
Formale Spezifikation und Verifikation

Mirco Tribastone

Institut für Informatik
Ludwig-Maximilians-Universität München

tribastone@pst.ifi.lmu.de

Process Algebras

Calculus of Communicating Systems

CCS Basics

Sequential Fragment

0 process (the only atomic process)

Action prefixing (a.P)

Names and recursive definitions (,)

Nondeterministic choice (+)

Parallelism and Renaming

Parallel composition (operator |) for synchronous communication
between two components (handshake synchronization)

Restriction (P\L)

Relabelling (P[f])

Tribastone: Formale Spezifikation und Verifikation 3

Channels, Actions, Process Names)

Let

A be a set of channel names (sometimes, simply called names).
For instance, tea and coffee are channel names.

L = A ∪A be a set of labels where
A = {a | a ∈ A} (elements of A are called co-names)
by convention a = a
τ 6∈ A

Act = L ∪ {τ} is the set of actions where
τ is the internal or silent action

(e.g. τ , tea, coffee are actions)

K is a set of process names (or constants) (usually with upper-case
initials).

Tribastone: Formale Spezifikation und Verifikation 4

Definition of CCS (expressions)

P := K | Process constants (K ∈ K, K , P)
α.P | Prefix (α ∈ Act)∑

i∈I Pi | Summation (I is an arbitrary index set)
P1|P2 | Parallel composition
P\L | Restriction (L ⊆ A)
P[f] | Relabelling (f : Act → Act) such that

f (τ) = τ

f (a) = f (a)

The set of all terms generated by the abstract syntax is the set of CCS
process expressions (and is denoted by P).

Notation

P1 + P2 =
∑

i∈{1,2} Pi Nil = 0 =
∑

i∈∅ Pi

Tribastone: Formale Spezifikation und Verifikation 5

Precedence

Precedence

1 Restriction and relabelling (tightest binding)

2 Action prefixing

3 Parallel composition

4 Summation

Example

R + a.P | b.Q\L means R +
(
(a.P) | (b.(Q\L))

)
.

Tribastone: Formale Spezifikation und Verifikation 6

Defining Equations

CCS program

A collection of defining equations of the form

K , P

where K ∈ K is a process constant and P ∈ P is a CCS process
expression.

Only one defining equation per process constant.

Recursion is allowed: e.g. A , a.A | A.

Tribastone: Formale Spezifikation und Verifikation 7

Structural Operational Semantics for CCS

Given a collection of CCS defining equations, we define the following LTS
(Proc, Act , { a−→| a ∈ Act}):

Proc = P (the set of all CCS process expressions)

Act = L ∪ {τ} (the set of all CCS actions including τ)

The transition relations are given by SOS rules of the form:

RULE NAME
premises

conclusion
side conditions

Tribastone: Formale Spezifikation und Verifikation 8

SOS Rules for CCS (α ∈ Act , a ∈ L)

ACT
α.P α−→ P

SUMj
Pj

α−→ P ′
j∑

i∈I Pi
α−→ P ′

j

j ∈ I

COM1 P α−→ P ′

P|Q α−→ P ′|Q
COM2 Q α−→ Q′

P|Q α−→ P|Q′

COM3 P a−→ P ′ Q a−→ Q′

P|Q τ−→ P ′|Q′

RES P α−→ P ′

P\L α−→ P ′\L
α, α 6∈ L REL P α−→ P ′

P[f]
f (α)−→ P ′[f]

CON P α−→ P ′

K α−→ P ′ K , P

Tribastone: Formale Spezifikation und Verifikation 9

Deriving Transitions in CCS

Let A , a.A. Then(
(A | a.0) | b.0

)
[c/a]

c−→
(
(A | a.0) | b.0

)
[c/a].

Why?

REL

COM1

COM1

CON

ACT
a.A a−→ A

A a−→ A
A , a.A

A | a.0 a−→ A | a.0

(A | a.0) | b.0 a−→ (A | a.0) | b.0(
(A | a.0) | b.0

)
[c/a]

c−→
(
(A | a.0) | b.0

)
[c/a]

Tribastone: Formale Spezifikation und Verifikation 10

LTS of the Process a.0 | a.0

a.0 | a.0

a

zzvvvvvvvvvvvv
a

$$HHHHHHHHHHHH

τ

��

0 | a.0

a

$$HHHHHHHHHHHH
a.0 | 0

a

zzvvvvvvvvvvvv

0 | 0

Proc = {a.0 | a.0, 0 | a.0, a.0 | 0, 0 | 0} ,

Act = {a, a, τ} ,
a−→ =

{
(a.0 | a.0, 0 | a.0), (a.0 | 0, 0 | 0)

}
,

a−→ =
{
(a.0 | a.0, a.0 | 0), (0 | a.0, 0 | 0)

}
,

τ−→ =
{
(a.0 | a.0, 0 | 0)

}
.

