Foundations of System Development

Martin Wirsing

In cooperation with
Axel Rauschmayer

WS 05/06

Ii AGILE

Ausblick:
Systematische Entwicklung Mobiler Systeme

Systematic Development of Mobile Systems 2

Ii AGILE

= Modelling and Developing Systems Using
UML and MTLA
= MTLA - Mobile Temporal Logic of Actions
= State diagrams with mobility
= Correct state diagram refinement

Goals

Systematic Development of Mobile Systems 3

1. MTLA IiAG'LE

= MTLA extends TLA by

» location information
= M[F] formula F holds at location m if m exists

a run of the
system

A\

|=F

Systematic Development of Mobile Systems 4

1. MTLA IlAG'LE

= Move actions
= keep,, the topology below m does not change
= N >>m.n the tree below n moves below m
More generally,
= o.n >>P.n the subtree of path o below n moves to
the tree below B

keep,, n>>m.n
7y 7y m
L
m m n
7 4 /
£33 £33 A3 £33\
A\ £ -\ y4
4 +\ /o +) 4 bN o
be - yod o\ /e +\ o4 p4AN
fos N\ 22 22 A2 pON ied PO
Systematic Development of Mobile Systems 5

1. MTLA Example: Mobile Clock - Time Zones

g
:
;

Auatar

/

-1 -10 - B -8 -7 -6 -5 -4 -3 -2 -1 (1] 1 2 3 4 5 1] rd 8 2 10 i1 12
1:00 2:00 3:00 4:00 5:00 6:00 7:00 800 900 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 1500 20:00 21:00 22:00 23:00 24:00

Systematic Development of Mobile Systems 6

Syntacticall
1. MTLA Example: Mobile Clock ugared Spec

MODULE WorldClock = [|- D[false]value

tZ1 non mobile:

EXTENDS Naturals //
VARIABLES ~ hr, value 7 Uffalse],,
NAMES clock, tzy”, ., t2g , o , 123 Rl
Network = Rigid(value) A NonMobile(tz_;;) A ... A NonMobile(tz,,)

A ijei1.12), i< tziltzi[false]]

A (tzgq.clock v ... v tzj,.clock) == = = = tz,<clock<true>>
WCini = hr e (0..23)

Atz .value = -11 A ... A 1z, value = 12
WCnxt = hr' = hr+1 mod 24 =4 tz<value = i>
WChangeTZ;; = tz;.clock >> tz;.clock

A clock[hr’ = (hr + tz;.value —tz;.value) mod 24]
WCSave = Network A WCini A

A [Vijeci 12), i<sj WChangeTZ;; v WCnxt]y,,

Niccniz [Ve 1), i<sj WChangeTZ;] i ook

Systematic Development of Mobile Systems 7

Thoice

1. MTLA Example: Mobile Clock

= Fairness conditions for Mobile Clock would be
= Weak fairness of WCnxt

= No fairness requirement for WChangeTZ (the clock is
allowed to remain in a time zone)

= The following specification

WC = WCsave A
WF, ,(WCnxt)

ensures that the clock will always advance.

Systematic Development of Mobile Systems

Thoice

1. MTLA System Specifications

= MTLA system specifications add action
formulas for change of locations:
= Most MTLA system specifications are of the form
Init A [Next]v A [Next]s A L
where
[Next]s specifies that Next is unchanged
or the location information S changes.

Systematic Development of Mobile Systems 9

2. Transition Systems for Mobility

hr = h hr = h+1 mod 24

Configurations (t. \)

f finite tree, edges labelled by unique names

A assigns local states to nodes

Computations o= (tg,Ap). (t1. A1), ...

