Prof. Dr. F. Kröger, M. Hammer

Temporale Logik und Zustandssysteme Lösungsvorschlag

Aufgabe 5-1

Temporale Aussagen von \mathcal{L}_{LTL}^{b}

(4 Punkte)

Seien A und B Formeln von \mathcal{L}_{LTL}^b . Geben Sie Formeln von \mathcal{L}_{LTL}^b mit den folgenden jeweiligen informellen Bedeutungen an.

a) "Falls B unendlich oft zutrifft, trifft A zwischen zwei Zutreffen von B mindestens einmal zu."

 $\begin{array}{c|cccc} \textbf{L\"{o}sung:} & \Box \Diamond B \to \Box (B \to (A \text{ before } B)) \\ & & & \\ \hline B & A & B & A & B \\ \end{array}$

b) "A trifft ab dem nächsten Zustand genau n-mal zu."

Lösung: $\neg A$ **until** $(A \land (\neg A \text{ until } A \land ... (\neg A \text{ until } A \land \bigcirc \Box \neg A)...))$ mit n-mal **until** oder rekursiv geschrieben als

c) "Solange A ununterbrochen zutrifft, trifft B maximal einmal zu."

Aufgabe 5-2

Allgemeingültigkeit in LTL+b

(4 Punkte)

Seien A, B Formeln von \mathcal{L}_{LTL}^b . Beweisen oder widerlegen Sie folgende Aussagen:

a) $\models \Box A \leftrightarrow A \land \mathbf{false} \ \mathbf{atnext} \ \neg A$

Lösung: Allgemeingültig, wie man leicht zeigt. Sei K beliebig, $i \in \mathbb{N}$.

$$\begin{split} \mathsf{K}_i(\Box A) &= \mathsf{tt} \; \mathsf{gdw}. \; \mathsf{K}_j(A) = \mathsf{tt} \; \mathsf{für} \; \mathsf{alle} \; j \geq i \\ &= \mathsf{gdw}. \; \mathsf{K}_i(A) = \mathsf{tt} \; \mathsf{und} \; \mathsf{K}_j(A) = \mathsf{tt} \; \mathsf{für} \; \mathsf{alle} \; j > i \\ &= \mathsf{gdw}. \; \mathsf{K}_i(A) = \mathsf{tt} \; \mathsf{und} \; \mathsf{K}_j(\neg A) = \mathsf{ff} \; \mathsf{für} \; \mathsf{alle} \; j > i \\ &= \mathsf{gdw}. \; \mathsf{K}_i(A) = \mathsf{tt} \; \mathsf{und} \; \mathsf{entweder} \; \mathsf{K}_j(\neg A) = \mathsf{ff} \; \mathsf{für} \; \mathsf{alle} \; j > i \\ &= \mathsf{oder} \; \mathsf{K}_k(\mathbf{false}) = \mathsf{tt} \; \mathsf{für} \; \mathsf{das} \; \mathsf{kleinste} \; k > i \; \mathsf{mit} \; K_k(\neg A) = \mathsf{tt} \\ &= \mathsf{gdw}. \; \mathsf{K}_i(A \wedge \mathbf{false} \; \mathsf{atnext} \; \neg A) = \mathsf{tt} \end{split}$$

b) A unless false $\models \Box A$

Lösung: Nicht gültig. Betrachte $A \equiv v_0 \in \mathbf{V}$ eine Aussagenvariable und die Struktur $\mathsf{K} = (\eta_0, \eta_1, \ldots)$ mit

$$\eta_i(v_0) = \begin{cases} \mathsf{tt} & \text{ für } i \ge 1 \\ \mathsf{ff} & \text{ sonst} \end{cases}$$

Es gilt $K_i(A) = \text{tt für alle } i \geq 1$, und daher $K_i(A \text{ unless false}) = \text{tt für alle } i \in \mathbb{N}$, d.h. $\models_{\mathsf{K}} A \text{ unless false}$. Es gilt aber $\eta_0(A) = \text{ff}$, insbesondere also $K_0(\Box A) = \text{ff}$ und damit folgt $\not\models_{\mathsf{K}} \Box A$.

c) $\models A \text{ unless } B \land \neg B \text{ unless } C \rightarrow A \text{ unless } C$

Lösung: Gültig. Sei K beliebig, $i \in \mathbb{N}$, und gelte $K_i(A \text{ unless } B \land \neg B \text{ unless } C) = \text{tt. D.h. es gilt entweder}$

