Foundations of System Development

Martin Wirsing

in cooperation with
Axel Rauschmayer

WS 05/06

it
rMlS
Change of Data Structures 2
Goals
- Refinement of data structures:
change of data structures
M. Wirsing: Foundations of System Development nlg

Change of Data Structures 3

Change of Data Structures

"Simulation” of a X-structure through a ¥q-structure.

e A (S, F)-structure A is simulated by a (Sy, Fy)-structure B if every carrier set A4 of
A is represented by a subset
Rep; C By
of a carrier set By of B and if every function symbol f € F is represented by a
function symbol f; € F.
e Plenty elements of Rep, can represent the same element of A,. This induces a
congruence relation ~.

e Rep must be closed under the operations of F.
e ~, must be compatible with the operations of A,.

M. Wirsing: Foundations of System Development nlg
Change of Data Structures 4
Simulation

Definition(Simulation):
1. Let X C X4.
A X;-structure B simulates identically a E-structure A w.r.t. Rep® ~B if
(a) Rep? C B, forall s € S,
(b) ~Fis a B-congruence on Rep® for all s € S, and
(c) A is isomorphic to RepB/ ~F whereby
Rep®/ ~P=yef ((RepP)/ ~F)ees.
2. A Zj-structure B simulates a Y-structure A w.r.t. renaming p: £ — ;, Rep? and
~Bif
(a) Rep? C B, foralls € S,
(b) Nf is a p(X)-congruence on Repf for all s € S, and
(c) A RepB/ ~5.
Therefore every identic simulation is a simulation. W.r.t. the inclusion in : ¥ — X;.

M. Wirsing: Foundations of System Development His

Change of Data Structures 5

Example: Sets by lists

* Consider the following signature of sets over natural numbers:
Sig (SETNAT) =
including Sig (BOOL) . including Sig (NATURAL)
sort Set .
op empty : Set .
op {_} : Nat -> Set .
op add : Nat Set -> Set .

op _uU_ : Set Set -> Set .
op _in_ : Nat Set -> Bool
® Let P, (N) be the standard Sig(SETNAT) algebra of finite sets of natural

numbers.

® Let Sig(SET-by-LIST) be a signature of lists over natural numbers which
includes the operations of Sig(SETNAT); i.e. Sig(SET-by-LIST) has the form

sorts Natural, List, .. op empty: -> List . ..
® Let p: Sig(SETNAT) -> Sig(SET-by-LIST) defined by
sort Set to List .
i.e. p(Set) =List and p(x) = x otherwise .

M. Wirsing: Foundations of System Development nlg
Change of Data Structures 6

The structure N* of finite lists simulates the structure of
finite sets P,(N) on natural numbers w.r.t. the renaming
p in the following different ways:

m Let U be the structure (N, N*, € ...) of (unordered) lists over natural
numbers.

m Let G be the structure
(N, {=<xq, ..., X%, > x,<...<x,n>=0}¢..)
of ordered lists.
m Let SG be the structure
(N, {<xq, .. .o, > Xy <=...<=x,n>=0}¢..)
of weakly ordered lists.

M. Wirsing: Foundations of System Development ™Mis

Change of Data Structures

Simulation of Sets by Ordered Lists

G

RePSet

empty”

zin® (zy, ... 2

{}¢

add®(x, (z1,.... 1))

G
<Ils"' 31:71} U <y1~ :yi’.'ﬂ.)
Whereby {131,. o Tna Y1, . .-ym}
S1 ~G 59

[

Hap, o ap)|er < o0 < ay,n > 0}

€

x=uxz; forsomei e {1,....,n}

7)
(21,)

if T < T < Tijq1

EERLS PRUPRIE B FI

’(.’[11,” .,;I'n)

if @ = x; for some i

. - (&)
(z1,- .., 2k) € Repg,,,
{z1,... 21}

851 = 89

M. Wirsing: Foundations of System Development nlg
Change of Data Structures 8

Simulation of Sets by Weakly Ordered Lists

sa
Rep&et

empty~©

» {r}bG

xin”7 (zq, Zn)
add®C(z, (w1, ..., 20))

sa
U< (

<$1!"',~‘T'?l> yls"'syrn,\'

i

= =ux; for some i e {1,...,n}
(X1, . apx,ai+ 1,000
TS < @iy

(21, .., 2k} € Rep'ss;?
whereby (zq, ...
a weakly ordered permutation of

(X1, oy n) +4+ (Y1, Um)

,2k> is

{171:' .. ,-;rn} = {yls ey ym}s
both sequences have the same elements

M. Wirsing: Foundations of System Development

Change of Data Structures 9

Constructing Simulations

The Forget-Restrict-ldentify method for constructing
simulations

1. Forget:

Forget all symbols, that do not stem from p(X).