Systematic Development of Mobile Systems 10

Thoice

= A configuration is defined with respect to a non-empty universe || and
a set V; of (flexible) variables:

= A configuration is a pair (t, A) where

2. Transition Systems for Mobility: Configurations

« t=(N;,<;) is afinite, non-empty tree and
= A N; xV;— |l] assigns a value to every variable in V; at every locationn e N; .
= Example

WChangeTZ

2y 7 Sz NP
value =i n
clock
hr=h hr = h+j-i mod 24
A(clock, hr) = h, A, (clock, hr) = (h+j-1) mod 24

Rigid values as in TLA: (tz, value) = 1, ..., (tzs, value) = 5,

Systematic Development of Mobile Systems 11

2. Transition Systems for Mobility: Trees AciLe

= A finite, non-empty tree t is given by a
= strict partial order (N, ,<,)
= over a finite set N, ¢ N of names
= with distinctive root ¢

= The subtree of a tree t = (N, ,<,) rooted at node n is defined by

({meNjm <, n},<}) ifneN
tln= '

empty otherwise

= where <', is the restriction of <, to the subtree of n, i.e.
= < N({meN|m<in}x{meN|m<;n})

Systematic Development of Mobile Systems 12

3. pMLTL: r;r?‘\‘ll_E

Linear Temporal Logic

= LTL is a logic for specifying properties of runs

= LTL formulas are built by using
= first order logic operators (negation, implication,

quantifiers),
= modal operators for specifying temporal properties
o F “ F holds always; i.e. in all states of the run”
= OF “F holds in the next state”

Systematic Development of Mobile Systems

Thoice

3. pMLTL: Syntax

= Propositional Linear Temporal Logic for Mobility
[Zappe 05]

= PMLTL is the propositional fragment of LTL
extended by mobility operators.

= Syntax
= Let V be a countable set of propositional variables and

N a countable set of names (for representing locations).
= Formulas are inductively defined by

F:= Vv propositional (boolean) variables
| F=>F|—=F classical propositional logic
| F|]oF “always” , “next”

| m[F] | keep,, mobility operators

14

Systematic Development of Mobile Systems

Ii AGILE

3. pLMTL: Semantics informally

s location information
= M[F] formula F holds at location m if m exists
s M<F> formula F holds at location m and m exists

a run of the
?ﬁ i system

Systematic Development of Mobile Systems 15

Thoice

3. pMLTL: Semantics informally

= keep,, the topology below m does not change
keep,,
m }m
43 339

= “Move” can be expressed:
= N>>m.n =, n<true> r o m<n<true>> » keep,

Systematic Development of Mobile Systems 16

Ii AGILE

3. pMLTL: Semantics

s Let o = (t;,Ag), (t3,A)), - . . be arun, and n be a name.
= We define
o,n|=F “F holds for o at node n”
inductively:

e o,n=v iff neN;andv e hy(n)
e o.nE=F iff onEF

eonEFF=G if oonEForonE=G

Systematic Development of Mobile Systems 17

Thoice

3. pMLTL: Semantics (continued)

e o.nf=m[F]| iff mLynoroamEF
e G.n [=keep,, iff toln.m=1t]|n.m
e .nEOF iff né¢Njorcli,nEF

e 6.nf=0F iff foralli>0either n ¢ N; for some j <iorcli,nEF

= Validity
= ol=F iffo,n|=F forall names n
= |=F iffo,n|=F forall names n and all runs o

Systematic Development of Mobile Systems 18

3. pMLTL: Derived Operators I|AG|LE

s mM<F> “F holds at m and m exists”
[m<F> :def_' m[—| F]

= “Move” can be expressed:
= N>>m.n =, Nn<true> A om<n<true>> . keep,

n <>F “F holds eventually”
] <F =def (—| F)

Systematic Development of Mobile Systems 19

Thoice

4. MTLA: Notations (for action formulas)

= For any action A, state function t, and any pure
spatial formula S (i.e. not containing temporal
operators), define
« [Al, = Avt=t [Als = A v (S 09)
s <A>, = A A o(t=t) <A>,= A A 2(SE0S)
[Als = [S=>A]s

Systematic Development of Mobile Systems 20

4. MTLA Example: Mobile Shopper IAGILE

\ /
\ /‘\ /*\
joe al/ \ag as joe al/ \32 as joe alo,/ Tg as

shopper shopper} shopper
lookFor = () lookFor = () lookFor = {01}

= A mobile shopper gets the request of finding
offers for an item, e.g. for different flights.

