.

C.3.2 Mixfix Grouping Analysis

Note that ID is not an alternative of MIXFIX, since the notation for com-
pound identifiers could be confused with mixfix notation involving square
brackets.

Mixfix grouping analysis of a specification should be equivalent to context-
free parsing according to a derived grammar—obtained from the grammar
in Section C.2 by replacing the phrases involving MIXFIXES with phrases
determined (partly) by the declared symbols, as follows:

FORMULA ::= ... | QUAL-PRED-NAME

| QUAL-PRED-NAME ( TERMS )

TERMS ::= TERM ,..., TERM

TERM ::= LITERAL | QUAL-VAR-NAME | QUAL-OP-NAME

| QUAL-OP-NAME ( TERMS )

| TERM : SORT

| TERM as SORT

| TERM when FORMULA else TERM

| ( TERM )

plus

TERM ::= ... | id

for each declared variable or constant name id , plus

TERM ::= id ( TERMS )

for each declared operation symbol id of positive arity, plus

TERM ::= t1 TERM t2 ... TERM tn

for each declared mixfix operation symbol t1 t2... tn (with t1 and tn
possibly empty), plus

FORMULA ::= ... | id

for each declared predicate constant name id , plus

FORMULA ::= id ( TERMS )

for each declared predicate symbol id of positive arity, plus
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FORMULA ::= t1 TERM t2 ... TERM tn

for each declared mixfix predicate symbol t1 t2... tn (with t1 and tn
possibly empty).

It would be possible to obtain a fixed grammar for a sub-language of Casl
lacking mixfix notation in a similar way, using the appropriate kinds of ID
in place of the declared ids above. (It may be convenient to obtain all
these various grammars as extensions of a root grammar that is completely
uncommitted about the notation used for applications, etc.)

The context-free parsing during mixfix grouping analysis involves disam-
biguation as determined by the general precedence rules for applications
(see Section C.3.1) and by any parsing annotations (see Section C.5.2.3).
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C.4 Lexical Syntax

This section defines the lexical syntax of WORDS, DOT-WORDS, NO-BRACKET-
SIGNS, DIGIT, DIGITS, and QUOTED-CHAR, which are used in Section C.2,
together with that of FRACTION, FLOATING, and STRING, which are used also
in Section C.6. The lexical syntax of URL and PATH is left open; they are to
be recognized only directly following the keywords ‘library’ and ‘from’.

Spaces and other layout characters terminate lexical symbols (except for
QUOTED-CHAR and STRING) and are otherwise ignored. The next lexical sym-
bol recognized is as long as possible.

WORDS ::= WORD ... WORD

DOT-WORDS ::= . WORDS

WORD ::= LETTER-P-D ... LETTER-P-D

LETTER-P-D ::= LETTER | "’" | DIGIT

LETTER ::= A | B | C | D | E | F | G | H | I | J | K | L | M

| N | O | P | Q | R | S | T | U | V | W | X | Y | Z

| a | b | c | d | e | f | g | h | i | j | k | l | m

| n | o | p | q | r | s | t | u | v | w | x | y | z

| À | Á | Â | ~A | Ä | Å | Æ | Ç | È | É | Ê | Ë | Ì

| Í | Î | Ï | ~N | Ò | Ó | Ô | ~O | Ö | Ø | Ù | Ú | Û

| Ü | Ý | ß | à | á | â | ~a | ä | å | æ | ç | è | é

| ê | ë | ı̀ | ı́ | ı̂ | ı̈ | ~n | ò | ó | ô | ~o | ö | ø

| ù | ú | û | ü | ý | ÿ

DIGIT ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

DIGITS ::= DIGIT DIGIT ... DIGIT

A WORDS must start with a LETTER, and must not be one of the reserved
keywords used in the context-free syntax in Section C.2. The (51) keywords
are:

and arch as assoc axiom axioms closed comm def else end
exists false fit forall free from generated get given
hide idem if in lambda library local not op ops pred preds
result reveal sort sorts spec then to true type types
unit units var vars version view when with within .

LETTER includes all the ISO Latin-1 national and accented letters except for
the Icelandic ‘eth’ and ‘thorn’.