2. Restrict:

Restrict the carrier sets to the representing sets Rep..
3. Identify: Build the quotient w.r.t. —..

M. Wirsing: Foundations of System Development nlg

Change of Data Structures 10

FRI-Implementation

Definition:

A specification SP; FRI-implements a specification 5P w.r.t. a signature morphism
o : Sig(SP) — Sig(SP;) (write SP; ~+, SP), if every model B of SP; simulates a
model of SP w.r.t. suitable Rep® and ~F.

Theorem:
The implementation relationship ~= is transitive: if SP; ~+,, SP> and SPs ~+,, SP3
implies SP| ~=4 00, SPs.

M. Wirsing: Foundations of System Development nlg

Change of Data Structures 11

Example: Implementing Stacks by Finite Maps (Arrays)

* Maude specification of parameterized stacks:
fmod STACK{X :: TRIV} is

sorts Stack{X} NeStack{X}

subsort NeStack{X} < Stack{X}

op empty : -> Stack{X} [ctor]

op push : X$Elt Stack{X} -> NeStack{X} [ctor]
op pop : NeStack{X} -> NeStack{X}

op top : NeStack{X} -> XSElt

var E : X$Elt . var S : Stack{X}

eq top(push(E, S))

eq pop (push(E, S)) = S
endfm
M. Wirsing: Foundations of System Development nlg
Change of Data Structures 12

Example: Implementing Stacks by Finite Maps (Arrays)

* Instantiation of stacks by character symbols and natural
numbers:

view Char from TRIV to STRING is
sort Elt to Char

endv

fmod CHAR-STACK is
including STACK{Char}
endfm

view Natural from TRIV to NATURAL is
sort Elt to Natural
endv

fmod NAT-STACK is
including STACK{Natural}
endfm

M. Wirsing: Foundations of System Development ™Mis

Change of Data Structures 13

Example: Implementing Stacks by Finite Maps (Arrays)

* Simulating stacks over finite maps indexed by nat. numbers :
fmod STACK-BY-MAP{X :: TRIV} is

protecting MAP{Natural, X}

sorts Stack{X} NeStack{X}

subsort NeStack{X} < Stack{X}

op pair : Map{Natural, X} Natural -> Stack{X} [ctor]

op emptyStack : -> Stack{X}

op push : X$Elt Stack{X} -> NeStack{X}

op pop : NeStack{X} -> NeStack{X}

op top : NeStack{X} -> XSElt

var E : X$Elt . var I : Natural
var M : Map{Natural, X}
eq emptyStack = pair(empty, O0)

eq push(E, pair(M, I)) = pair(insert(I, E, M), s I)
eq top(pair(M, s I)) = M[I]
eq pop(pair (M, s I)) = pair(M, I)
endfm
M. Wirsing: Foundations of System Development nlg
Change of Data Structures 14

Example: Implementing Stacks by Finite Maps (Arrays)

* Instantiating maps by character symbols:

fmod CHAR-STACK-BY-MAP is
including STACK-BY-MAP{Char}

endfm

red in CHAR-STACK-BY-MAP
top(push("a", push("b", emptyStack)))
red in CHAR-STACK-BY-MAP
top(pop(push("a", push("b", emptyStack))))

M. Wirsing: Foundations of System Development ™Mis

Change of Data Structures 15

Example: Implementing Stacks by Finite Maps (Arrays)

Theorem
STACK-BY-MAP{X :: TRIV} isan
FRI-implementation of STACK{X :: TRIV}.
Proof:

Let MO be any model of STACK-BY-MAP and restrict it to to the
signature of STACK:

M = MO|gig(sTackex :: TRIVY)
Define the following representation set and congruence:
RepVg; = Mgy
RepMsiaekpg = paIM(m, i) [m e My,,; i <= |m|+1}
pairM(m,, i) ~, pairM(m,, j) iff
i =j A Vvk: Natural: k <i=>m,[k™ = m,[k]¥

M. Wirsing: Foundations of System Development ™Mis

Change of Data Structures 16

® Then the quotient M’ = Rep,,/~,, is a well-defined sig(STACK{X :: TRIV}
algebra which is generated by empty and push.
® The two STACK axioms hold in M’ :
1. M’ |=top(push(x, pair(m, i))) = x:
Let v be any valuation. Then
M,V |= top (push(x, pair(m, 1i))) = [Def. of push]
top(pair(insert(i, x, m), s 1)) = [Def. of top]
m[i] = [Def. of _[]in MAP]
X
2. M’ |=pop(push(x, pair(m, i))) = pair(m, i) :
Let v be any valuation. Then
Mv|= pop(push(x, pair(m, i))) = [Def. of push]
pop (pair (insert (i, x, m), s i)) = [Def. of pop]
pair(insert(i, x, m), i) =
[forallk < i: insert(i,x,m)[k] = m[k]]
~pair(m, i) g.e.d

M. Wirsing: Foundations of System Development ﬂlg

Change of Data Structures

17

Theorem:
Let SP = (Z,E) be a functional specification,
SP’ a specification with £ ¢ Sig(SP’) and let
Ax(Rep,) be an axiomatisation of
m a characteristic predicate Rep and
= a X-congruence relation ~ over SP’.
Let
fmod SP” is
protecting SP’
Ax (Rep, ~)
endfm
Then SP’is a FRI-Implementation of SP, if
= Rep/~ is freely generated by the X-constructors of SP’
m SP” fulfils the axioms E of SP on Rep/~ , i.e.