= He visits several shops, collects the offers and
returns home (after some time).

Systematic Development of Mobile Systems 21

4. MTLA Example Shopper: UML solution IAGILE

<<mobile>> Shopper

lookFor : Item
offers : {Offer}
look(i : Item)

offer(o : Offer)

look(item) /
(lookFor offers) = (item, {}) offer(o) /
offers=add(offers,0)
[@home]
Shopping
/ ANY | ; Site :
[@home] / mm,e“)

home.present(offers)

1| home

<<location>> Site

supply : {Offer}
present(offers : {Offer})

Systematic Development of Mobile Systems 22

4. MTLA Example Shopper: r\‘r\‘
Direct specification in MTLA AGILE

Assume: fixed, finite set Net of names, joe € Site, shopper not in Site

Network topology

Topology = A n<m[false]> all nodes present at top level

n,m € Site

Initial condition
Init = joe<shopper<true>> shopping agent in domain joe. . .
A shopper[ctl = “Idle” ...and in “Idle” state
shopper.ctl = “idle”
abbreviates: shopper<true> A

Prepare shopper to shop for item x

Prepare(x) = shopper[ctl = “idle”]
shopper<true> A o shopper<true> shopping
A shopper[ctl = “Idle”] state changes from “idle” . . .
A O shopper[ctl = “Shopping”] . . . to “shopping”

A O shopper[lookFor = x A offers = {}] initialize lookFor and offers

Systematic Development of Mobile Systems 23

4. MTLA Example Shopper (continued)

Remaining state-changing actions
GetOffer =. .. get an offer and insert into “offers”
PickOffer =. . . select among offers in “offers”

Move among network nodes

Move, , =
n<shopper<true>> shopping agent is in n’'s domain
A shopper[ctl = “Shopping”] and is in “Shopping” state
A n.shopper >> m.shopper shopper moves to m’s domain,

A~ UNCHANGED(shopper.offers, shopper.lookFor, shopper.ctl)
preserving local state

Overall specification (ignoring fairness)
Shopper =
Topology A Init

A [joe[(3 x : Prepare(x)) v PickOffer] v v n[GetOffer]]

n € Site vars

AN e site [vm €Site Ivlove”‘]—n.shopper

Systematic Development of Mobile Systems 24

Ii AGILE

s State machines model the behavior of (single) objects.

= History and predecessors
= 1950’s: Finite State Machines: Huffmann, Mealy, Moore
= 1987: Harel Statecharts: conditions and hierarchical (and/or) states

= 1994: ROOM Charts: run-to-completion (RTC) step

5. Mobile State Machines

s State machines model behavior

using states interconnected ... wrigger [guard]/ effect
" S S) (%)

= With transitions triggered ...
= by event occurrences.

= Goal of the extension to mobility
= include location information and move operations into the state
machine behaviour

25

Systematic Development of Mobile Systems

5. Mobile state machines: Example Shopper IAG"-E

trigger (CallEvent)
\

\

guar,d (Constraint)
\

[look(item) /
I (lookFor offers) = (item, {}) oger(cv) fdd(fors
offers=add(offers,o
[@home]
) Shopping
/ /| ANY | : Site :
I . [@home] /Y, move()
initial Pseu ostate’, home.present(offers) !
1 / \\ Il
I /’ \ '
simple IState effect (CallAction) Tran;iti on effect (MoveAction)

26

Systematic Development of Mobile Systems

Ii AGILE

5. Mobile state machines: Example Shopper

look(item) /
(lookFor offers) = (item, {}) offer(o) /
offers=add(offers,o)
[@home]
Shopping
/ ANY | : Site :
[@home] / move(])

home.present(offers)

Extensions
@ guards e; < e
M
Q@ @c = self<xe

@ special move action

Systematic Development of Mobile Systems 27

Ii AGILE

5. Mobile state machines: Example Shopper

look(item) /
(lookFor offers) = (item, {}) offer(o) /

offers=add(offers,0)
[@home] _
Shopping
/ ANY | : Site :

[@home] / move(l)
home.present(offers)