Tribastone: Formale Spezifikation und Verifikation 11

Using Restriction

LTS of (a.0 | a.0)\{a}

(a.0 | a.0)\{a} (0 | 0)\{a}τ

Another Example

Work , work .Break

Break , coin.Drink

Drink , coffee.Work

Machine , coin.Brew

Brew , coffee.Machine

(Work | Machine)\{coin, coffee}

(Break | Machine)\{coin, coffee}

(Drink | Brew)\{coin, coffee}

work

τ

τ

Tribastone: Formale Spezifikation und Verifikation 12

Equivalence Relations

Definition

Let S be a set. A binary relation R ⊆ S × S is called an equivalence
relation if the following hold:

R is reflexive, i.e., it holds that 〈s, s〉 ∈ R for all s ∈ S

R is symmetric, i.e., if 〈s1, s2〉 ∈ R then 〈s2, s1〉 ∈ R for all s1, s2 ∈ S

R is transitive, i.e., if 〈s1, s2〉 ∈ R and 〈s2, s3〉 ∈ R then 〈s1, s3〉 ∈ R
for all s1, s2, s3 ∈ S

A binary relation that is reflexive and transitive is called a preorder.

Convention

It is customary to write s1 R s2 to indicate 〈s1, s2〉 ∈ R

Tribastone: Formale Spezifikation und Verifikation 13

Behavioural Equivalence

Implementation

CM , coin.coffee.CM

PR , hello.coin.coffee.drink .PR

UNI , (CM |PR)\{coin, coffee}

Specification

Spec , hello.τ.τ.drink .Spec

We are given an abstract system specification Spec

We devise an implementation Imp by assembling many interacting
components

Are the processes Imp and Spec “behaviourally equivalent”?

Fix a “good” notion of equivalence

Prove that the two processes equivalent or find a counterexample
and re-design Imp

Tribastone: Formale Spezifikation und Verifikation 14

Which Equivalence (1 / 2)?

What could be a reasonable equivalence relation?

1 Two processes are equivalent if their parse trees are identical
e.g., P + Q + R = (P + Q) + R!
. . . but this fails to capture the intuition that P + Q = Q + P

2 Two processes are equivalent up to renaming of the defining
constants

e.g., X , a.X is equivalent to Y , a.Y

3 Two processes are equivalent if the exhibit the same behaviour, i.e.,
if they give rise to the same LTS

. . . but this yields too many distinctions:

X , a.X Y , a.a.Y Z , a.a.a.Z

have different LTSs but both processes can (only) execute infinitely
many a-actions, and should be considered equivalent.

Tribastone: Formale Spezifikation und Verifikation 15

Which Equivalence (2 / 2)?

What should a reasonable behavioural equivalence satisfy?

Abstracts from states (consider only the actions)

Abstracts from internal behaviour (τ steps are not visible)

Identifies processes whose LTSs are isomorphic

Considers two processes equivalent only if both can execute the
same actions sequences

Allows to replace a subprocess by an equivalent counterpart without
changing the overall semantics of the system

Be deadlock sensitive, i.e., if one has a deadlock after a given trace
s, then then the other process has a deadlock after the same trace
(and vice versa).

Tribastone: Formale Spezifikation und Verifikation 16

Congruence

P
C

Q

C

C(P) C(Q)

Congruence Property

P ≡ Q implies that C(P) ≡ C(Q)

Tribastone: Formale Spezifikation und Verifikation 17

Behavioural Equivalences

P

P1

P2

P3 P4

a

b

c d

Q

Q1

Q2 Q3

Q4 Q5

a

b b

c d

R

R1 R2

R3 R4

R5 R5

a a

b b

c d

Problem: Are these three systems equivalent?

Tribastone: Formale Spezifikation und Verifikation 18

Trace Equivalence

Let (Q, A, −→) be an LTS, with q ∈ Q.

Traces

Let s = a1 a2 · · · ak ∈ A∗, for any k ≥ 1, be a trace of q if there exists a
sequence of transitions q

a1−→ q1
a2−→ · · · ak−→ qk ,

with qi ∈ Q for all 1 ≤ i ≤ k .

Let T (q) be the set of all traces of state q.

Trace Equivalence

Two states p and q are trace equivalent, written p =T q, if T (p) = T (q).

Tribastone: Formale Spezifikation und Verifikation 19

Two Trace-Equivalent Systems

P

P1 P2

20 c

20 c

tea
coffee

Q

Q2Q1 Q3

20 c

tea

coffee

20 c

20 c

Tribastone: Formale Spezifikation und Verifikation 20

Trace Equivalence and Process Algebra

Consider two trace-equivalent versions of a vending machine:

VM1 , coin.(coffee.VM1 + tea.VM1) ,

VM2 , coin.coffee.VM2 + coin.tea.VM2 .

Allow each machine to interact with a user who wishes to have only
coffee:

User , coin.coffee.User

Consider now the two systems(
User | VM1

)
\{coin, coffee, tea} ,(

User | VM2
)
\{coin, coffee, tea} .

Question

Are
(
User | VM1

)
\ {coin, coffee, tea} and(

User | VM2
)
\ {coin, coffee, tea} trace equivalent?

Tribastone: Formale Spezifikation und Verifikation 21

Solution

VM1 , coin.(coffee.VM1 + tea.VM1)

VM2 , coin.coffee.VM2 + coin.tea.VM2

User , coin.coffee.User

VM1 serves coffee: (
User | VM1

)
\ {coin, coffee, tea} τ−→(

coffee.User | (coffee.VM1 + tea.VM1)
)
\ {coin, coffee, tea} τ−→(

User | VM1
)
\ {coin, coffee, tea} .

VM2 may steal the coin:(
User | VM2

)
\ {coin, coffee, tea} τ−→(

coffee.User | (tea.VM2)
)
\ {coin, coffee, tea} 6→ .

Tribastone: Formale Spezifikation und Verifikation 22

	Equivalence Relations

