IMP: Äquivalenz von denotationeller und natürlicher Semantik

Satz Für alle Anweisungen $S \in Stm$ gilt

$$S[S] = \{(\sigma, \sigma') \mid \langle S, \sigma \rangle \to \sigma'\}.$$

Korollar Für jedes $S \in \operatorname{Stm}$ ist S[S] eine partielle Funktion $\Sigma \rightharpoonup \Sigma$.

ω -vollständige partielle Ordnungen

Definition Sei (P, \sqsubseteq) eine partielle Ordnung und sei $X \subseteq P$. Ein $p \in P$ heißt obere Schranke von X, falls $q \sqsubseteq p$ für alle $q \in X$. Ein $p \in P$ heißt kleinste obere Schranke (oder Supremum) von X, falls p eine obere Schranke von X ist und für alle oberen Schranken p' von X gilt: $p \sqsubseteq p'$.

Schreibweisen:
$$\bigsqcup X$$
 kleinste obere Schranke von X , falls existent $\bigsqcup \{p_1,\ldots,p_n\}=p_1\sqcup\cdots\sqcup p_n$

Definition Eine partielle Ordnung (P,\sqsubseteq) heißt ω -vollständig, wenn jede aufsteigende ω -Kette $p_0 \sqsubseteq p_1 \sqsubseteq p_2 \sqsubseteq \ldots$ eine kleinste obere Schranke $\bigsqcup \{p_n \mid n \in \mathbb{N}\}$ in P hat.

Präbereiche und Bereiche

Definition Eine ω -vollständige partielle Ordnung heißt Präbereich.

Ein Präbereich (D, \sqsubseteq) heißt Bereich, wenn es ein Element $\bot_D \in D$ mit $\bot_D \sqsubseteq d$ für alle $d \in D$ gibt.

Hebung eines Präbereichs P zu einem Bereich P_{\perp} durch Adjunktion eines kleinsten Elements \perp

Definition Ein Präbereich (P,\sqsubseteq) heißt diskret (geordnet), falls aus $p\sqsubseteq q$ folgt, daß p=q. Ein Bereich (D,\sqsubseteq) heißt flach, falls aus $d\sqsubseteq d'$ folgt, daß $d=\bot_D$ oder d=d'.