- $K_j(\neg B) = \text{tt für alle } j > i$, daher $K_j(B) = \text{ff für alle } j > i$. Dann muß $K_j(A) = \text{tt für alle } j > i$ gelten und insofern auch $K_i(A \text{ unless } C) = \text{tt.}$
- Oder es gilt $\mathsf{K}_k(C) = \mathsf{tt}$ für ein k > i und $\mathsf{K}_l(\neg B) = \mathsf{tt}$ für alle $l \in \mathbb{N}$ mit i < l < k, daher $\mathsf{K}_l(B) = \mathsf{ff}$ für alle $l \in \mathbb{N}$ mit i < l < k, und daher $\mathsf{K}_l(A) = \mathsf{tt}$ für alle $l \in \mathbb{N}$ mit i < l < k, also gilt $\mathsf{K}_i(A \text{ unless } C) = \mathsf{tt}$.

Aufgabe 5-3

Herleitungen in Σ_{LTL}^b

(5 Punkte)

Leiten Sie folgende Formeln in Σ^b_{LTL} her. Sie dürfen dabei neben den Axiomen und Regeln von Σ^b_{LTL} (in der Fassung mit **atnext**) auch das Gesetz (T14) sowie die Regeln (prop), (alw) und (indatnext) und selbst hergeleitete Regeln und Axiome verwenden.

a) $\Box A \rightarrow A$ atnext B

Lösung: Im Wesentlichen ist nur die Regel (indatnext) vorzubereiten:

(indatnext)
$$A \to \bigcirc (C \to B) \land \bigcirc (\neg C \to A) \vdash A \to B \text{ atnext } C$$

hier instanziiert als

$$\Box A \rightarrow \bigcirc (B \rightarrow A) \land \bigcirc (\neg B \rightarrow \Box A) \vdash \Box A \rightarrow A \text{ atnext } B$$

$(2) \circ \Box A \rightarrow \circ A \qquad (\text{nex})(1)(\text{ltl2})(\text{pr})$ $(3) \Box A \rightarrow \circ \Box A \qquad (\text{ltl3})(\text{prop})$ $(4) \Box A \rightarrow \circ A \qquad (\text{prop})(2)(3)$ $(5) \Box A \wedge \circ B \rightarrow \circ A \qquad (\text{prop})(4)$ $(6) \Box A \rightarrow (\circ B \rightarrow \circ A) \qquad (\text{prop})(5)$	
(4) $\Box A \rightarrow \bigcirc A$ (prop)(2)(3) (5) $\Box A \land \bigcirc B \rightarrow \bigcirc A$ (prop)(4)	op)
$(5) \Box A \land \bigcirc B \to \bigcirc A \qquad \text{(prop)(4)}$	
T IXX	
(6) $\Box A \rightarrow (\bigcirc B \rightarrow \bigcirc A)$ (prop)(5)	
$(7) \Box A \to \bigcirc (B \to A) \tag{T14)(prop)(6)}$	
$(8) \Box A \to (\bigcirc \neg B \to \bigcirc \Box A) \tag{prop}(3)$	
$(9) \Box A \to \bigcirc (\neg B \to \Box A) \tag{T14)(prop)(8)}$	
$(10) \Box A \to \bigcirc (B \to A) \land \bigcirc (\neg B \to \Box A) \tag{prop}(7)(9)$	
(11) $\Box A \rightarrow A \text{ atnext } B$ (indatnext)(10)	

b) $\Box A \leftrightarrow A \land A$ unless false

Lösung:

(1)	$\Box A \to A \land \Diamond \Box A$	(ltl3)
(2)	$\bigcirc \Box A \rightarrow A$ unless false	(unl1)
(3)	$\Box A \rightarrow A \wedge A$ unless false	(prop)(1)(2)
(4)	$A \wedge A$ unless false $\rightarrow A$	(taut)
(5)	$A \text{ unless false} \to \circ \text{false} \vee \circ (A \wedge A \text{ unless false})$	(unl2)(prop)
(6)	¬false	(taut)
(7)	○¬false	(nex)(6)
(8)	¬○false	(7)(ltl1)(prop)
(9)	$A \wedge A \text{ unless false} \rightarrow \bigcirc (A \wedge A \text{ unless false})$	(prop)(5)(8)
(10)	$A \wedge A$ unless false $\rightarrow \Box A$	(ind)(4)(9)
(11)	$\Box A \leftrightarrow A \land A$ unless false	(prop)(3)(10)