SP” |= G, for all G e E

M. Wirsing: Foundations of System Development

ris
mls

Change of Data Structures

18

whereby Grep -~ is defined inductively by:

Pty tn)Repe = D(t1.. . tn)
(@ =V)Repn = ur~wv
(G1 AG2)Rep~ = (G1)Rep,~ N (G2)Rep,~
(7G)Rep~r = (GRep,~)
(Vo : 8. G)pep~ = Vr:s. Repy(z) = GRrep~
(Fz: 5. G)pep~. = Tz:s. Repe(x) A GRep

M. Wirsing: Foundations of System Development

ris
mls

Change of Data Structures 19

Example: Implementing Stacks by Finite Maps (Arrays)

We define axiomatically the characteristic predicate Rep of the
representation set and the congruence ~ over STACK-by-MAP:

Repg,. : X$Elt -> Bool

ReDgiocrixy ¢ Stack{X} -> Bool

_~p—: XSElt XS$SElt -> Bool

_~stackixj—: Stack{X} stack{X} -> Bool

vars E, E’ : X$SElt . var St : Stack{X}

vars M, M’ : Map{Nat, X} . vars I, J : Natural
eq Repg . (E) = true . ***Repg, holds for all E € X$EIt
eq ReDg .oy (PAir (M, I)) = true if I <= |M| + 1

eq E ~, E' = (E == E').
eq pair(M, I) ~gux Pair(M’, J) =
I == J and
forall(k : Nat . k < I => M[k] == M’ [k])
M. Wirsing: Foundations of System Development RIE
Change of Data Structures 20

Then we can prove the STACK axioms as follows:

1.V E: X$E1t . V St : Stack{X} . top(push(E, St)))
= E :

Relativization w.r.t. Rep and ~ yields

V E: XSElt . V St : Stack{X}

Repyg;. (E) and RePg . x) (St) => top(push(E, St))) -~y E .

By the definitions of Rep and ~ we get:
V E: X$SE1t . V M : Map{Nat, X} .V I : Natural

(I <= |M|+1) => top(push(E, pair(M, I))) = E .
We prove this by the axioms of STACK-by-MAP:
top (push(E, pair(M, I))) = [Def. of push]
top(pair(insert (I, E, M), s I)) = [Def. of top]
M[I] = [Def. of []in MAP]
E
M. Wirsing: Foundations of System Development RIE

10

Change of Data Structures 21

2.V E: X$E1lt . V St : Stack{X} .pop(push(E, St))) = St:
Relativization w.r.t. Rep and ~ yields
VYV E: X$E1t . V St : Stack{X}
Rep,,, (E) and Repstack(x)(St) => pop (push(E, St))) ~graexixy St Bythe
definition of Rep we get:
V E: X$E1lt . V M : Map{Nat, X} .V I : Natural
(I <= |M|+1) =>
top(push(E, pair(M, I))) ~grackixy P2ir(M, I)))
We prove this by the axioms of STACK-by-MAP:

pop (push(E, pair (M, I))) = [Def. of push]
pop (pair(insert(I, E, M), s I)) = [Def. of pop]
pair(insert(I, E, M), I) ~Stack(x)
[forallk < I: insert(I,E,M)[k] = M[k]]
pair (M, I) g.e.d.
M. Wirsing: Foundations of System Development rig

Change of Data Structures 22

Summary

o If a ¥j-algebra B simulates a ¥-algebra A as follows (called change of data
structure):
Every carrier set of A is represented by a subset Rep of a carrier set of B, and every
function symbjol of £ is represented by a function symbol of X;. Several elements of
Rep can represent the same element of A, thus inducing an equivalence relation ~

o A specification SP; FRI-implements a specification SP w.r.t. a signature morphism
p , if every model of SP; simulates a model of SP w.r.t. suitable Rep and ~.

¢ Implementation relationships are proved on the level of specifications. The
characteristic predicate of Rep is used for this purpose. A specification SP’
FRI-implements a specification SP, if Rep and ~ can be defined over SP' in such a
way that Ep,,, . holds in SP’ for any axiom E of SP.

M. Wirsing: Foundations of System Development nlg

11

