
Specification of state-based Systems

Prof. Martin Wirsing

25.11.2002

Model-oriented Specifications
with Z

M. Wirsing: Specification of state-based Systems, 25.11.2002

The Specification Language Z 2

Model-oriented Specification

• based on concrete mathematical structures (such as sequences, sets,....)

• operations are described by properties of pre- and post states

Z
1978 designed by B. Suffrin, J.R. Abrial (Oxford)

VDM
1970 ”Vienna Development Method (VDM)” designed by Cliff Jones, D. Bjorner
(IBM Vienna)

RAISE
1985 D. Bjorner combines VDM with alg. spec.

Object-Z, Z++
1990 Z with object-oriented constructs

M. Wirsing: Specification of state-based Systems, 25.11.2002

Basic Computation Structures of Z 3

The Specification Language Z

• set-oriented specification language

• based on Zermelo-Fraenkel set theory

• specification consists of schemata

A specification consists of

• basic data types

• schemata

A schema describes
• static aspects
◦ possible states of a system

◦ state invariants

• dynamic aspects
◦ operations

◦ relations between input and output

◦ change of state

M. Wirsing: Specification of state-based Systems, 25.11.2002

4

Basic Computation Structures of Z

Z is based on first order predicate logic and typed set theory.

Logic

¬ P not P
P ∧ Q P and Q
P ∨ Q P or Q
P ⇒ Q P implies Q
P ⇔ Q P holds if, and only if Q holds
∀ x : T | P • Q for all x of type T , which satisfy P , Q holds
∀ x : T • Q for all x of type T , Q holds (special case)
∃ x : T | P • Q there exists one x of type T , which satisfies P and Q
∃1 x : T | P • Q there exists exactly one x of type T , which satisfies P and Q

M. Wirsing: Specification of state-based Systems, 25.11.2002

5

Set Theory
x ∈ S x is element of S
S ⊆ T S is subset of T , i.e. ∀ x : S • x ∈ T
∅ empty set
{x1, . . . , xn} the set consisting of x1, . . . , xn
{x : T | P} the set of all x of type T , which satisfy P
{x : T | P • t} the set of all values of t(x) s.t. x satisfies P ,

i.e. {t(x) | x ∈ T ∧ P(x)}
µ x : T | P the only x of type T , which satisfies P
µ x : T | P • t the value of t for the only x of type T , which satisfies P
(x1, . . . , xn) ordered n-tuple
S1 × . . .× Sn cartesian product, i.e. {x1 : S1; . . . ; xn : Sn • (x1, . . . , xn)}

M. Wirsing: Specification of state-based Systems, 25.11.2002

6

PS the set of all subsets of S
FS the set of all finite subsets of S
S ∩ T the intersection of S and T , i.e. {x : S | x ∈ T}
S ∪ T the union of S and T , i.e. {x : X | x ∈ S ∨ x ∈ T}

(X type of elements of S and T)
S \ T the set difference, i.e. {x : S | x /∈ T}⋃

SS generalised union, i.e. {x : X | (∃S : SS • x ∈ S)}
#S number of elements of finite set S
N, Z natural numbers, the integers
m . . .n interval from m to n, i.e. {k : N | m ≤ k ∧ k ≤ n}

M. Wirsing: Specification of state-based Systems, 25.11.2002

7

Relations
X ↔ Y binary relations between X and Y , i.e. P(X ×Y)
x R y x and y are in relation R, i.e. (x , y) ∈ R
x 7→ y maplet of x and y , also written (x , y)
dom R domain of R, i.e. {x : X | (∃ y : Y • xRy)}
ran R codomain of R, i.e. {y : Y | (∃ x : X • xRy)}
R1

o
9 R2 relation composition,

{x : X ; z : Z | (∃ y : Y • x R1 y ∧ y R2 z) • (x 7→ z)}
R−1 (also R∼) inverse of R, i.e. {y : Y ; x : X | x R y • (y 7→ x)}
id S identity relation of S , i.e. {x : S • x 7→ x}
R(| S |) relation image, i.e. {y : Y | (∃ x : S • x R y)}
S C R restriction of the domain, {x : X ; y : Y | x ∈ S ∧ x R y • (x 7→ y)}
S −C R anti restriction of the domain,