Der Operator **even** mit der informellen Bedeutung "an allen Zeitpunkten mit geradzahligem Abstand" sei definiert durch:

$$\mathsf{K}_i(\mathbf{even}\ A) = \mathsf{tt} \qquad \Longleftrightarrow \qquad \mathsf{K}_{i+2k}(A) = \mathsf{tt} \quad \text{für alle } k \in \mathbb{N}.$$

In dieser Aufgabe soll gezeigt werden, dass der Operator **even** in \mathcal{L}_{LTL} nicht definierbar ist. Dazu sei v eine Aussagenkonstante, und für alle $j \geq 0$ sei die temporale Struktur $K^j = (\eta_0^j, \eta_1^j, \dots)$ gegeben durch

$$\eta_k^j(v) = \text{ff} \iff k = j \quad \text{und} \quad \eta_k^j(w) = \text{ff für alle } w \not\equiv v$$

a) Zeigen Sie, dass für alle $j \ge 0$ und alle Formeln A von \mathcal{L}_{LTL} gilt: $\mathsf{K}_0^{j+1}(\circ A) = \mathsf{K}_0^j(A)$.

Lösung: Nach Definition der η_k^j gilt für alle $j,k \in \mathbb{N}$ und alle $w \in \mathbf{V}$, dass $\eta_{k+1}^{j+1} = \eta_k^j$. Nach Lemma 2.1.5 folgt daher $\mathsf{K}_{k+1}^{j+1}(A) = \mathsf{K}_k^j(A)$ für alle j,k und alle Formeln A von $\mathcal{L}_{\mathrm{LTL}}$. Insbesondere folgt

$$\mathsf{K}_0^{j+1}(\circ A) = \mathsf{K}_1^{j+1}(A) = \mathsf{K}_0^{j}(A)$$

b) Zeigen Sie: Für alle Formeln A in \mathcal{L}_{LTL} gibt es ein $l \ge 0$, so dass $\mathsf{K}_0^j(A) = \mathsf{K}_0^l(A)$ für alle $j \ge l$.

Lösung: Dies ist das eigentliche Kernstück des Beweises: Jede Formel in \mathcal{L}_{LTL} kann nur endlich viele Strukturen K^j unterscheiden. Formal zeigen wir: Für jede \mathcal{L}_{LTL} -Formel A gibt es ein $l \in \mathbb{N}$, so dass gilt:

- (b1) für alle $j \ge l$ ist $\mathsf{K}_0^j(A) = \mathsf{tt}$ oder
- (b2) für alle $j \ge l$ ist $\mathsf{K}_0^j(A) = \mathsf{ff}$.

Der Beweis erfolgt durch Induktion nach dem Formelaufbau.

 $A \in \mathbf{V}$: Ist $A \equiv v$, so ist $\mathsf{K}_0^j(A) = \mathsf{tt}$ für alle $j \geq 1$; die Behauptung gilt also für l = 1. Für $\mathbf{V} \ni A \not\equiv v$ ist $\mathsf{K}_0^j(A) = \mathsf{ff}$ für alle $j \in \mathbb{N}$, also gilt die Behauptung für l = 0.

 $A \equiv$ **false**: trivial mit l = 0.

 $A \equiv A_1 \rightarrow A_2$: Nach Ind.ann. existieren l_1, l_2 wie gefordert für A_1 und A_2 . Es sei $l = \max(l_1, l_2)$.

- Ist $\mathsf{K}_0^j(A_1)=\mathsf{ff}$ oder $\mathsf{K}_0^j(A_2)=\mathsf{tt}$ für alle $j\geq l$, so folgt $\mathsf{K}_0^j(A)=\mathsf{tt}$ für alle $j\geq l$.
- Ist $\mathsf{K}_0^{\jmath}(A_1) = \mathsf{tt}$ und $\mathsf{K}_0^{\jmath}(A_2) = \mathsf{ff}$ für alle $j \geq l$, so folgt $\mathsf{K}_0^{\jmath}(A) = \mathsf{ff}$ für alle $j \geq l$.

 $A \equiv \bigcirc A_1$: Nach Ind.ann. existiert l_1 wie gefordert für A_1 . Daher gilt für alle $j \geq l_1$

$$\mathsf{K}_0^{j+1}(\circ A_1) \overset{(a)}{=} \mathsf{K}_0^j(A_1) \overset{I.V.}{=} \mathsf{K}_0^{l_1}(A_1) \overset{(a)}{=} \mathsf{K}_0^{l_1+1}(\circ A)$$

Die Aussage gilt also für $l = l_1 + 1$.

