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Equational Deduction

Goals

Get to know

e equational deduction and proof by rewriting
e confluence of rewriting systems

e canonical term algebras
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Equational Deduction 3

Equational Deduction

How can we prove that a given equation e is a theorem of
an equational theory IT'? We can do so by qgiving appropriate
inference rules.

Given an equational theory T' = (¥, E), with X as always
assumed sensible, and a set E of possibly conditional

Y -equations, we say that an unconditional equation
(VX)t=1t"lis derivable from E, written E - (VX )t =1, iff it
can be obtained by finite application of the following rules:

¢ Reflexivity. For each family of variables X with
teTx(X),

(VX)t =1

M. Wirsing: Foundations of Systems Development
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Equational Deduction 4
Equational Deduction
e Symmetry.
(vX)t ="t
(VX)) =t
e Transitivity.
(vX)t=t' (VX)) =t"
(VX)) t =t"
e Congruence. For f:sy...5, — s, f:5]...8, =5 inX
With sy...sp8 =< s]...s,s", and for t; € Tx(X),,,
ti e TE(X}S;, 1<1<n,
VX)ty=t, ... (VX)t,=t,
(VX)) f(tr, .. tn) = f(t1,. .. 1)
M. Wirsing: Foundations of Systems Development Hg
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Equational Deduction

¢ Modus ponens. For families of variables X.Y, a
substitution ¢ : X — Tx(Y'), and a conditional equation
in £

(VX)t=t csuy=v1 A... Ny, = vy,

(7Y) O(uy) = 0(vy) ... (7Y) 0(u,) = 0(v,)
(7Y) 6(t) = 0(t')

We call - the provability relation, and define
I'E(vX)t=tiff EF(vX)t=1".

M. Wirsing: Foundations of Systems Development
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Equational Deduction 6

Soundness and Completeness Theorem

Theorem (Birkhoff)

Let (Z,E) be a (conditional)
equational specification, and

let t,t' be two ground 2-terms.

Then Garrett Birkhoff

] _ 1911-1996

T t=t" if, and only, if Prof. Harvard

'33 Aufenthalt LMU
T |= t=1t". bei Caratheodory
Univ. Algebra,
Verbandstheorie
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Equational Deduction 7

Equational Simplification

¢ From a computational point of view it is in general very inefficient to
carry out equational proofs with the general inference rules that
we have already discussed. It may be appropriate to use them for
theorem proving purposes, but it would not be reasonable to
use them for equational programming purposes.

e In Maude, the distinction between theories, with loose semantics,
and modaules, with initial algebra semantics, is not only a distinction
of loose vs. initial, but it is also one of inefficient vs. efficient
executability.

e That is, in modules we assume that equations can be efficiently

executed by equational simplification from left to right; for
theories we make no such assumptions.

M. Wirsing: Foundations of Systems Development
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Equational Deduction

Equational Simplification

Let I' = (%X, E) be an equational theory. We say that the
equations in E are admissible as equational simplification
rules if each equation (X )t=t =u;=v1 A ... Nu, = v, in
F satisfies the following two properties:

e fewer variables on the right side and condition, that is,
the families of variables vars(t'), vars(u;), and vars(v;),
1 <4< n, are all contained in vars(t) = X, where, vars(t)
denotes the family of variables actually appearing in t.

e SOIT decreasingness, that is, for any substitution
#: X — TIx(Y), and any s € S, if 8(t) € Tx(Y),, then

A(t') € Tn(Y ).
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Equational Deduction

Term Positions and Subterm Occurrences
Each X-term can be viewed as a tree in the obvious way.

Each position in the tree can be denoted by a string of natural
numbers, indicating the path that we must follow to go down in the
tree and reach the position.

At each level, the corresponding number in the string indicates the
argument position on which we must go down, to finally reach the
desired position.

For example, the term
f(h(d), q(b, a), g(a, k(c)))
has the subterm k(c) at position 3.2.

Given a X-term t and a position = we denote by t/= the subterm
occurring at that position; thus,

f(h(d), a(b, a), 9(a, k(c)))/3.2 = k(c).