NO-BRACKET-SIGNS ::= NO-BRACKET-SIGN ... NO-BRACKET-SIGN

A NO-BRACKET-SIGNS must not be one of the following reserved symbols:

: :? ::= = => <=> . · | |-> \/ /\ ¬
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These sequences of characters may however be used together with other
characters in a NO-BRACKET-SIGNS. For example, ‘==’, ‘:=’, and ‘||’ is each
recognized as a complete NO-BRACKET-SIGNS. Note that identifiers that start
or finish with a NO-BRACKET-SIGNS need to be separated by (e.g.) a space
from adjacent reserved symbols: a sequence of characters such as ‘ #: ’ is
always recognized as a single symbol, whereas ‘ # : ’ is recognized as two
symbols.

Despite its use in the context-free syntax as a terminal symbol, a single char-
acter ‘<’, ‘*’, ‘?’, ‘!’, or ‘/’ is also recognized as a complete NO-BRACKET-SIGNS.
The ISO Latin-1 characters for product ‘×’, negation ‘¬’, and raised dot ‘·’
are recognized as alternatives for the terminal symbols ‘*’, ‘not’, and ‘.’,
respectively.

NO-BRACKET-SIGN ::= + | - | * | / | \ | & | = | < | >

| ! | ? | : | . | $ | @ | # | ^ | ~

| ¡ | ¿ | × | ÷ | £ | c© | ± | ¶ | §
| 1 | 2 | 3 | · | 6c | ◦ | ¬ | µ | "|"

Note that NO-BRACKET-SIGN does not include the following ASCII signs:

( ) [ ] { } ; , ‘ " %

nor the ISO Latin-1 signs for general currency, yen, broken vertical bar,
registered trade mark, masculine and feminine ordinals, left and right angle
quotes, fractions, soft hyphen, acute accent, cedilla, macron, and umlaut.

QUOTED-CHAR ::= "’" CHAR "’"

CHAR ::= " " | ! | ’\"’ | # | $ | ...

| "\’" | ... | "\\" | ...

| \n | \t | \r | \v | \b | \f | \a | \?

| \000 | ... | \255

| \x00 | ... | \xFF

| \o000 | ... | \o377

FRACTION ::= NUMBER . NUMBER

FLOATING ::= NUMBER "E" OPT-SIGN NUMBER

| FRACTION "E" OPT-SIGN NUMBER

OPT-SIGN ::= + | - |

STRING ::= ’"’ ’"’

| ’"’ CHAR ... CHAR ’"’

Pairs of single quotes ‘’...’’ (with no spaces between them) are used in the
above productions to indicate symbols containing the double quote character
‘"’, and vice versa.
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C.5 Comments and Annotations

Both comments and annotations can be used to provide auxiliary informa-
tion that gets attached to the abstract syntax trees of Casl specifications
during parsing. Such auxiliary information does not affect the semantics of
the specifications. Comments may also be used to ignore parts of specifica-
tions (so-called “commenting-out”).

The general form of comments and annotations is similar: they start with a
percent character ‘%’, and extend either to the end of the line, or to the end
of the (shortest) following bracketed group. Groups with different bracket
signs may be nested within each other, but nesting of groups of the same
kind is not possible.

COMMENT ::= COMMENT-LINE | COMMENT-GROUP | COMMENT-OUT

COMMENT-LINE ::= %% TEXT-LINE

COMMENT-GROUP ::= %{ TEXT-LINES }%
COMMENT-OUT ::= %[ TEXT-LINES ]%

ANNOTE ::= ANNOTE-LINE | ANNOTE-GROUP | LABEL

ANNOTE-LINE ::= %WORDS TEXT-LINE

ANNOTE-GROUP ::= %WORDS( TEXT-LINES )%

LABEL ::= %( TEXT-LINES )%

TEXT ::= NOT-NEWLINE ... NOT-NEWLINE | EMPTY

TEXT-LINE ::= TEXT NEWLINE | NEWLINE

TEXT-LINES ::= TEXT NEWLINE ... NEWLINE TEXT

EMPTY ::=

NEWLINE denotes the character that indicates the start of a new line; NOT-
NEWLINE denotes all the other printable ISO Latin-1 characters, together
with the space and tab characters (which thus may appear in TEXT but
not in WORDS). In ANNOTE-LINE and ANNOTE-GROUP, spaces are not allowed
before the WORDS, and a space directly following the WORDS distinguishes an
ANNOTE-LINE from an ANNOTE-GROUP.

A single-line comment of the form ‘%%text newline’ is equivalent to ‘%{text}%’;
the latter form also allows multi-line comments. Similarly, a single-line an-
notation of the form ‘%words text newline’ is equivalent to ‘%words(text)%’.