Extensions Simplifications
@ guards ¢) < e @ no state hierarchy
Q@ @c = self<e @ no pseudo states
@ special move action @ only asynchronous communication
@ actions restricted to
ANY x : P : upd; send; move

Systematic Development of Mobile Systems 28

Thoice

5. Mobile state machines: Example Shopper

<<mobile>> Shopper

lookFor : Item
offers : {Offer}
look(i : Item)

offer(o : Offer)

look(item) /
(lookFor offers) = (item, {}) offer(o) /
offers=add(offers,o)
[@home]
Shopping
/ ANY | ; Site :
[@home] / mm,e(n

home.present(offers)

1] home

<<location>> Site

supply : {Offer}
present(offers : {Offer})

Systematic Development of Mobile Systems 29

Thoice

5. Mobile state machines: MTLA Semantics

= UML mobile state machines
= semi-formal graphical notation
= semantics and formal foundation non-obvious
= No notion for reasoning on mobile systems
= no abstract notion of refinement

= Translation of state machines to MTLA
= Define control states and event queues
= Translate every transition

= Specify the behaviour of the whole state
machine/several state machines

Systematic Development of Mobile Systems 30

5. Semantics of state machines rrgg
Basic Idea AGILE

= Communicating state machines

event pool event pool
a:A 4 b:B
O=0 E =0
b ~
Assume object a:A located network h .
beneath an object c sent but undelivered messages
Systematic Development of Mobile Systems 31
5. Semantics of mobile state machines AW
Basic Idea ILE

= Communicating state machines

event pool event pool

a:A o8

)

N

Assume object a:A located S o
beneath an object c network S o
. . sent, but undelivered messages
= Representation in MTLA -
€. Mmsgs= ...

self = ...
ctl =...
vts = ...

self = ... — — object identity (does never change)
ctl =... — — — — control state of a
evts = ... —

~ —received messages of a
Systematic Development of Mobile Systems 32

5. Semantics of mobile state machines: @
Example Transition Translation AGILE

m State machine of shopper
look(item) /
(lookFor offers) = (item, {}) offer(o) /

offers=add(offers,0)
[@home]
Shopping
/ ANY | : Site ;

[@home] / move())
home.present(offers)

= Translation to MTLA Translation of guard [@home]

— -—
Present(ag) = A Ve Ob; 09-home = E.sel}(f\. [.ag(true)
Aoag.ctl = Shopping A ag.ctl’ = Idle
M UNCHANGED (ag.lookFor, ag.offers, ag.home, ag.euvts)
N msgs’ = msgs U {{ag.home, present, ag.offers)
~ " : ;
A Stationary(ag)

A le Loc [false]l.ag
=~ S~

Move(ag) = Vicroe M l.self € Loc
// M ag.ctl = Shopping A ag.ctl’ = Shopping
J/ N UNCHANGED {ag.lookFor, ag.offers, ag.home, ag.evts)
// N omsgs’ = msgs A s.ag 3 lag

—
_—
= ==

—_— =
= =

Translation of ANY | : move(l)

Systematic Development of Mobile Systems 33

Ii AGILE

6. Refinement of mobile systems

Operation refinement
= decompose high-level operations
= represented by implication (stuttering invariance)

(Action Refinement as in TLA, see earlier)

Spatial decomposition (Location Refinement)
= refine high-level location 7 into a tree (with root named 1)
= in general also distribute local state of n

» Virtualisation of locations (Location and Move
Refinement)

= implement high-level location n by structurally different
hierarchy

= preserve external behavior : 7 hidden from high-level
Interface

Systematic Development of Mobile Systems 34

6.1 Refinement of Mobile State Machines: r\‘h'
Operation Refinement of Shopper AGILE

<<mobile>> Shopper

lookFor : Item
offers : {Offer}
look(i : Item)

offer(o : Offer)

look(item) /

(lookFor offers) = (item, {}) offer(o) /
offers=add(offers,o)
[@home]
Shopping
/ ANY | ; Site :
[@home] / move(l)

home.present(offers)

1] home

<<location>> Site

supply : {Offer}
present(offers : {Offer})