M. Wirsing: Foundations of Systems Development
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Equational Deduction 10

Term Replacement

Given a X-term ¢, a position « in it, and another X-term u
we denote by

tlm — ul

the replacement of t/m by = in t at position =. For example,
consider the term t = s(x) + s(s(y)), its 2.1 position, and the
term u=x+z. Then ¢[2.1 — u] = s(z) + s(z + z).

Note that, in general, t|r — u| need not be a well-formed
Y-term. However, It is a well-formed YX-term if, for any

LAY

t/me Ix(vars(u)Uvars(t/m))s = wue Ix(vars(u)vars(t/m))..

M. Wirsing: Foundations of Systems Development
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Equational Deduction 11

The Equational Rewriting Relation

Let T'= (X, E') be a theory whose equations E are admissible
as equational simplification rules. Then we can use them
from left to right to hopefully bring terms to a simpler form
which can be interpreted as their evaluation.

This process is called equational simplification, or
equational rewriting. For any S-indexed family X of
variables, this defines two binary relations on Tx(X), —E,
and its reflexive and transitive closure —p. — g is defined
recursively as follows:

For t.t' e Tw(X), we have t — g t' iff, either:

M. Wirsing: Foundations of Systems Development
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Equational Deduction 12
The Equational Rewriting Relation
e there is an equation (Yvars(u)) u = v in E, a position =
in t, and a substitution #: vars{u) — Tx(X) such that,
t/m=8(u), and t' = t[x — B(v)], or
e there is a conditional equation
(Wvars(u)ju=v<=uy =vy A... ANu, = v, in E, a position
m in t, a substitution @ : vars(u) — Tw=(X), and terms
w; € Iw(X), 1 <1< n, such that:
1. (satisfaction of the condition) 8{u;) — g w; and
flv;) —p w;, 1 <i<n, and
2. (matching and replacement) t/m = 8{u), and
t' = t[r — B(v)].
M. Wirsing: Foundations of Systems Development ng



Equational Deduction 13

Remarks on the Equational Rewriting Relation

e Note that, because of our assumption about
sort-decreasinaness of the eguational simplification
rules in E, whenever we have an equation u = v, with or
without a condition, in E, and a term ¢ € Tx(X) such
that t/m = #(u), then t[r — #(v)] is a well-formed Z-term.

e Note also that vars(t[r — #(v)]) C vars(t), and therefore,
whenever t+ —g t' we have vars(t') C vars(t).

Notation: We define the binary relation t | g t' on pairs of
terms t.t' € Tx (X)) by,

tlpt < (Fuwels(X)t—pw At —Sgw.

M. Wirsing: Foundations of Systems Development
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Equational Deduction 14

Soundness of the Equational Rewriting Relation

T heorem: Equational rewriting is a sound Iinference
system, in the sense that

t —spt = EF (Yars(t)t=t"

Proof by induction on the number of the rewrite steps.

M. Wirsing: Foundations of Systems Development
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Equational Deduction 15

Confluence

Suppose we have a theory T'= (X, E) whose equations are
admissible as equational simplification rules. Then we can
do sound inference by equational simplification with £, but
the equations £ may still be quite unusable, because
depending on the order and place of equation application
we may get different and unrelatable results. That is, in
general, equational simplification can be nondeterministic.

The minimum requirement to make equational
simplification deterministic is confluence, also called the
Church-Rosser property. We say that E is confluent iff
whenever we have t — g v and t — g v, then u |g v. We
call £ ground confluent iff the above property is guaranteed
only for terms without variables t € Tx.

M. Wirsing: Foundations of Systems Development
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Equational Deduction 16

Completeness of Confluent Equations

We have seen that equational simplification is a sound
Inference system. But can we prove any equation just by
simplification? The answer is, ves, If we are confluent.

Theorem: Let the equations in £ be admissible as
equational simplification rules and confluent. Then,

EF (Wars(t)Uvars(t)t=t <= t|pt.