{x : X ; y : Y | x /∈ S ∧ x R y • (x 7→ y)}
R B T restriction of the codomain, {x : X ; y : Y | x R y ∧ y ∈ T • (x 7→ y)}
R −B T anti restriction of the codomain,

{x : X ; y : Y | x R y ∧ y /∈ T • (x 7→ y)}
R1 ⊕ R2 overwriting of R1, where R2 is defined, (dom R2 −C R1) ∪ R2

M. Wirsing: Specification of state-based Systems, 25.11.2002

8

Functions
X 7→ Y partial functions from X to Y ,

{ f : X ↔ Y | ∀ x : X ; y1, y2 : Y • x f y1 ∧ x f y2 ⇒ y1 = y2 }
X → Y total functions from X to Y , { f : X 7→ Y | dom f = X }
X 7 7→ Y finite partial functions from X to Y , { f : X 7→ Y | dom f ∈ FX }
X 7� Y partial injective functions from X to Y , { f : X 7→ Y | f −1 ∈ Y 7→ X }
X � Y total injective functions from X to Y , (X → Y) ∩ (X 7� Y)
X 7→→ Y partial surjective functions from X to Y , { f : X 7→ Y | ran f = Y }
X →→ Y total surjective functions from X to Y , (X → Y) ∩ (X 7→→ Y)
X �→ Y bijections from X to Y , (X � Y) ∩ (X →→ Y)
f x , f (x) application of the function f to the argument x , µ y : Y | x f y
λ x : T | P • t lambda-notation, { x : T | P • x 7→ t }

M. Wirsing: Specification of state-based Systems, 25.11.2002

Basic Schemata 9

Sequences
seq X sequences over X , { s : N 7→ X | dom s = 1 . . #s }
#s length of s (see # sets)
〈〉 empty sequence ε
〈x1, . . . , xn〉 enumeration of a finite sequence, {(1 7→ x1), . . . , (n 7→ xn)}
s a t concatenation of s and t , s ∪ {i : 1 . . #t • (i + #s 7→ t(i))}

M. Wirsing: Specification of state-based Systems, 25.11.2002

10

Basic Schemata

The (name for) data type D

[D]

A schema S has the form
S
x1 : T1; . . . ; xn : Tn

P

whereby

• x1 : T1; . . . ; xn : Tn is a set of declarations and

• P is a predicate, that can include a set G of global variables beside x1, . . . , xn.

M. Wirsing: Specification of state-based Systems, 25.11.2002

11

The semantics of S is given by a state signature and a class of models.

StateSig(S) =def {x1 : T1, . . . , xn : Tn},

Let G be the signature of the basic structures of Z :

Sig(S) =def G ∪ StateSig(S)

SStruct(StateSig(S)) =def {A ∈ Struct(Sig(S)) |
A is standard over the interpretation

of the given datatypes AD}
Mod(S) =def {A ∈ Struct(Sig(S)) | A |= P}.

Every structure A denotes a possible state of the variables of the schema.

M. Wirsing: Specification of state-based Systems, 25.11.2002

Basic Schemata 12

Example (Basic Schemata):

1. The semantic of the schema

S0

x : Z
y : seqZ

x < #y

StateSig(S0) = {x : Z, y : seqZ} with types Z, seqZ
Mod(S0) = {A ∈ SStruct(StateSig(S0)) | A |= x < #y}

M. Wirsing: Specification of state-based Systems, 25.11.2002

Basic Schemata 13

2. The schema

T
z : 1 . . 10
x : N

x = z ∗ z

is abreviation for

T
z : Z
x : Z

z ∈ 1 . . 10
x ∈ N
x = z ∗ z

The signature only considers the types of variables, not the state information.

StateSig(T) = G ∪ {x : Z, z : Z}
Mod(T) = {A ∈ SStruct(StateSig(T)) | A |= z ∈ 1..10 ∧ x ∈ N ∧ x = z 2}

M. Wirsing: Specification of state-based Systems, 25.11.2002

Basic Schemata 14

3. A birthday book:

[NAME ,DATE]

are the basic data types NAME and DATE .

The state space is described by following schema:

BirthdayBook
known : PNAME
birthday : NAME 7→ DATE

known = dombirthday

P = power set,
dom = domain,
birthday is a partial function,
known = dombirthday is an invariant,
BirthdayBook has two new variables.