Systematic Development of Mobile Systems 35
6.1 Operation Refinement of Shopper rN
AGILE
«location» Site «mobile» Shopper
home
nbs | name : String] lookFor : Item
*| supply : {Offers} offers : {Offer}
getOffer(i : ltem) loc look(i : Item)
present(offers : {Offer}) 1 offer(o : Offer)

= Refine state Shopping by 4 states:

: Shopping

|
[@home] e look(item) / I Ready | / ANY x : nbs(loc) :
loc=home (lookFor,offers) loc=x; move(x)

[= (item, {}) '
[home.present |

(offers) : offer(o) /
________________ offers=add(offers,o)

/ loc.getOffer(lookFor)
Returning WaitOffer

|
|
|
|
: [@home]
L

Systematic Development of Mobile Systems 36

Thoice

6.1 State Machine Refinement

m State machine refinement is based on
= an invariant InvR of the refined state machine,
= an abstraction function Abs: StateR? — StateM
mapping the states of R to the corresponding states of M,
= a global hypothesis H on the refined system (e.g. Assumptions H
on the spatial hierarchy.
» Example
= Invariant of refined shopper:
(ag.ctl = Returning => @home) A ag.loc € Site
= Abs maps the states
Ready, Arrived, WaitOffer, and Returning to state Shopping
= Global hypothesis: Here an assumption on the spatial hierarchy:
V s € Site : nbs(s) c Site

Systematic Development of Mobile Systems 37

Thoice

6.1 Example: Refinement Proof

» Inductive invariant: RfndShopper => Inv(ag):

The only non-trivial case is the transition Arrived2ReturningRfndshopper tg state
Returning: because of the guard, Inv(ag) holds in the post state

= Step simulation
= Initial State: H A InitRfndShopper — |njtShoprer(ag): Obvious
= Any action of RfndShopper implies validity of corresponding high-level action:
= lookRfndshopper jmplies lookShoPrer: holds obviously (actions have identical definition);
= moveRdshopper implies moveShorrer : holds because of global hypothesis on neighbours;
= Arrived2ReadyRmdshopper - styttering step for Shopper;

= Arrived2WaitOfferRindshopper - styttering step for Shopper;
=« OfferRindShopper implies lookShorrer: holds obviously (actions have identical definition);

= Arrived2ReturningrRfdshopper - styttering step for Shopper;
= Returning2ldleRmdshopper implies presentShoprer : holds because of inductive invariant.

Systematic Development of Mobile Systems 38

6.2 Spatial decomposition

Suppose visiting agents are kept in a “dock” location

joe a1/ ""»,Lag as o

shopper
found = () shopper

= Still conforms to the original specification
= formula Shopper doesn’t mention locations dock, in, out
= location shopper is still below location &,

Systematic Development of Mobile Systems 39
6.2 Application to State Machines rArE\-‘.‘
Introducing sublocations ILE

«location» Site M «location»
1 In

supply : {Offers}

dock | «location»
present(offers : {Offer}) > Dock

|
Ioc_getOffertlookFo'r)
Retumning WaitOffer : Docked
|
[(@hame]

Systematic Development of Mobile Systems 40

1

I________________7

|
I refuse() 3:? \
7 < |
| &
[@home] look(item) / / ANY x - nbs(loc) ;! |
ldle Ready - - — L Incoming i
loc=home (lookFor,offers) loc=x; move(incoming(x)) i
- |
¥ = (iterm, {}) 4 : |
/' home present : Iadmit() / |
offer(o) / I !
(offers) offers=add(offers,0) move:a(dock (loc)) i
|
|
|
|
|
|
|
|

6.2 Application to State Machines ﬁ%
Introducing sublocations AGILE

= Acceptable spatial refinement
= Invariant of docked shopper:
(ag.ctl = Incoming => @loc) ~ ag.loc € Site
= Abs maps the states

Incoming, Docked to state Arrived
= Global hypothesis:

Each site contains and is associated with an “in” location
and a "dock” location

A esite A LI_In<true> A |.I_dock<true>

A incoming(l.self) = |_in.self A dock(l.self) = |_dock.self
Systematic Development of Mobile Systems 41
6.2 Spatial decomposition in detail Mhoite

Refined move actions

= Ready2Incoming = move to /incoming location maps to high-level move
A ag.ctl = Ready A ag.ctl’ = Incoming A ...

