Formale Spezifikation und Verifikation

Mirco Tribastone
Institut für Informatik
Ludwig-Maximilians-Universität München
tribastone@pst.ifi.lmu.de

Process Algebras

Calculus of Communicating Systems

CCS Basics

Sequential Fragment

- 0 process (the only atomic process)
- Action prefixing ($a . P$)
- Names and recursive definitions (\triangleq)

■ Nondeterministic choice (+)

Parallelism and Renaming

■ Parallel composition (operator |) for synchronous communication between two components (handshake synchronization)

- Restriction $(P \backslash L)$
- Relabelling ($P[f]$)

Channels, Actions, Process Names)

Let
■ \mathcal{A} be a set of channel names (sometimes, simply called names). For instance, tea and coffee are channel names.

■ $\mathcal{L}=\mathcal{A} \cup \overline{\mathcal{A}}$ be a set of labels where
■ $\overline{\mathcal{A}}=\{\bar{a} \mid a \in \mathcal{A}\}$ (elements of $\overline{\mathcal{A}}$ are called co-names)

- by convention $\overline{\bar{a}}=a$
- $\tau \notin \mathcal{A}$

■ Act $=\mathcal{L} \cup\{\tau\}$ is the set of actions where

- τ is the internal or silent action
(e.g. τ, tea, $\overline{\text { coffee }}$ are actions)

■ \mathcal{K} is a set of process names (or constants) (usually with upper-case initials).

Definition of CCS (expressions)

Process constants $(K \in \mathcal{K}, K \triangleq P)$
Prefix ($\alpha \in$ Act)
Summation (I is an arbitrary index set)
Parallel composition
Restriction $(L \subseteq \mathcal{A})$
Relabelling ($f:$ Act \rightarrow Act) such that
■ $f(\tau)=\tau$

- $f(\bar{a})=\overline{f(a)}$

The set of all terms generated by the abstract syntax is the set of CCS process expressions (and is denoted by \mathcal{P}).

Notation

$$
P_{1}+P_{2}=\sum_{i \in\{1,2\}} P_{i} \quad \text { Nil }=\mathbf{0}=\sum_{i \in \emptyset} P_{i}
$$

Precedence

Precedence

1 Restriction and relabelling (tightest binding)
2 Action prefixing
3 Parallel composition
4 Summation

Example

$$
R+a . P \mid b . Q \backslash L \quad \text { means } \quad R+((a . P) \mid(b .(Q \backslash L)))
$$

Defining Equations

CCS program

A collection of defining equations of the form

$$
K \triangleq P
$$

where $K \in \mathcal{K}$ is a process constant and $P \in \mathcal{P}$ is a CCS process expression.

■ Only one defining equation per process constant.

- Recursion is allowed: e.g. $A \triangleq \bar{a} . A \mid A$.

Structural Operational Semantics for CCS

Given a collection of CCS defining equations, we define the following LTS (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$):

■ Proc $=\mathcal{P} \quad$ (the set of all CCS process expressions)

- Act $=\mathcal{L} \cup\{\tau\} \quad$ (the set of all CCS actions including τ)

■ The transition relations are given by SOS rules of the form:

$$
\text { RULE NAME } \frac{\text { premises }}{\text { conclusion }} \text { side conditions }
$$

SOS Rules for CCS $(\alpha \in A c t, a \in \mathcal{L})$

$$
\begin{aligned}
& \text { ACT } \overline{\alpha . P \xrightarrow{\alpha} P} \\
& \operatorname{SUM}_{j} \frac{P_{j} \xrightarrow{\alpha} P_{j}^{\prime}}{\sum_{i \in I} P_{i} \xrightarrow{\alpha} P_{j}^{\prime}} j \in I \\
& \text { COM1 } \frac{P \xrightarrow{\alpha} P^{\prime}}{P\left|Q \xrightarrow{\alpha} P^{\prime}\right| Q} \quad \quad \text { COM2 } \frac{Q \xrightarrow{\alpha} Q^{\prime}}{P|Q \xrightarrow{\alpha} P| Q^{\prime}} \\
& \text { COM3 } \xrightarrow[{P \mid Q \xrightarrow{P \xrightarrow{\tau} P^{\prime} \mid Q^{\prime}} Q^{\prime}}]{\stackrel{\bar{a}}{\longrightarrow}} Q^{\prime} \\
& \text { RES } \frac{P \xrightarrow{\alpha} P^{\prime}}{P \backslash L \xrightarrow{\alpha} P^{\prime} \backslash L} \alpha, \bar{\alpha} \notin L \quad \text { REL } \frac{P \xrightarrow{\alpha} P^{\prime}}{P[f] \xrightarrow{f(\alpha)} P^{\prime}[f]} \\
& \operatorname{CON} \underset{K \xrightarrow{P} P^{\prime}}{\underset{\sim}{\alpha} P^{\prime}} K \triangleq P
\end{aligned}
$$