An ordinary comment or an annotation may be inserted only at restricted
positions in specifications:

1. following a SORT-ITEM, OP-ITEM, PRED-ITEM, ALTERNATIVE, or AXIOM
(and its terminating ‘;’, if any), where it applies to the preceding
construct;

2. preceding a list of the above constructs, or of LIB-ITEMs, where it
applies to the construct containing the list;
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3. preceding the body of the definition of a sort, operation, predicate,
datatype, or view, where it applies to the enclosing definition; or.

4. preceding a SPEC or ARCH-SPEC, where it applies to that construct.

(The positions of particular kinds of annotations are further restricted in
Section C.5.2.2.) At each position, only one comment is allowed, but there
may be more than one annotation (even of the same kind). A COMMENT-OUT
may occur anywhere (between lexical symbols) and gets discarded.

Annotations on a LIBRARY (i.e., preceding its first LIB-ITEM) are global
to all its LIB-ITEMs, and to all libraries that download any of those items.
Conflicting annotations that arise due to downloading from different remote
libraries are simply ignored, whereas local annotations override conflicting
annotations from remote libraries. Conflicting annotations within the same
library are ignored as well.

C.5.1 Comments

COMMENT ::= COMMENT-LINE | COMMENT-GROUP | COMMENT-OUT

COMMENT-LINE ::= %% TEXT-LINE

COMMENT-GROUP ::= %{ TEXT-LINES }%

An ordinary comment COMMENT-LINE at the end of a line is written ‘%%text ’,
whereas a comment within a line, or a multi-line comment, is always written
‘%{text-lines}%’.

Casl specification text within comments should be delimited by a bracketed
group of the form ‘%CASL(...)%’, to allow its appropriate display. The kind
of Casl construct may be indicated by using a non-terminal symbol from
the Casl abstract syntax (such as ‘ID’ or ‘TERM’) instead of ‘CASL’.

The preferred formatting of a part of a comment by different formatters may
be indicated using the following syntax (which is similar to that of display
annotations, see Section C.5.2.2):

%display text %HTML ... %LATEX ... %RTF ...

at the end of a line, or, possibly over several lines:

%display( text %HTML ... %LATEX ... %RTF ... )%

Both the above indicate that the text is to be displayed according to the for-
matting instructions given for HTML, LATEX, and RTF (which may be listed
in any order, or omitted). Formatters for which there are no instructions
should display the text as input.
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COMMENT-OUT ::= %[ TEXT-LINES ]%

Arbitrary text is commented-out by using ‘%[text-lines]%’. Note that the
text-lines may contain COMMENT-LINEs and COMMENT-GROUPs, but COMMENT-
OUTs cannot themselves be nested.

C.5.2 Annotations

ANNOTE ::= ANNOTE-LINE | ANNOTE-GROUP | LABEL

ANNOTE-LINE ::= %WORDS TEXT-LINE

ANNOTE-GROUP ::= %WORDS( TEXT-LINES )%

The kind of ANNOTE-LINE or ANNOTE-GROUP is indicated by the WORDS oc-
curring after the initial ‘%’:

• ‘display’ indicates a display annotation;

• ‘prec’, ‘left assoc’, and ‘right assoc’ indicate parsing annotations;

• ‘cons’, ‘def’, and ‘implies’ indicate semantic annotations; and

• ‘number’, ‘floating’, ‘string’, and ‘list’ indicate annotations con-
cerned with literal syntax (see Section C.6).

Each kind of annotation imposes restrictions on the syntax of its text, and
on the positions where it may occur. (It is envisaged that further kinds
of annotations will be added later, but only with the same general form as
indicated above.)

Display, parsing, and literal syntax annotations may occur only at the begin-
ning of libraries (following the LIB-NAME of the library), and apply globally.
Label and semantic annotations apply only to the construct to which they
are attached.

C.5.2.1 Label Annotations

LABEL ::= %( TEXT-LINES )%

A label annotation is written ‘%(text-lines)%’, where text-lines is the label
itself. For instance, in ‘%(reverse-NeList)%’ the label is ‘reverse-NeList’.

A label annotation is normally attached to an axiom, although other con-
structs within a specification SPEC may be labelled as well.

Different occurrences of the same label in the same LIB-ITEM are regarded
as conflicting.
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C.5.2.2 Display Annotations

ANNOTE-LINE ::= %display TEXT-LINE

ANNOTE-GROUP ::= %display( TEXT-LINES )%

A single-line display annotation ANNOTE-LINE is written:

%display id %HTML ... %LATEX ... %RTF ...