Vo (I.s€lf € nbs(loc) A ag.loc’ = L.self A €.ag >> 1.I_in.ag)
Because: €.ag >> |.I_in.ag = (ag<true> A o l.l_in.ag<true> A keep,,)

implies (ag<true> A o l.ag<true> A keep,,) = €.ag >> l.ag

= Incoming2Docked = move to docked location invisible at high level
A ag.ctl = Incoming A ag.ctl’ = Docked A ...

A Ve (@g.loc = L.self A €.ag >> I.|_dock.aqg) (well-defined because of hypothesis)
Because: Invariant @loc implies l.ag<true>;

with €.ag >> I.|_dock.ag we get

l.ag >>I.I_dock.ag = (l.ag<true> A o I.I_dock.ag<true> A keep,)

This implies (l.ag<true> A o l.ag<true> A keep,,) = l.ag >> l.ag

> The refined specification again implies the original one.

Systematic Development of Mobile Systems 42

6.2 Spatial decomposition: general case AGILE

= Usually, decomposition requires distribution of state

df \e £
X 5(x X3

= Refinement is then expressed as Impl => 3 a.x : Spec

= |ocal state variable x hidden from high-level interface;
refinement mapping for realising x has to be defined

Systematic Development of Mobile Systems 43
6.2 Application to State Machines:
i Tacice

Distribution of agent state

«mobilex«location» Shopper |, Path| «mobile» Path

rt: [Site]

route(path : [Site])

look(i : Item)
offer(o : Offer) ®—— tgt: ltem
1 res : {Offer}

«mobile» Data

offer(o) /
dt.res=add(dt.res,0)

Shopping

[not empty(path.rt)] /

path.rt = tail(path.rt);
move(head| path rt))

[@home] / home present(dt.res)

Systematic Development of Mobile Systems 44

6.2 Application to State Machines:
Distribution of agent state

«mobile»«location» Shopper g Path| «mobile» Path

rt : [Site]

route(path : [Site])

look(i : Item) «mobile» Data

offer(o : Offer) ’—1 :gli.lzgr‘:fer}

offer{o) /

dt.res=add(dt.res,
[rin Seq(Site)] res=add(dt.res,o)

route r/ /
| (dt.tgt, dt.res)
I = (item, {})

path.rt = tail(path.rt);
move(head path rt))

[@home] / home present(dt.res)
Straightforward extension of proof obligations

= hiding of high-level state components (/ookFor, offers)

= extend refinement mapping to compute hidden state
» dllgt — lookFor, dt.res — offers

= invariant ensures preservation of observable behavior

Systematic Development of Mobile Systems

[not empty(path.rt)] /

45

6.3 Virtualisation of locations

= Modify spatial hierarchy

= Location 1 hidden from interface: Impl => 317 : Spec
= Preserve external behavior, except for location n

Systematic Development of Mobile Systems

46

6.3 Application to State Machines: Slow Shopper AGILE

offer(o) /
offers=add(offers,0)

[@home]

loc=home

look(item) /
(lookFor,offers)=(item,{})

[@home] / ANY | : Site :
home.present(offers) loc=I; move(l)

= Modification of spatial hierarchy with transit not in Site
= non-atomic moves invalidate (Vg |.-ag<true>)
= have weaker refinement at system level

e
I Nonstandard

def of 3!
Systematic Development of Mobile Systems pes
Summary: MTLA and Mobile State Machines IAGILE

= MTLA — Mobile Temporal Logic of Actions :
= Specification logic of mobile systems
= Spatio-temporal refinement

= Mobile UML state machines
= support move actions and location information
= Formal Semantics in MTLA

= Spatial refinement concepts explained at UML level
= State machine refinement (operation refinement)
= introducing sublocations
= distribution of agent state
= Virtualisation of locations

Systematic Development of Mobile Systems 48

