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Lumpability

Let X be a homogeneous, finite and irreducible CTMC with states
S = {1, . . . , n} and let the transition rate from i to j be denoted by q(i , j).
Let χ = {X1, . . . ,XN} be a partition of the state space, with

Xi ⊆ S , Xi 6= ∅, for all i , Xi ∩ Xj = ∅, for all i 6= j , and
N⋃
i=1

Xi = S .

We say that X is lumpable with respect to χ if, for any Xi ,Xj ∈ χ and
i1, i2 ∈ Xi , it holds that ∑

j∈Xj

q(i1, j) =
∑
j∈Xj

q(i2, j).

Theorem

χ yields an aggregated (lumped) CTMC X ′ with states {X1, . . . ,XN} and

q(Xi ,Xj) :=
∑
j∈Xj

q(i , j), for an arbitrary i ∈ Xi .
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Lumpability

Theorem

Let (π1, . . . , πn) denote the stationary distribution of X and (π′1, . . . , π
′
N)

the stationary distribution of X ′. Then, it holds that

π′j =
∑
i∈Xj

πi , 1 ≤ j ≤ N.

For instance, let us consider the model

C0
def
= (r , u).C1 C1

def
=(t, v).C0

S0
def
= (r ,w).S1 S1

def
=(i , x).S0 Sys := C0[N] BC

{r}
S0[M] .

|ds(Sys)| = 2N+M grows exponentially in N and M. Numerical
analysis via explicit state enumeration is infeasible.
Often, for many performance analyses, it is sufficient to know the
distributions of the populations of the sequential components C0, C1,
S0, and S1.
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Lumpability — An Example

Let us denote a state in ds(Sys) by (i1, . . . , iN , j1, . . . , jM) ∈ {0, 1}N+M .
Observing that the populations are given by the function

(i1, . . . , iN , j1, . . . , jM) 7→ (N −
N∑

k=1

ik ,
N∑

k=1

ik ,M −
M∑
k=1

jk ,
M∑
k=1

jk),

suggests to construct the partition from the equivalence relation
∼ ⊆ ds(Sys)× ds(Sys) defined by

(i1, . . . , iN , j1, . . . , jM) ∼ (i ′1, . . . , i
′
N , j

′
1, . . . , j

′
M) :⇔

N∑
k=1

ik =
N∑

k=1

i ′k ∧
M∑
k=1

jk =
M∑
k=1

j ′k .

Indeed, one can prove that the CTMC of Sys is lumpable with respect to
the partition ds(Sys)/ ∼.

Tribastone, Tschaikowski (IFI LMU) Performance Modelling of Computer Systems Lumpability 4 / 9



Lumpability — An Example

Let us denote a state in ds(Sys) by (i1, . . . , iN , j1, . . . , jM) ∈ {0, 1}N+M .
Observing that the populations are given by the function

(i1, . . . , iN , j1, . . . , jM) 7→ (N −
N∑

k=1

ik ,
N∑

k=1

ik ,M −
M∑
k=1

jk ,
M∑
k=1

jk),

suggests to construct the partition from the equivalence relation
∼ ⊆ ds(Sys)× ds(Sys) defined by

(i1, . . . , iN , j1, . . . , jM) ∼ (i ′1, . . . , i
′
N , j

′
1, . . . , j

′
M) :⇔

N∑
k=1

ik =
N∑

k=1

i ′k ∧
M∑
k=1

jk =
M∑
k=1

j ′k .

Indeed, one can prove that the CTMC of Sys is lumpable with respect to
the partition ds(Sys)/ ∼.

Tribastone, Tschaikowski (IFI LMU) Performance Modelling of Computer Systems Lumpability 4 / 9



Lumpability — An Example

Let us fix Xi ,Xj ∈ ds(Sys)/ ∼ and i1, i2 ∈ Xi . We have to show that

q(i1,Xj) :=
∑
j∈Xj

q(i1, j)
(!)

===
∑
j∈Xj

q(i2, j) =: q(i2,Xj).

Together with k ∈ {1, 2},Xi = [(C i
0,C

i
1,S

i
0, S

i
1)],Xj = [(C j

0,C
j
1,S

j
0, S

j
1)] we

can infer

case [(C j
0,C

j
1,S

j
0,S

j
1)] = [(C i

0 − 1,C i
1 + 1,S i

0 − 1,S i
1 + 1)]:

q(ik ,Xj) =

(
u

uC i
0

· w

wS i
0

min(uC i
0,wS

i
0)

)
· (C i

0 · S i
0) = min(uC i

0,wS
i
0)

case [(C j
0,C

j
1,S

j
0,S

j
1)] = [(C i

0 + 1,C i
1 − 1,S i

0,S
i
1)]: q(ik ,Xj) = vC i

1

case [(C j
0,C

j
1, S

j
0,S

j
1)] = [(C i

0,C
i
1,S

i
0 + 1,S i

1 − 1)]: q(ik ,Xj) = xS i
1

otherwise: q(ik ,Xj) = 0
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Lumpability — An Example

(C0 + 1,C1 − 1, S0,S1)

(C0,C1,S0, S1) (C0 − 1,C1 + 1,S0 − 1,S1 + 1)

(C0,C1,S0 + 1,S1 − 1)

vC1

min(uC0,wS0)

xS1

The transitions out of a state in the lumped CTMC.
The lumped CTMC has (N + 1)(M + 1) states.
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Strong Equivalence

Let us denote the actions of a PEPA process Sys by A(Sys). A relation
R ⊆ ds(Sys)× ds(Sys) is a strong equivalence relation on ds(Sys), if

∀α ∈ A(Sys)∀(P,Q) ∈ R∀C ∈ ds(Sys)/R it holds∑
T∈C

q(P,T , α) =
∑
T∈C

q(Q,T , α),

where q(Pi ,Pj , α) denotes the α-transition rate from Pi to Pj in the
CTMC of ds(Sys).
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Strong Equivalence — Facts

The relation discussed in the lumpability example is a strong
equivalence relation on ds(C0[N] BC

{r}
S0[M]).

One can prove that the CTMC X of Sys is lumpable with respect to
the partition ds(Sys)/R. Let us denote the corresponding lumped
CTMC by X/R.

The above result leads to the following observation for two arbitrary
PEPA processes Sys1 and Sys2: if we can find two strong equivalence
relations R1, R2 on ds(Sys1), ds(Sys2), respectively, and there is a
one-to-one correspondence between X1/R1 and X2/R2, then the
stochastic behaviour of Sys1 is given by that of Sys2, and vice versa.
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Strong Equivalence — An Example

For instance, let us consider the following model.

C0
def
= (α, 2r).C1 C1

def
= (β, s).C0

D0
def
= (α, 2r).D1 D1

def
= (β, s).D2 D2

def
= (α, r).D3 + (α, r).D1 D3

def
= (β, s).D0

It is clear that RC = {{C0}, {C1}} is a strong equivalence relation on ds(C0)
and RD = {{D0,D2}, {D1,D3}} a strong equivalence relation of ds(D0).
Since the two lumped CTMCs

{C0} {C1} {D0,D2} {D1,D3}

2r

s

2r

s

are in a one-to-one correspondence (i.e., they are equal up to a relabelling
of the nodes), we conclude that the stochastic behaviour of C0 is given by
that of D0, and vice versa.
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