A multi-line display annotation ANNOTE-GROUP is written:

%display( id %HTML ... %LATEX ... %RTF ... )%

Both indicate that the identifier with input syntax id is to be displayed
according to the formatting instructions given for HTML, LATEX, and RTF
(which may be listed in any order, or omitted). When there are no instruc-
tions given for the language of the formatter being used, the identifier is
displayed as its input syntax.2

Display annotations for the same identifier are regarded as conflicting unless
their formatting instructions are identical, up to reordering.

The following example indicates that the identifier input as ‘div’ should be
displayed as ‘÷’ by formatters that understand HTML or LATEX commands:

%display div %HTML &divide; %LATEX \div

Display annotations generalize to formatting mixfix notation by interpreting
the place-holder ‘ ’ as such in the formatting instructions, e.g.:

%display( sum__to__
%HTML SUM<sub>__<sup>__
%LATEX \sum_{__}^{__}
)%

The HTML level is assumed to be 4.0; the version of LATEXis assumed to be
LATEX2e, using the Casl package [Mos98], in math mode.

C.5.2.3 Parsing Annotations

These annotations are to allow users to specify the precedence and associa-
tivity of operation symbols. Their primary purpose is to allow the omission
of grouping parentheses in the input; but formatters may also exploit them
to avoid superfluous parentheses in the display.

2%words delimiters identifying further formatters may be introduced in future versions
of Casl.
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Parsing annotations include precedence and associativity annotations, as
well as annotations providing literal syntax for numbers, strings, and lists
(see Section C.6).

Precedence

ANNOTE-LINE ::= %prec TEXT-LINE

ANNOTE-GROUP ::= %prec( TEXT-LINES )%

A single-line precedence annotation ANNOTE-LINE is written:

%prec {id1, ... , idn} < {idn+1, ..., idn+k}

A multi-line precedence annotation ANNOTE-GROUP is written:

%prec( {id1, ... , idn} < {idn+1, ..., idn+k} )%

Each idi is a mixfix identifier of the form ‘ ... ... ’. The relation spec-
ifies that for 1 ≤ i ≤ n the symbol idi has lower priority (i.e., binds weaker)
than the symbol idj , where n + 1 ≤ j ≤ n + k.

It is also possible to specify that mixfix identifiers (which need not to be
of form ‘ ... ... ’) are not allowed to be combined without explicit
grouping parentheses. This is done using ‘<>’ instead of ‘<’ between the
groups of identifiers.

In both cases, a precedence annotation involving groups of identifiers abbre-
viates the collection of corresponding precedence annotations between each
pair of identifiers from the two groups.

Two different precedence annotations for the same pair of identifiers are
regarded as conflicting.

The precedence annotations determine a pre-order, which is obtained in the
following way:

1. Expand all precedence relations into binary relations:

• from annotations of the form ‘%prec {id1} < {id2}’ we get
{(id1, id2)}, and

• from annotations of the form ‘%prec {id1} <> {id2}’ we get
{(id1, id2), (id2, id1)}.

2. Take the union of all the expanded precedence relations thus obtained
with the predefined precedences listed in Section C.3.1.

3. Take the reflexive transitive closure of this union.

If two symbols occurring in a term or atomic formula are equivalent (i.e.
related in both directions) or incomparable (i.e. related in no direction) in
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the precedence relation, their grouping has to be explicitly specified by using
parentheses.

Associativity

ANNOTE-LINE ::= %left assoc TEXT-LINE

| %right assoc TEXT-LINE

ANNOTE-GROUP ::= %left assoc( TEXT-LINES )%

| %right assoc( TEXT-LINES )%

A single-line left-associativity annotation ANNOTE-LINE is written:

%left assoc id1, ..., idn

A multi-line left-associativity annotation ANNOTE-GROUP is written:

%left assoc( id1, ... , idn )%

The idi must be infix operation symbols. Similarly for right-associativity
annotations.

In both cases, an associativity annotation involving a group of identifiers
abbreviates the collection of corresponding associativity annotations for each
identifier in the group. Left and right associativity annotations for the same
identifier are regarded as conflicting.

For example, declaring + to be left associative means that t1 + t2 + t3 is
parsed as (t1 + t2)+ t3, while declaring it to be right associative leads to t1 +
(t2 + t3). If there is no associativity annotation for an infix symbol, it is not
allowed to repeat that symbol without explicit grouping using parentheses.