M. Wirsing: Specification of state-based Systems, 25.11.2002

15

A possible state is

〈| known = {”Martin”, ”Thomas”, ”Sabine”},
birthday = {”Martin” 7→ ”24. 12.”, ”Thomas” 7→ ”8. 02.”, ”Sabine” 7→ ”8. 02.”} |〉

StateSig(BirthdayBook) = {known : PNAME , birthday : NAME 7→ DATE}
Mod(BirthdayBook) = {A ∈ SStruct(StateSig(BirthdayBook)) |

A |= known = dombirthday}

M. Wirsing: Specification of state-based Systems, 25.11.2002

Schema Combination 16

A schema S can be considered as a record with the selectors x1 : T1, . . . , xn : Tn. The
renaming of a schema results in a new schema.

e.g.

S1 = [a : N; b : seqN | a < #b]

is different from S0 .

The name is preserved after a combination of schemata. Adding schemata extends the
neighbourhood by new schema names.

M. Wirsing: Specification of state-based Systems, 25.11.2002

17

Schema Combination

Operators for combining schemata:

• schema inclusion

• logical composition

• export and hiding

• decoration

M. Wirsing: Specification of state-based Systems, 25.11.2002

18

Schema Inclusion

A schema R can be a extension of a schema S :

R
S
y1 : R1; . . . ; ym : Rm

P1

defines the schema

R
x1 : T1; . . . ; xn : Tn
y1 : R1; . . . ; ym : Rm

P ∧ P1

Example:

R
S0

z : N

z < x

stands for

R
x , z : N
y : seqN

x < #y ∧ z < x

M. Wirsing: Specification of state-based Systems, 25.11.2002

19

Logical Combination of schemata

1. Conjunction

S ∧ T =def S and T

i.e.

Sig(S ∧ T) = Sig(S) ∪ Sig(T)

Mod(S ∧ T) = {A ∈ Struct(Sig(S ∧ T)) |
A |Sig(S)∈ Mod(S) and A |Sig(T)∈ Mod(T)}

S ∧ T is the intersection of the models.

M. Wirsing: Specification of state-based Systems, 25.11.2002

20

Example:

S0 ∧ T =
x : N
y : seqZ
z : 1 . . 10

x < #y ∧ x = z ∗ z

M. Wirsing: Specification of state-based Systems, 25.11.2002

21

2. Disjunction
The disjunction S ∨ T denotes the union of the models

Sig(S ∨ T) = Sig(S) ∪ Sig(T)

Mod(S ∨ T) = {A ∈ Struct(Sig(S ∨ T)) |
A |Sig(S)∈ Mod(S) or A |Sig(T)∈ Mod(T)}

Example:

S0 ∨ T =
x : Z
y : seqZ
z : 1 . . 10

x < #y ∨ (x ∈ N ∧ x = z ∗ z)

M. Wirsing: Specification of state-based Systems, 25.11.2002

22

3. Negation The schema ¬ S represents the complement of the models under
preservation of the types:

Sig(¬ S) = Sig(S)

Mod(¬ S) = {A ∈ Struct(Sig(S)) | A /∈ Mod(S) }

Example:

¬ T = x : Z
z : Z

x /∈ N ∨ z /∈ N ∨ z /∈ 1 . . 10 ∨ x 6= z ∗ z

M. Wirsing: Specification of state-based Systems, 25.11.2002

23

4. Quantification hides (free) variables.

Qx1 : T1; . . . ; xk : Tk | P • S

(where k < n, i.e. the variables x1, . . . , xk are in S and have the same type as in S)

xk+1 : Tk+1; . . . ; xn : Tn

Qx1 : T1; . . . ; xk : Tk | P • S

Example:

∃ z : N | z > 5 • T =

x : N

∃ z : N | z > 5 • z ∈ 1 . . 10 ∧ x = z ∗ z

reduces to x : N

∃ z : 6 . . 10 • x = z ∗ z

M. Wirsing: Specification of state-based Systems, 25.11.2002

24

If we quantify over all declared variables of a schema S , we write:

QS • T

as abreviation for

Qx1 : T1; . . . ; xn : Tn | P • T

where

S
x1 : T1; . . . ; xn : Tn

P

M. Wirsing: Specification of state-based Systems, 25.11.2002

25

5. Export and hiding of symbols
(a) S � (x1, . . . , xk)

(b) S \ (x1, . . . , xk)

are schemata, that restrict the signature of S by restriction (a) and hiding (b).

