

Übung 3 – Konfluenz

Formale Techniken in der Software-Entwicklung

Christian Kroiß

Equational theory

Definition: Let E be a set of Σ -identities.

- 1. The identity $s \approx t$ is a semantic consequence of E $(E \models s \approx t)$ iff it holds in all models of E.
- 2. The relation

$$\approx_E := \{(s,t) \in T(\Sigma,V) \times T(\Sigma,V) | E \models s \approx t \}$$

is called the **equational theory** induced by E.

But is $s \approx_E t$ decidable?

Christian Kroiß 20.05.2011

Konf

Theorem: If E is finite and \rightarrow_E is convergent (confluent and terminating), then \approx_E is decidable. (See [1])

• So we have to check whether \rightarrow_E (and therefore our module) is terminating and confluent.

Termination

- Proving termination
 - Next lecture (at least a sketch)

Confluence

Proving confluence:

 Confluence is decidable for a finite and terminating term rewriting system due to the Critical Pair
 Theorem:

A TRS is locally confluent iff all its critical pairs are joinable.

Short excursion: unification

Unification is the process of solving the satisfiability problem:

given E, s and t, find a substitution σ such that $\sigma s \approx_E \sigma t$.

 σ is called **unifier** of s and t or a solution of the equation s=?t.

Unification

$$f(x) = f(a)$$
 has exactly one unifier $\{x \mapsto a\}$.

$$x = f(y)$$
 has many unifiers:

$$\{x \mapsto f(y)\}, \{x \mapsto f(a), y \mapsto a\}, \dots$$

$$f(x) = g(y)$$
 has no unifier.

$$x = f(x)$$
 has no unifier.

Most general unifier

A substitution σ is called the **most general unifier (mgu)** of E if for every other unifier σ' of E there is a substitution δ with $\sigma' = \delta \sigma$.

Confluence & local confluence

confluence

local confluence

Newman's Lemma: a terminating relation is confluent if it is locally confluent.

Critical pairs

There are rules $l_i \to r_i \in R$, positions $p_i \in Pos(s)$ and substitutions σ_i such that $s|_{p_i} = \sigma_i l_i$ and $t_i = s[\sigma_i r_i]_{p_i}$, i = 1, 2.

Critical pairs

No overlap

Critical pairs

Overlap: p_1 is a prefix of p_2 , i.e. $p_2 = p_1 p$ for some p which could be empty .

LUDWIG-

Critical pairs

Non-critical overlap: $\sigma_2 l_2$ is at a variable position of l_1 .

Picture from [1]

Critical Pairs

Definition: Let $l_i \to r_i, i = 1, 2$, be two rules whose variables have been renamed such that $Var(l_1, r_1) \cap Var(l_2, r_2) = \emptyset$. Let $p \in Pos(l_1)$ be such that $l_1|_p$ is not a variable and let θ be an mgu of $l_1|_p = l_2$.

This determines a **critical pair**

 $\langle \theta r_1, (\theta l_1)[\theta r_2]_p \rangle$:

Critical Pair Lemma:

If $s \to_R t_1, i = 1, 2$, then $t_1 \downarrow t_2$ or $t_i = s[u_i]_p, i = 1, 2$, where $\langle u_1, u_2 \rangle$ or $\langle u_2, u_1 \rangle$ is an instance of a critical pair of R.

Critical pair theorem:

A TRS is locally confluent iff all its critical pairs are joinable.

→ A terminating TRS is confluent iff all its critical pairs are joinable.

wig-CIMILIANS-VERSITÄT Example

(1)
$$f(f(x,y),z) \to f(x,f(y,z))$$

(2)
$$f(i(x_1), x_1) \to e$$

mgu:
$$\{x \mapsto i(x_1), y \mapsto x_1\}$$

$$f(f(i(x_1), x_1), z)$$

$$f(i(x_1), f(x_1, z))$$

$$f(e, z)$$

References

[1] Baader, F., & Nipkow, T. (1999). Term rewriting and all that. Cambridge: Cambridge University Press.