C.5.2.4 Semantic Annotations

These annotations are used to express known (or presumed) features of
the semantics of the specification, e.g., that an extension is ‘conservative’,
or that certain formulae are consequences of the specification. Theorem-
proving tools may interpret these annotations as proof obligations. Note,
however, that the annotations do not affect the semantics of a specification,
regardless of whether the specification has the indicated features or not.

These annotations may immediately follow either:

• a ‘then’ keyword within an EXTENSION, in which case, let SP be the
part of the EXTENSION just up to, but excluding the annotated ‘then’,
and let SP ′ be the specification immediately following the ‘then’; or

• the equals sign within a SPEC-DEFN, in which case, let SP be the union
of the imports, extended by the union of the parameters, and let SP ′

be the body of the specification definition.
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Different semantic annotations at the same position are not regarded as
conflicting.

Conservative Extension

ANNOTE-LINE ::= %cons NEWLINE

The annotation expresses that SP ′ is a conservative extension of SP , i.e.
each SP -model can be expanded to an (SP then SP ′)-model.

Definitional Extension

ANNOTE-LINE ::= %def NEWLINE

The annotation expresses that SP ′ is a definitional extension of SP , i.e.
each model of SP can be uniquely extended to a model of (SP then SP ′)
(this implies a bijective correspondence between the two model classes).

Note that ‘%def’ is strictly stronger than the ‘%cons’ annotation.

Implied Extension

ANNOTE-LINE ::= %implies NEWLINE

The annotation ‘%implies’ is well-formed iff:

1. the signature of (SP then SP ′) is the signature of SP and

2. SP ′ is a BASIC-SPEC.

A well-formed ‘%implies’ annotation holds iff the model class of (SP then
SP ′) is the model class of SP .
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C.6 Syntax for Literals

In this section, several annotations for operations are introduced that can
be used to interpret the literal syntax for numbers and strings, and provide
a literal syntax for lists.

C.6.1 Literal syntax for numbers

LITERAL ::= DIGITS

The annotation for declaring an operation to be used for concatenation of
digits within a number is written ‘%number f ’.

The annotation has the effect that an DIGITS of the form d1 . . . dn (where
n > 1 and each di is a DIGIT) is translated to the (abstract syntax of) the
term f(f(. . . f(t1, t2) . . . , tn−1), tn), where ti is the abstract syntax tree for
di.

Vice versa, an abstract syntax tree corresponding to a term of the above
form which is maximal (i.e., it is not a subterm of a larger term of the same
form) is expected to be printed as d1 . . . dn.

Different ‘%number’ annotations are regarded as conflicting. If there is no
‘%number’ annotation, then an DIGITS is not recognized as a well-formed
LITERAL.

LITERAL ::= ... | FRACTION | FLOATING

The annotation for declaring the operations used for evaluating the decimal
point and the exponentiation ‘E’ within FRACTION or a FLOATING is written
‘%floating f , g ’.

The annotation has the effect that a FRACTION of the form n1.n2 (where each
ni is a NUMBER) is translated to the (abstract syntax of) the term f(t1, t2),
where ti is the abstract syntax tree for ni, i = 1, 2.

Similarly, a FLOATING of the form ‘n1En2 ’ (where n1 is a NUMBER or a
FRACTION and n2 is of form OPT-SIGN NUMBER) is translated to the (ab-
stract syntax of) the term g(t1, t2), where ti is the abstract syntax tree for
ni, i = 1, 2.

Vice versa, an abstract syntax tree corresponding to a term of one the above
forms which is maximal (i.e., it is not a subterm of a larger term of the same
form) is expected to be printed as n1.n2 or n1En2, respectively.

Different ‘%floating’ annotations are regarded as conflicting. If there is
no ‘%floating’ annotation, then neither a FRACTION nor a FLOATING is
recognized as a well-formed LITERAL.
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C.6.2 Literal syntax for strings

LITERAL ::= ... | STRING

The annotation for declaring operations for the empty string and for con-
catenation of a character with a string is written ‘%string c, f ’.

The annotation has the effect that an STRING of the form ‘"c1 ...cn"’
(where n ≥ 0 and each ci is a CHAR) is translated to the (abstract syntax of)
the term f(t1, f(t2, . . . f(tn, c) . . .)), where ti is the abstract syntax tree for
the QUOTED-CHAR ‘’ci’’, or simply to c when n = 0 .