These operations can be defined by quantification.

S � (x1, . . . , xk) =def ∃ xk+1 : Tk+1; . . . ; xn : Tn • S

S \ (x1, . . . , xk) =def ∃ x1 : T1; . . . ; xk : Tk • S

Example:

T � x = ∃ z : N • T = x : N

∃ z : N | z ∈ 1 . . 10 • x = z ∗ z

M. Wirsing: Specification of state-based Systems, 25.11.2002

26

Decoration

The identificators in schemata can be decorated:

S ′

x ′1 : T1; . . . ; x ′n : Tn

P [x ′1/x1, . . . , x ′n/xn]

Example:

S ′0
x ′ : Z
y ′ : seqZ

x ′ < #y ′

M. Wirsing: Specification of state-based Systems, 25.11.2002

27

Semantics of S ′:

StateSig(S ′) = {x ′ : T | x : T ∈ StateSig(S)}
Mod(S ′) = {A ∈ SStruct(StateSig(S ′)) | ∃B ∈ Mod(S) : A |copy= B},

where copy(x) = x ′ for all x : T ∈ Sig(S) is the signature morphism, that decorates all
declared symbols of S with ′ .

An equivalent form is:

S ′ = S with copy

M. Wirsing: Specification of state-based Systems, 25.11.2002

28

State Transitions

∆S =def S ∧ S ′

Generally the schema S denotes a state space of a abstract data type.

Every model of ∆S has the signature Sig(S) ∪ Sig(S ′), i.e. let
StateSig(S) = {x1 : T1, . . . , xn : Tn}. So

StateSig(∆S) = {x1 : T1, . . . , xn : Tn, x ′1 : T1, . . . , x ′n : Tn}
Mod(∆S) = {A ∈ SStruct(StateSig(∆S)) | A |Sig(S)∈ Mod(S) and

A |Sig(S ′)∈ Mod(S ′)}

∆S can be considered as a state transition, i.e. every element of Mod(∆S) consists of
a pair 〈B ,B ′〉 of algebras, we write:

B →S B ′

where B = A |Sig(S) and B ′ = A |Sig(S ′) holds for a A ∈ Mod(∆S).

∆S defines the relation between B and B ′ through the axioms of S , i.e. B and B ′ can
be any models (modulo renaming).

M. Wirsing: Specification of state-based Systems, 25.11.2002

29

Preservation of Values

ΞS = ∆S ∧
∧

i=1,...,n xi = x ′i
ΞS is an abreviation for not changing the values in the post state, that have been
declared by the variables of S .

In imperative programing languages, we express local changes of a single variable by
x := e.

Let StateSig(S) = {x1 : T1, . . . , xn : Tn}. Then for the post-constraint of xi := e holds :

x ′1 = x1 ∧ . . . ∧ x ′i = e ∧ . . . ∧ x ′n = xn

M. Wirsing: Specification of state-based Systems, 25.11.2002

Counter 30

Example (Counter):

Counter
Counter
value, limit : N

value < limit

Define the operation Inc (increment):

Inc
∆Counter

value ′ = value + 1
limit ′ = limit

Initial state:
InitCounter
Counter

value = 0 ∧ limit = 100

M. Wirsing: Specification of state-based Systems, 25.11.2002

31

Satisfiability conclusion for InitCounter :

∃Counter • InitCounter ≡
∃ value, limit : N • value < limit ∧ value = 0 ∧ limit = 100

Addition (with Input/ Output):

Add
∆Counter
jump? : N,new value! : N

value ′ = value + jump?
limit ′ = limit
new value! = value ′

M. Wirsing: Specification of state-based Systems, 25.11.2002

Operations of birthday book 32

Example (Operations of birthday book):

AddBirthday
∆BirthdayBook
name? : NAME
date? : DATE

name? /∈ known
birthday ′ = birthday ∪ {name? 7→ date?}

The following property can be proven:

known ′ = known ∪ {name?}

M. Wirsing: Specification of state-based Systems, 25.11.2002

Operations of birthday book 33

Proof 1 (Property of AddBirthday):

known ′

= dom birthday ′ [invariant of Birthday ′]
= dom(birthday ∪ {name? 7→ date?}) [specification AddBirthday]
= dom birthday ∪ dom{name? 7→ date?} [set theory]
= dom birthday ∪ {name?} [property of dom]
= known ∪ {name?} [invariant of Birthday]