Deriving Transitions in CCS

Let $A \triangleq a . A$. Then

$$
((A \mid \bar{a} .0) \mid b .0)[c / a] \xrightarrow{c}((A \mid \bar{a} .0) \mid b .0)[c / a] .
$$

Why?
$\operatorname{CON} \frac{\overline{a . A \xrightarrow{a} A}}{A \xrightarrow{a} A} A \triangleq a . A$
$\xrightarrow{\left.\operatorname{COM} 1 \frac{A \longrightarrow}{A \mid \bar{a} .0 \xrightarrow{a}} A \right\rvert\, \bar{a} .0}$
$\operatorname{REL} \frac{(A \mid \bar{a} .0)|b .0 \stackrel{a}{\longrightarrow}(A \mid \bar{a} .0)| b .0}{((A \mid \bar{a} .0) \mid b .0)[c / a] \xrightarrow{c}((A \mid \bar{a} .0) \mid b .0)[c / a]}$

LTS of the Process a. $0 \mid \bar{a} .0$

$$
\begin{aligned}
\text { Proc } & =\{\text { a.0 }|\bar{a} .0,0| \bar{a} .0, a .0|0,0| 0\}, \\
\text { Act } & =\{a, \bar{a}, \tau\}, \\
\xrightarrow{a} & =\{(\text { a.0 }|\bar{a} .0, \mathbf{0}| \bar{a} .0),(a .0|\mathbf{0}, \mathbf{0}| \mathbf{0})\}, \\
\xrightarrow{\bar{a}} & =\{(\text { a.0 } \mid \bar{a} .0, \text { a.0 } \mid \mathbf{0}),(\mathbf{0}|\bar{a} .0,0| 0)\}, \\
\xrightarrow{\tau} & =\{(\text { a.0 }|\bar{a} .0,0| 0)\} .
\end{aligned}
$$

Using Restriction

LTS of $(a .0 \mid \bar{a} .0) \backslash\{a\}$

$$
(a .0 \mid \bar{a} .0) \backslash\{a\} \xrightarrow{\tau}(0 \mid 0) \backslash\{a\}
$$

Another Example

(Work | Machine) $\backslash\{$ coin, coffee $\}$

Work \triangleq work.Break
Break \triangleq coin. Drink
Drink \triangleq coffee. Work
Machine \triangleq coin.Brew
Brew $\triangleq \overline{\text { coffee. }}$.Machine

Equivalence Relations

Definition

Let S be a set. A binary relation $R \subseteq S \times S$ is called an equivalence relation if the following hold:
$\square R$ is reflexive, i.e., it holds that $\langle s, s\rangle \in R$ for all $s \in S$
■ R is symmetric, i.e., if $\left\langle s_{1}, s_{2}\right\rangle \in R$ then $\left\langle s_{2}, s_{1}\right\rangle \in R$ for all $s_{1}, s_{2} \in S$
■ R is transitive, i.e., if $\left\langle s_{1}, s_{2}\right\rangle \in R$ and $\left\langle s_{2}, s_{3}\right\rangle \in R$ then $\left\langle s_{1}, s_{3}\right\rangle \in R$ for all $s_{1}, s_{2}, s_{3} \in S$
A binary relation that is reflexive and transitive is called a preorder.

Convention

It is customary to write $s_{1} R s_{2}$ to indicate $\left\langle s_{1}, s_{2}\right\rangle \in R$

Behavioural Equivalence

Implementation

$C M \triangleq$ coin. $\overline{\text { coffee }} . C M$
$P R \triangleq \overline{\text { hello. }}$.coin.coffee. $\overline{\text { drink }} . P R$
Spec $\triangleq \overline{\text { hello. }}$. $. \tau . \overline{d r i n k}$. Spec
$U N I \triangleq(C M \mid P R) \backslash\{$ coin, coffee $\}$

- We are given an abstract system specification Spec

■ We devise an implementation Imp by assembling many interacting components

Are the processes Imp and Spec "behaviourally equivalent"?
■ Fix a "good" notion of equivalence
■ Prove that the two processes equivalent or find a counterexample and re-design Imp

Which Equivalence (1 / 2)?

What could be a reasonable equivalence relation?