Vice versa, an abstract syntax tree corresponding to a term of the above
form which is maximal (i.e., it is not a subterm of a larger term of the same
form) is expected to be printed as ‘"c1 ...cn"’.

Different ‘%string’ annotations are regarded as conflicting. If there is no
‘%string’ annotation, then a STRING is not recognized as a well-formed
LITERAL.

C.6.3 Literal syntax for lists

The annotation for declaring a macro for applying a binary function on a
list of arguments is written ‘%list b1 b2, c, f ’. b1 and b2 are SIGNS.
This annotation can in particular be used to introduce a syntax for lists,
e.g., ‘%list [ ], nil, cons’ allows the use of the notation ‘[x1,...,xn]’
for lists constructed using cons, starting from the empty list nil.

The attribute leads to an extension of the syntax for LITERALs:

LITERAL ::= ... | b1 b2

| b1 TERM , ... , TERM b2

A list of the form ‘b1 t1,...,tn b2 ’ (where n ≥ 0 and each ti is a TERM) is
translated to the (abstract syntax of) the term f(u1, f(u2, . . . f(un, c) . . .)),
where ui is the abstract syntax tree for ti , or simply to c when n = 0.

Vice versa, an abstract syntax tree corresponding to a term of the above
form which is maximal (i.e., it is not a subterm of a larger term of the same
form) is expected to be printed as ‘b1 t1,...,tn b2 ’.

Different ‘%list’ annotations are regarded as conflicting when their pairs of
SIGNS ‘b1 b2 ’ are identical.
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Appendix D

Display Format

This appendix indicates how each input symbol is to be displayed when
formatted for printing using LATEX, as well as for web browsing using HTML.
A LATEXpackage implementing this display format is available [Mos98].

No restrictions are imposed concerning which font families are to be used
for displaying Casl specifications.

D.1 Mathematical Symbols

The input symbols in the following table are to be displayed as the mathe-
matical symbols shown below them.

* -> forall exists /\ \/ => <=> not in . |-> lambda

× → ∀ ∃ ∧ ∨ ⇒ ⇔ ¬ ∈ • 7→ λ

When a mathematical symbol is not available (e.g., when browsing HTML
on WWW) the input syntax for it may be displayed instead. Moreover,
characters whose display format is in ISO Latin-1 may be used for input.
This allows the direct input of the symbols displayed as ‘¬’ and ‘’ (also ‘ • ’
may be input as a raised dot), and ensures that the text of a specification
as shown by a WWW browser is valid input syntax (at least in the absence
of display annotations).

D.2 Keywords

Only keywords that indicate specification structure are displayed boldface;
all keywords occurring in a FORMULA, an ATTRIBUTE, or an ALTERNATIVE are
displayed in the same italic font as identifiers.
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D.3. IDENTIFIERS D–2

D.3 Identifiers

Identifiers for sorts, operations, predicates, and variables are generally dis-
played with letters in italic: f , x , Very Long Identifier . Non-letter charac-
ters in identifiers are displayed as faithfully as practically possible.

Names for specifications, views, and libraries are displayed with the letters
in the Small-Caps font when available, and otherwise in ordinary upper
and lower case. Names for units are displayed in the same way as variables.

D.4 Comments and Annotations

If available, a smaller font than normal may be used when displaying com-
ments and annotations.

The delimiters of comments and annotations are always to be displayed in
boldface.

Comments ‘%%text ’ and ‘%{text-lines}%’ are to be displayed with the body
in the same font as ordinary informal text that might appear before and
after a Casl specification (but note that this may be overruled by explicit
formatting instructions in the text of the comment). The line breaks of a
multi-line comment are to be preserved in the display.

Display annotations ‘%display ...’ affect the formatting of identifiers
throughout the enclosing library. For the annotation itself, only the in-
put syntax and the display relevant to the formatter being used are to be
shown.

Label annotations ‘%(words)%’ are to be displayed flush with the right mar-
gin, with the words in the same font as used for text in comments.

Other annotations ‘%words...’ are to be displayed with the words in bold-
face, and with any Casl symbols in the body displayed as usual.
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Appendix E

Examples

This appendix illustrates the concrete syntax of basic, structured, and archi-
tectural specifications in Casl libraries (although not all features of Casl,
nor all styles of specifications supported by Casl, are covered). The illus-
trative specifications are not intended for general use in other Casl speci-
fications: comprehensive Casl libraries of specifications of basic datatypes
are available separately [RM00], and may be reused in other libraries simply
by inserting the appropriate downloading items.

