Mirco Tribastone

Institut fur Informatik
Ludwig-Maximilians-Universitat Miinchen
tribastone@pst.ifi.lmu.de

Preliminaries

Labelled Transitions Systems

Tribastone: Formale Spezifikation und Verifikation

Labelled Transition Systems

on
off
repair break

Figure: A reactive system with breakdowns and repairs

Formal Definition
A labelled transition system is a tuple LTS = (S, A, —, so) where
S is a set of states

A is a finite alphabet of actions

— is aternary relation - € S x A x S. We often write s LY
instead of (s,a,s’) € —, fors,s’ € Sanda € A

Sg € S is the initial state of the system

Tribastone: Formale Spezifikation und Verifikation

Labelled Transition Systems

on
off
repair break

Figure: A reactive system with breakdowns and repairs

For the model in the figure, LTS = (S, A, —, Sp), with

S = {507 S1, 52}7
A = {on, off, break, repair },
- = {(SO> on, S1)7 (517 0ff> S0)7 (517 break> 52)7 (527 repair7 SO)} .

Tribastone: Formale Spezifikation und Verifikation

Labelled Transition Systems

Sometimes, the initial state is unimportant (or unknown), hence the
LTS is characterized only by the triple (S, A, —).

Sometimes, the tuple may be defined as
LTS = (S,A,—,1),

where | C S is a set of initial states.
States are possible configurations of the system.

The transition relation may be also expressed as a set of relations,
one element for each action, i.e.

TS = (S,A{ % |acA})

Transitions with distinct actions are possible between two states,

off standby
e.g., S1 — Sgand s; —— Sg.

no
Self-loops are allowed, e.g., s; 1op, S1.

Tribastone: Formale Spezifikation und Verifikation

Labelled Transition Systems

on
off
repair break

Figure: A reactive system with breakdowns and repairs

Example: breakdown and repair with memory. ..

Tribastone: Formale Spezifikation und Verifikation

Levels of Abstraction

m Activities are interpreted as being uninterruptible computations that
move the system into another configuration.

m This is a very general notion that gives freedom as to which
concrete tasks are to be associated with actions in the model.

m For instance, a detailed model of a communication protocol may
have {send, receive, ack, ...}.

m A coarse-grained representation may abstract those actions with a
single (uninterruptible) action called transmit.

m The former model may be used, for instance, to reason about the
possibility of not receiving an acknowledgement after some data is
sent.

m The latter may be used if the focus of the model is other than the
actual communication mechanism.

Tribastone: Formale Spezifikation und Verifikation

Practical Considerations

How can we describe very large labelled transition systems?

As XML?

<lts><ar><st>q0</st><lab>a</lab><st>ql</st></ar>...</1lts>.

As a table?

Rows and columns are labelled by states, entries are either empty or
marked with a set of actions.

As a listing of triples?
= = {(507 a, Sl)» (507 a, 52)7 (817 b, 53)7 (517 C, 54)7 (827 d, 53)7 (527 d, S4)}
As a more compact listing of triples?

— = {(s0,a, {s1,52}), (S1,b,53), (S1,C,S4), (S2,d,{S3,54})}.

Tribastone: Formale Spezifikation und Verifikation

Some Useful Definitions

repair break

Given a labelled transition system LTS = (S, A, —), let:

Post(s, a) ={s'es:s3 s}, e.g., Post(sy, off) = {so},

Post(s U Post(s, a), e.g., Post(s1) = {so,s2},
acA

Pre(s, a) —{s'es:s' 55}, e.g., Pre(sy,on) = {so},

Pre(s) = | Pre(s, a), e.g., Post(sg) = {s1,52}.
acA

Tribastone: Formale Spezifikation und Verifikation

Nondeterministic and Nonterminating Behaviour

on
off
repair break

A nondeterministic and nonterminating LTS
m LTS = (S, A, —) is called deterministic iff
|Post(s)| <2, foralls €S.

m Otherwise, LTS is called nondeterministic.
m LTS = (S, A, —) is called terminating iff

ds € S : Post(s) =0
m Otherwise LTS is nonterminating.

Tribastone: Formale Spezifikation und Verifikation

10

Nondeterministic and Nonterminating Behaviour

off

@ break

A nondeterministic and terminating LTS
m LTS = (S, A, —) is called deterministic iff
|Post(s)| <2, foralls €S.

m Otherwise, LTS is called nondeterministic.
m LTS = (S, A, —) is called terminating iff

ds € S : Post(s) =0
m Otherwise LTS is nonterminating.

Tribastone: Formale Spezifikation und Verifikation

11

Nondeterministic and Nonterminating Behaviour

on

repair break

A deterministic and nonterminating LTS
m LTS = (S, A, —) is called deterministic iff
|Post(s)| <2, foralls €S.

m Otherwise, LTS is called nondeterministic.
m LTS = (S, A, —) is called terminating iff

ds € S : Post(s) =0
m Otherwise LTS is nonterminating.