1 Two processes are equivalent if their parse trees are identical
■ e.g., $P+Q+R=(P+Q)+R$!
■ ... but this fails to capture the intuition that $P+Q=Q+P$
2 Two processes are equivalent up to renaming of the defining constants

- e.g., $X \triangleq$ a. X is equivalent to $Y \triangleq$ a. Y

3 Two processes are equivalent if the exhibit the same behaviour, i.e., if they give rise to the same LTS

- ... but this yields too many distinctions:

$$
X \triangleq \text { a. } X \quad Y \triangleq \text { a.a. } Y \quad Z \triangleq \text { a.a.a. } Z
$$

have different LTSs but both processes can (only) execute infinitely many a-actions, and should be considered equivalent.

Which Equivalence (2 / 2)?

What should a reasonable behavioural equivalence satisfy?

- Abstracts from states (consider only the actions)
- Abstracts from internal behaviour (τ steps are not visible)

■ Identifies processes whose LTSs are isomorphic
■ Considers two processes equivalent only if both can execute the same actions sequences

■ Allows to replace a subprocess by an equivalent counterpart without changing the overall semantics of the system

- Be deadlock sensitive, i.e., if one has a deadlock after a given trace s, then then the other process has a deadlock after the same trace (and vice versa).

Congruence

Congruence Property

$$
P \equiv Q \text { implies that } C(P) \equiv C(Q)
$$

Behavioural Equivalences

Problem: Are these three systems equivalent?

Trace Equivalence

Let (Q, A, \rightarrow) be an LTS, with $q \in Q$.

Traces

Let $s=a_{1} a_{2} \cdots a_{k} \in A^{*}$, for any $k \geq 1$, be a trace of q if there exists a sequence of transitions $q \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} \cdots \xrightarrow{a_{k}} q_{k}$, with $q_{i} \in Q$ for all $1 \leq i \leq k$.

Let $T(q)$ be the set of all traces of state q.

Trace Equivalence

Two states p and q are trace equivalent, written $p=T q$, if $T(p)=T(q)$.

Two Trace-Equivalent Systems

Trace Equivalence and Process Algebra

Consider two trace-equivalent versions of a vending machine:

$$
\begin{aligned}
& V M_{1} \triangleq \text { coin. }\left(\overline{\text { coffee }} . V M_{1}+\overline{\text { tea }} . V M_{1}\right) \\
& V M_{2} \triangleq \text { coin.coffee. } . V M_{2}+\text { coin. } \overline{t e a} . V M_{2} .
\end{aligned}
$$

Allow each machine to interact with a user who wishes to have only coffee:

$$
\text { User } \triangleq \overline{\text { coin.coffee.User }}
$$

Consider now the two systems
(User $\left.\mid V M_{1}\right) \backslash\{$ coin, coffee, tea $\}$,
(User $\left.\mid V M_{2}\right) \backslash\{$ coin, coffee, tea $\}$.

Question

Are (User $\left.\mid V M_{1}\right) \backslash\{$ coin, coffee, tea $\}$ and (User $\left.\mid V_{2}\right) \backslash\{$ coin, coffee, tea $\}$ trace equivalent?

Solution

$$
\begin{aligned}
& V M_{1} \triangleq \text { coin. }\left(\overline{\text { coffee }} . V M_{1}+\overline{\text { tea. }} . V M_{1}\right) \\
& V M_{2} \triangleq \text { coin.coffee. } V M_{2}+\text { coin. } \overline{\text { tea. }} . V M_{2} \\
& \text { User } \triangleq \overline{\text { coin.coffee. User }}
\end{aligned}
$$

$V M_{1}$ serves coffee:
$\left(\right.$ User $\left.\mid V M_{1}\right) \backslash\{$ coin, coffee, tea $\} \xrightarrow{\tau}$ $\left(\right.$ coffee.User $\left.\mid\left(\overline{\text { coffee. }} . V M_{1}+\overline{\text { tea. }} . V M_{1}\right)\right) \backslash\{$ coin, coffee, tea $\} \xrightarrow{\tau}$ $\left(\right.$ User $\left.\mid V M_{1}\right) \backslash\{$ coin, coffee, tea $\}$.
$V M_{2}$ may steal the coin:

$$
\begin{aligned}
&\left(\text { User } \mid V M_{2}\right) \backslash\{\text { coin, coffee, tea }\} \\
& \xrightarrow{\tau} \\
&\left(\text { coffee. User } \mid\left(\overline{\text { tea. }} . V M_{2}\right)\right) \backslash\{\text { coin, coffee, tea }\} \nrightarrow .
\end{aligned}
$$