The examples below are shown only in the display format, but the intended
input syntax should in general be easy to deduce—in fact, it should be
the same text as displayed when browsing the HTML-formatted version of
this document (modulo display annotations, which are needed for displaying
mathematical symbols such as ∪). The input syntax1 of the examples is
available.

1http://www.brics.dk/Projects/CoFI/Documents/CASL/v1.0.1/Sample/Sample/
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E.1. SIMPLE STRUCTURED SPECIFICATIONS E–2

E.1 Simple Structured Specifications

library Sample/Simple

%display =< %LATEX ≤
%display >= %LATEX ≥

spec Total Order =
sort Elem
pred ≤ : Elem × Elem
∀x , y , z : Elem
• x ≤ x %(reflexive)%

• x = y if x ≤ y ∧ y ≤ x %(anti symmetric)%

• x ≤ z if x ≤ y ∧ y ≤ z %(transitive)%

• x ≤ y ∨ y ≤ x %(total)%

spec Monoid =
sort Elem
ops n : Elem;

∗ : Elem × Elem → Elem, assoc, unit n
%% Alternatively, just specify the corresponding axioms:

∀x , y , z : Elem
• n ∗ x = x %(1)%

• x ∗ n = x %(2)%

• (x ∗ y) ∗ z = x ∗ (y ∗ z ) %(3)%

spec Nat =
free
{ sorts Nat ;

Zero,Pos < Nat
ops zero : Zero;

succ : Nat → Pos
}
then op pre : Pos → Nat

∀x : Nat
• pre(succ x ) = x

then
local pred odd : Nat

∀x : Nat
• ¬ odd zero
• odd(succ x ) ⇔ ¬ odd x

within
sort Odd = {n : Nat • odd n}
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E.2. GENERIC STRUCTURED SPECIFICATIONS E–3

E.2 Generic Structured Specifications

library Sample/Generic

from Sample/Simple get Total Order, Nat

%display cup %LATEX ∪
%display inset %LATEX ∈
%display dot %LATEX .

spec Elem =
sort Elem

spec Set1 [Elem] =
free
{ type Set [Elem] ::= {} | { }(Elem) | ∪ (Set [Elem]; Set [Elem])

op ∪ : Set [Elem]× Set [Elem] → Set [Elem],
assoc, comm, idem, unit{}

}

spec Set2 [Elem] =
Set1 [Elem]

then
pred ∈ : Elem × Set [Elem]
∀a, b : Elem; s, t : Set [Elem]
• ¬ a ∈ {}
• a ∈ {b} ⇔ a = b
• a ∈ (s ∪ t) ⇔ (a ∈ s) ∨ (a ∈ t)

spec List [Elem] =
free type List [Elem] ::= nil | cons(first :?Elem; rest :?List [Elem])
op ++ : List [Elem]× List [Elem] → List [Elem], assoc, unit nil
vars e : Elem; l , l ′ : List [Elem]
• cons(e, l) ++ l ′ = cons(e, l ++ l ′)
op reverse : List [Elem] → List [Elem]
• reverse(nil) = nil
• reverse(cons(e, l)) = reverse(l) ++ cons(e,nil)

end
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E.2. GENERIC STRUCTURED SPECIFICATIONS E–4

spec List with Order [Total Order] =
List [sort Elem]

then ops insert : Elem × List [Elem] → List [Elem];
order [ ≤ ] : List [Elem] → List [Elem]

∀x , y : Elem; l : List [Elem]
• order [ ≤ ](nil) = nil
• order [ ≤ ](cons(x , l)) = insert(x , order [ ≤ ](l))
• insert(x ,nil) = cons(x ,nil)
• x ≤ y ⇒ insert(x , cons(y , l)) = cons(x , insert(y , l))
• ¬(x ≤ y) ⇒ insert(x , cons(y , l)) = cons(y , insert(x , l))
hide insert

end

spec Ordered Nat =
Nat

then preds ≤ , ≥ : Nat ×Nat
∀m,n : Nat
• zero ≤ n
• ¬(succ m ≤ zero)
• succ m ≤ succ n ⇔ m ≤ n
• m ≥ n ⇔ n ≤ m

end

spec Nat List with Reverse Orders =
List with Order [Ordered Nat fit Elem 7→ Nat , ≤ 7→ ≤ ]

and
List with Order [Ordered Nat fit Elem 7→ Nat , ≤ 7→ ≥ ]