Tribastone: Formale Spezifikation und Verifikation

12

Nondeterministic and Nonterminating Behaviour

on

@ break

A deterministic and terminating LTS
m LTS = (S, A, —) is called deterministic iff
|Post(s)| <2, foralls €S.

m Otherwise, LTS is called nondeterministic.
m LTS = (S, A, —) is called terminating iff

ds € S : Post(s) =0
m Otherwise LTS is nonterminating.

Tribastone: Formale Spezifikation und Verifikation

13

Execution Paths

on
off
repair break

A finite execution path m = sga; s1a, - - - a, S, denotes a sequence of
o] a; 5 " 5
transitions s; —— sj.1, withs; € S,0 <i<nanda € A,0<i <n.

An infinite execution path 7, = Sgai S; as - - - denotes an infinite

- aj 5
sequence of transitions such that s; BN Sj41 foralli > 0.

Examples

7' = sgons; off sy on sibreak s, repair sq
Too = S1 Off Sg 0N s7 0ff S ON 51 0ffSg ON'S7 Off SONS] - - -

Tribastone: Formale Spezifikation und Verifikation

14

Labelled Transitions Systems of Concurrency

X,y <0 Suppose that while blocks are
thread 1 do atomic. What are the final values of x
while x <2andy <2do andy when the program terminates?

X<4+—X+1
end while @
end thread t t
thread 2 do @ @
while x <2 andy < 2do t t
y<+<y—+1 4 by T
end while

end thread @ @

Tribastone: Formale Spezifikation und Verifikation 15

Structured Operational Semantics

Tribastone: Formale Spezifikation und Verifikation

16

Structured Operational Semantics?!

A syntax-driven labelled transition system. In our case,

m Define the set of well-formed phrases of a language (typically using
Backus-Naur form)

m Describe inference rules in the form

. a a; a
< premise > Es —E;] Ex>E), -+ Em—>E] where
. a b
conclusion op(E1,Ez,...,Em) — op(E],ES,...,EN)
Ei1,...,En are syntactically valid expressions
ai,...,am,a are transition labels

op is an operator of the language with arity m
m An axiom is a rule in the form

ESE

1G. Plotkin. A Structural Approach to Operational Semantics, J. Log. Algebr.
Program., 2004, (60-61), 17-139.

Tribastone: Formale Spezifikation und Verifikation 17

Example: Regular Expressions

Syntax of Regular Expressions

E =1|al]E+E|E-E|E* acAanducAU{e}

m Usual order for the binding strength: *, -, +
Forinstance a-b* + ¢ = (a- (b*)) + ¢

m Is a- b allowed (i.e., is it well formed)?

m Isa-b-c well formed?

m Isa-b-c well formed?

m For convenience we may use E F in lieu of E - F.

m Sometimes it is useful to think of well-formed expressions in terms
of parse trees. ..

Tribastone: Formale Spezifikation und Verifikation

18

Example: Regular Expressions

Syntax of Regular Expressions

E =1|a|E+E|E-E|E* ac€AanducAU{e}

Operational Semantics of Regular Expressions

(Tic) ~ (Atom) <
1—1 a—1
oy Kogr
f f
(Sum;y) e (Sumy) A
e+f e e+f L
e e e——1
(Seqy) — ——— (Sed) — ——
e-f—eée-f e-f —f
12 /
(Stary) (Star,) € €

e* 31

Tribastone: Formale Spezifikation und Verifikation

e* el et

19

The Automaton Associated with a Regular Expression

The SOS inference rules implicitly define a particular automaton for each
regular expression e:
m the initial state is e (we shall often omit to mark it)
m the set of labels is AU {¢}
m the set of states consists of all r.e. that can be reached starting from
e via a sequence of transitions
m the transition relation is the one induced from the SOS inference
rules
m the only final state is 1 (we shall often omit to mark it)

a+b ka-b} 2 Kl'b)e
a a b £
:
: <

(®

Tribastone: Formale Spezifikation und Verifikation 20

Sequences of Transitions

5 /
e —e
Lets = uiu2 - - - un be the string obtained as the concatenation of
W1, f2, - - pn € AU {e} (remind that € behaves as the empty string).

We write e — ¢’ if there exist ey, €5, . . ., €,_1 such that:

e e eyep g e

Example: a-b-c 2% 1
We have abc = acsebec and:

a-b-c-*1.b-c—31.b-c—51-bc-—3b-c—31.c—sc-31

Tribastone: Formale Spezifikation und Verifikation 21

(Atom)
(Sum;y)
(Stary)

a

a+b-251

(a+b) 2 1-(ath)

Tic
1i>1()

1-(a+b)* = (a+b)*

(Seqy)

LTS Fragments for (a + b)* and a* + b*

a

N
((a+b) 1 (a+b))

2}\/ "
)

Tribastone: Formale Spezifikation und Verifikation 23

—— (Atom

b1 ((s))
—_— tar
b* 25 1-b* 2

Sumy
a*+b*l>1-b*()

(Starz)

LTS Fragment for (a* + b*)*

EEHCETIN, WEEL o (HCEL DR
() .)

> >

3

€

Tribastone: Formale Spezifikation und Verifikation 25