We used the mathematical properties:

dom(f ∪ g) = (domf) ∪ (domg)

dom{a 7→ b} = {a}

M. Wirsing: Specification of state-based Systems, 25.11.2002

Operations of birthday book 34

Semantically AddBirthday describes a state transition of
StateSig(BirthdayBook)-algebras into post-algebras with input variables name? and
date?:

A ∈ Mod(BirthdayBook)→AddBirthday A′

where in A′ holds:

knownA′ = dombirthdayA′

birthdayA′ = birthdayA ∪ {name?A′ 7→ date?A′}

date?A′ any element of the carrier set DateA′ = DateA

name?A′ any element /∈ knownA of the carrier set NameA′ = NameA

M. Wirsing: Specification of state-based Systems, 25.11.2002

Operations of birthday book 35

The exclamation mark describes an output variable. The following operations do not
change the state of BirthdayBook

ΞBirthdayBook ≡ ∆BirthdayBook ∧ known ′ = known ∧ birthday ′ = birthday

M. Wirsing: Specification of state-based Systems, 25.11.2002

36

FindBirthday
ΞBirthdayBook
name? : NAME
date ! : DATE

name? ∈ known
date ! = birthday(name?)

Remind
ΞBirthdayBook
today? : DATE
cards ! : PNAME

cards ! = {n : NAME | n ∈ known ∧ birthday(n) = today? }

M. Wirsing: Specification of state-based Systems, 25.11.2002

37

InitBirthdayBook
BirthdayBook

known = ∅

M. Wirsing: Specification of state-based Systems, 25.11.2002

38

Sequential Composition

Two schemata S1 and S2 can be combined sequentially by S1
o
9 S2.

A→S1 A′′,A′′ →S2 A′′ ⇒ A→S1
o
9S2

A′

Formally: Let S1 and S2 be defined over the same signature Σ , then:

S1
o
9 S2 =def ∃S ′′ • S1[S ′′/S ′] ∧ S2[S ′′/S]

holds.

M. Wirsing: Specification of state-based Systems, 25.11.2002

Composition of counter operations 39

Example (Composition of counter operations):

1. Inc o
9 Inc = ∃ value ′′, limit ′′ : N •

∆Counter

value ′′ = value + 1
limit ′′ = limit
value ′ = value ′′ + 1
limit ′ = limit ′′

=

Inc o
9 Inc

∆Counter

value ′ = value + 2
limit ′ = limit

M. Wirsing: Specification of state-based Systems, 25.11.2002

Summary 40

2. Inc o
9 Add

Inc o
9 Add

∆Counter
jump? : N,new value! : N

value ′ = value + jump? + 1
limit ′ = limit
new value! = value ′

3. Add o
9 Inc

Add o
9 Inc

∆Counter
jump? : N,new value! : N

value ′ = value + jump? + 1
limit ′ = limit
new value! = value + jump? (= value ′ − 1)

M. Wirsing: Specification of state-based Systems, 25.11.2002

41

Summary

• Z is a model-oriented specification language for state-based systems.

• System states are described by Z-schemata

S
x1 : T1; . . . ; xn : Tn

P

equivalent to S =̂ [x1 : T1; . . . ; xn : Tn | P]

Basic sorts:
[SORT], e.g. [ADDRESS].

• Combination of schemata
propositional logic ∧,∨,¬
quantification ∃~x : ~T • S , ∀~x : ~T • S
export/hiding S � (~x), S \ (~x)

M. Wirsing: Specification of state-based Systems, 25.11.2002

42

• Decoration of names by ′ (post-state), ? (input) or ! (output)

• Specification of state changes

∆S ≡ S ∧ S ′

ΞS ≡ ∆S ∧ θS = θS ′

• Sequential composition S1
o
9 S2

S1
o
9 S2 ≡ ∃Σ′′ • S1[Σ′′/Σ′] ∧ S2[Σ′′/Σ]

where Σ is the signature of S1 and S2.

MMISS: Kurztitel, November 25, 2002

	Model-oriented Specifications with Z
	Model-oriented Specification
	The Specification Language Z
	Basic Computation Structures of Z
	Basic Schemata
	Schema Combination
	Summary