then
∀l : List [Nat ] • order [ ≥ ](l) = reverse(order [ ≤ ](l))

end

spec Non Empty List [Elem] =
free type NeList [Elem] ::= sort Elem | (Elem; NeList [Elem])
ops first : NeList [Elem] → Elem;

rest : NeList [Elem] →? NeList [Elem]
∀e : Elem; l : NeList [Elem]
• first(e) = e • first(e l) = e
• ¬ def rest(e) • rest(e l) = l

end
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E.2. GENERIC STRUCTURED SPECIFICATIONS E–5

spec Path =
Non Empty List [sort Name]
with NeList [Name] 7→ Path,

7→ / ,
first 7→ the first name of ,
rest 7→ the last part of

then ops the first part of : Path →? Path;
the last name of : Path → Name

∀n : Name; p : Path
• def (the first part of p) ⇔ ¬(p ∈ Name)
• ¬(p ∈ Name) ⇒ the first part of (n/p) e= n/the first part of p
• p ∈ Name ⇒ the first part of (n/p) e= n
• the last name of n = n
• the last name of (n/p) = the last name of p

end

spec Name = sort Name

%% . . .

spec Content = sort Content

%% . . .

spec File =
Name and Content

then
generated type File ::=< . > (the name of : Name;

the content of : Content)
end

view Nat as Elem : Elem to Nat =
Elem 7→ Nat

view List as Elem [Elem] : Elem to List [Elem] =
Elem 7→ List [Elem]

spec List of List of List of Nat =
List [view List as Elem [view List as Elem [view Nat as Elem]]]
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E.3. ARCHITECTURAL SPECIFICATIONS E–6

view Ordered Nat as Total Order :
Total Order to Ordered Nat =

%{ Ordered Nat as Total Order can be seen as the requirement that
Ordered Nat indeed specifies a partial order. Thus defining the view
would be significant even if the following instantiation were to be omitted. }%

Elem 7→ Nat

spec Nat List with Order =
List with Order [view Ordered Nat as Total Order]

spec Bounded List [Elem] [op bound : Nat ] given Nat =
List [Elem] and Ordered Nat

then op length : List [Elem] → Nat
∀e : Elem; l : List [Elem]
• length(nil) = zero
• length(cons(e, l)) = succ length(l)
sort Bounded List [Elem] = {l : List [Elem] • length(l) ≤ bound}
type Bounded List [Elem] ::= nil | cons(first :?Elem;

rest :?Bounded List [Elem])?
%{ The properties of the operations on Bounded List[Elem]

are determined by their overloadings on List[Elem]. }%

end

spec Bounded Nat List [op bound : Nat ] given Nat =
Bounded List [view Nat as Elem] [op bound : Nat ]

E.3 Architectural Specifications

library Sample/Architectural

%{ The example at the end of this section illustrates the difference between
the structure of specifications and the architectural specification of structure.

It is more efficient to implement successor in terms of (binary) addition,
while it is easier to specify addition in terms of successor than in terms of
binary addition. Thus, the structure of the implementation differs from
the structure of the specification:

We have that Efficient Add Num is a refinement of Add Num. }%

from Sample/Simple get Monoid
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E.3. ARCHITECTURAL SPECIFICATIONS E–7

spec Num =
sort Num
ops 0 : Num;

succ : Num → Num
end

spec Num Monoid =
Monoid with Elem 7→ Num,n 7→ 0, ∗ 7→ +

spec Add Num =
Num and Num Monoid

then
∀x , y : Num • x + succ(y) = succ(x + y)

end

spec Add Num Efficiently =
generated type Num ::= 0 | 1 | 0(Num) | 1(Num)
ops + , ++ : Num ×Num → Num

%{ + is binary addition; ++ is binary addition with carry. }%

∀x , y : Num
• 0 0 = 0 • 0 1 = 1
• x 0 + y 0 = (x + y) 0 • x 0 ++ y 0 = (x + y) 1
• x 0 + y 1 = (x + y) 1 • x 0 ++ y 1 = (x ++ y) 0
• x 1 + y 0 = (x + y) 1 • x 1 ++ y 0 = (x ++ y) 0
• x 1 + y 1 = (x ++ y) 0 • x 1 ++ y 1 = (x ++ y) 1

end

arch spec Efficient Add Num =
units N : Add Num Efficiently;

M : { op succ(n : Num) : Num = n + 1 } given N
result

M hide 1, 0, 1, ++
end
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