 $A \equiv \Box A_1$: Nach Ind.ann. existiert l_1 wie gefordert für A_1 . Wir setzen $l = l_1$ und zeigen, dass $\mathsf{K}_0^j(\Box A_1) = \mathsf{K}_0^l(\Box A_1)$ gilt für alle $j \geq l$. Der Beweis erfolgt durch (Neben-)Induktion nach $j \geq l$.

j = l: trivial.

$$j \rightarrow j+1: \qquad \begin{array}{c} \mathsf{K}_0^{j+1}(\square A_1) = \mathsf{tt} \\ \iff \mathsf{K}_0^{j+1}(A_1) = \mathsf{tt} \text{ und } \mathsf{K}_0^{j+1}(\bigcirc \square A_1) = \mathsf{tt} \\ \iff \mathsf{K}_0^l(A_1) = \mathsf{tt} \text{ und } \mathsf{K}_0^j(\square A_1) = \mathsf{tt} \\ \iff \mathsf{K}_0^l(A_1) = \mathsf{tt} \text{ und } \mathsf{K}_0^l(\square A_1) = \mathsf{tt} \\ \iff \mathsf{K}_0^l(A_1) = \mathsf{tt} \text{ und } \mathsf{K}_0^l(\square A_1) = \mathsf{tt} \\ \iff \mathsf{K}_0^l(\square A_1) = \mathsf{tt} \end{array} \qquad \begin{array}{c} [\mathsf{Neben-Ind.vor.}] \\ [\mathsf{T4}] \end{array}$$

c) Folgern Sie, dass es keine Formel A von \mathcal{L}_{LTL} gibt mit $\models A \leftrightarrow \mathbf{even} \ v.$

Lösung: Betrachten wir zunächst einige naheliegende Versuche einer Definition von **even** A in \mathcal{L}_{LTL} :

- $A \wedge \Box (A \to \bigcirc \neg A \wedge \bigcirc \bigcirc A)$: Diese Formel verlangt, dass A genau in den Zeitpunkten mit geradzahligem Abstand zutrifft, also in den Zeitpunkten mit ungeradem Abstand falsch ist. Dagegen trifft **even** A keine Aussage über das Zutreffen von A in Zeitpunkten mit ungeradem Abstand.
- $A \wedge \Box (A \to \bigcirc A)$: Diese Formel verlangt immer noch, dass von "jetzt" an (Zeitpunkt i) A jeweils im Zeitpunkt i+n+2 gilt, wenn A im Zeitpunkt i+n gilt. Ist insbesondere A in einem zukünftigen Zeitpunkt mit ungeradem Abstand wahr, so muss A ab diesem Zeitpunkt in allen Zuständen wahr sein; auch dies ist stärker als **even** A. Ähnliches gilt für $A \wedge \Box (A \leftrightarrow \bigcirc A)$.

 $p \wedge \Box(p \to \bigcirc \neg p \wedge \bigcirc \bigcirc p) \wedge \Box(p \to A)$: Dabei sei p eine "neue" atomare Aussage, die nicht in A vorkommt. Diese Formel verlangt, dass p genau in den Zeitpunkten mit geradzahligem Abstand zutrifft, und dass A mindestens dann wahr ist, wenn p wahr ist. Dies trifft die Aussage von **even** A ziemlich gut, insbesondere fordert die Formel nichts über das Zutreffen von A in Zeitpunkten mit ungeradem Abstand. Allerdings macht die Formel Aussagen über p (ein "Implementierungsdetail"), was **even** A offensichtlich nicht macht.

Der letzte Versuch führt uns zu folgender Beobachtung: Würden wir quantifizierte Aussagenvariablen in der temporalen Aussagenlogik erlauben, so könnten wir **even** A definieren durch

even
$$A =_{\text{def}} \exists p : p \land \Box (p \leftrightarrow \bigcirc \bigcirc p) \land \Box (p \rightarrow A)$$

Zur Aufgabenlösung: Angenommen, A wäre eine \mathcal{L}_{LTL} -Formel mit $\models A \leftrightarrow \text{even } v$, insbesondere $\mathsf{K}_0^j(A) = \mathsf{K}_0^j(\text{even } v)$ für alle $j \in \mathbb{N}$. Nach Teilaufgabe (b) existiert ein $l \geq 0$, so dass entweder Bedingung (b1) oder Bedingung (b2) gilt für alle $j \geq l$. Andererseits gilt $\mathsf{K}_0^j(\text{even } v) = \text{tt}$ genau dann, wenn j ungerade ist, Widerspruch.