Proof: The (<) part follows easily from the soundness theorem for equational
simplification, Symmetry, and Transitivity.

The proof of the (=>) part is by induction on the depth of the proof term. Proof
of transitivity needs the confluence property.

M. Wirsing: Foundations of Systems Development
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Equational Deduction 17

Termination

Equational theories T = (X, E') whose equations are ground
confluent can be viewed as equational programs, and
support a style of functional programming in which
expresions are evaluated by simplification. This is what
OBJ "objects” and Maude functional modules are:

equational programs evaluated by simplification.

In general, however, such programs can be nonterminating.
Terminating equational programs are obtained when the

rewriting relation is terminating.

We say that the equations E are terminating as
simplification rules when there is no infinite chain of rewrites

M. Wirsing: Foundations of Systems Development
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Equational Deduction 18

Canonical Forms

If the equations in T'= (X, E) are confluent (resp. ground
confluent) and terminating, then for each term t € 1% (X)
(resp. t € Tx,) there is a unique term cang(t) € Is(X) (resp.
cang(t) € Ty) called its canonical form such that:

4

e t —p cang(t), and
e cang(t) cannot be further rewritten.

Indeed, by the termination assumption, we can always
simplify ¢t to such a term; and uniqueness is then forced by
the confluence (resp. ground confluence) property. The
term cang(t) should be understood as the value returned by

the equational program 1" = (X, E') for the input expression t. .
M. Wirsing: Foundations of Systems Development F:“%



Equational Deduction 19

The Canonical Term Algebra

If the equations in T'= (X, E) are ground confluent and

terminating, then the S-indexed family of terms C{I'??.-EXE with

Cans p s = {cang(t) |t € Ty ;|
can be made into a X-algebra as follows:

e for each constant a: nil — s in X, we define
aCans ,, = cang(a), and

e for each f:s1...5, —sin X, and t; € Cany g q,,
1< -:=:' < n, we define
f( ans E( " rtﬂ) — Cﬂ'??-E(f(tl,.,.,t.n)),

M. Wirsing: Foundations of Systems Development
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Equational Deduction 20

Example of Canonical Term Algebra

We shall see in what follows that the canonical term algebra
Is initial among those satisfying the equations £,

The canonical term algebra Cany /g is in some sense the
most intuitive representation of the initial algebra from a
computational point of view.

For example, the equations in the NATURAL module are
ground confluent and terminating. Its canonical forms are
the natural numbers in Peano notation. And its operations
are the successor and addition functions.

Indeed, given two Peano natural numbers n,m the general
definition of f, °"" specializes for f = _+ _ to the definition

of addition, n +cangmee M = CONymme (1 + M), SO that
- +canumme - 1S the addition function.
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Example of Canonical Term Algebra

T i
ENATURAL/ EI‘JP.TURAJ:<

ppss0 | sO+0 | ss0+40

040 | 04 s0 | s0+4 s0

ps0 pss0 psssl
0 s0 ss0)

} Can sy A TURAL /ENATURAL
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Equational Deduction 22

The Canonical Term Algebra is Initial

Theorem: Assume that the equations in T'= (X, F) are
ground confluent and terminating. Then, Canyg g is
isomorphic to Ix,r and is therefore initial in Alg(E.Ej'

Proof: Show that 7; and Can, are isomorphic:

Define for each s € § a function cang s :Ix /g — Cang /g,
by, cang s[t] = cang(t). This is independent of the choice of ¢
and therefore well-defined because, by definition of =g, we
have t =g t' iff £+ (Y()) t =t iff (by E confluent) t |g t/, iff
cang(t) = cang(t'). Furthermore, cang , is surjective by
construction and injective because of the above chain of
equivalences; therefore it is bijective.
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Equational Deduction 23

Summary
e Execution of equational specifications in Maude is based
on equational simplification.

e If the equational rules are confluent, then simplification
IS equivalent to equational deduction.

e If the equational rules are confluent and terminating,
then the canonical term algebra is an initial model.

<
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