Aufgabe 5-5

Idempotenz und Absorption

(keine Abgabe)

Sei A eine Formel von \mathcal{L}_{LTL} . Beweisen Sie die folgenden Aussagen:

a) $\models \Diamond \Box \Diamond A \leftrightarrow \Box \Diamond A$

Lösung: Für beliebiges K und beliebiges $i \in \mathbb{N}$:

$$\begin{split} \mathsf{K}_i(\diamondsuit \Box \diamondsuit A) &= \mathsf{tt} \Leftrightarrow \mathsf{K}_j(\Box \diamondsuit A) = \mathsf{tt} \text{ für ein } j \geq i \\ &\Leftrightarrow \mathsf{K}_k(\diamondsuit A) = \mathsf{tt} \text{ für alle } k \geq j \text{ für ein } j \geq i \\ &\Leftrightarrow \mathsf{K}_l(A) = \mathsf{tt} \text{ für ein } l \geq k \text{ für alle } k \geq j \text{ für ein } j \geq i \\ &\Leftrightarrow \mathsf{K}_l(A) = \mathsf{tt} \text{ für ein } l \geq k \text{ für alle } k \geq i \\ &\Leftrightarrow \mathsf{K}_k(\diamondsuit A) = \mathsf{tt} \text{ für alle } k \geq i \\ &\Leftrightarrow \mathsf{K}_k(\Box \diamondsuit A) = \mathsf{tt} \end{split}$$

b) $\models \Box \Diamond \Box A \leftrightarrow \Diamond \Box A$

Lösung:

$$\begin{split} \mathsf{K}_i(\Box \Diamond \Box A) &= \mathsf{tt} \Leftrightarrow \mathsf{K}_j(\Diamond \Box A) = \mathsf{tt} \text{ für alle } j \geq i \\ &\Leftrightarrow \mathsf{K}_k(\Box A) = \mathsf{tt} \text{ für ein } k \geq j \text{ für alle } j \geq i \\ &\Leftrightarrow \mathsf{K}_l(A) = \mathsf{tt} \text{ für alle } l \geq k \text{ für ein } k \geq j \text{ für alle } j \geq i \\ &\Leftrightarrow \mathsf{K}_l(A) = \mathsf{tt} \text{ für alle } l \geq k \text{ für ein } k \geq i \\ &\Leftrightarrow \mathsf{K}_k(\Box A) = \mathsf{tt} \text{ für ein } k \geq i \\ &\Leftrightarrow \mathsf{K}_k(\Diamond \Box A) = \mathsf{tt} \end{split}$$

Nimmt man noch die Regeln $\models \Diamond \Diamond A \leftrightarrow \Diamond A$ und $\models \Box \Box A \leftrightarrow \Box A$ hinzu, kann man einen interessanten Satz zeigen:

Satz 1. Sei $F \equiv \boxtimes_1 \boxtimes_2 ... \boxtimes_n A$ mit $n \geq 1$ eine Formel von \mathcal{L}_{LTL} , wobei \boxtimes_i entweder \square oder \diamondsuit ist. Dann gibt es eine Formel $F' \equiv \mathbf{pref} A$ mit \mathbf{pref} aus $\square, \diamondsuit, \square\diamondsuit, \diamondsuit\square$, und es gilt

$$\models F \leftrightarrow F'$$

Beweis. Per Induktion über n. Der Fall n=1 ist trivial ($F\equiv\Box A$ oder $F\equiv\diamondsuit A$). Für n>1 gilt nach Induktionsvoraussetzung, daß $\boxtimes_1\ldots\boxtimes_{n-1}A$ äquivalent zu einer Formel **pref**' A ist, mit **pref**' wie beschrieben. Ist **pref**' entweder \Box oder \diamondsuit , so ist entweder **pref**' $\boxtimes_n A$ bereits syntaktisch gleich zu einer geforderten Formel, oder die Regel $\models\Box\Box A\leftrightarrow\Box A$ respektive $\models\diamondsuit\diamondsuit A\leftrightarrow\diamondsuit A$ kann angewendet werden. Ist **pref**' entweder $\Box\diamondsuit$ oder $\diamondsuit\Box$, so kann entweder die eben genannten Regeln auf **pref**' $\boxtimes_n A$ angewendet werden, oder die Regeln b. und c.; in jedem Fall findet sich eine zu F äquivalente Formel $F'\equiv\mathbf{pref}A$.

Abgabe: Mittwoch, den 22.11.2006, vor der Übung.