Formale Spezifikation und Verifikation

Mirco Tribastone

Institut für Informatik Ludwig-Maximilians-Universität München tribastone@pst.ifi.lmu.de

Process Algebras

Calculus of Communicating Systems

CCS Basics

Sequential Fragment

- 0 process (the only atomic process)
- Action prefixing (a.P)
- Names and recursive definitions ([△])
- Nondeterministic choice (+)

Parallelism and Renaming

- Parallel composition (operator |) for synchronous communication between two components (*handshake synchronization*)
- Restriction ($P \setminus L$)
- Relabelling (P[f])

Let

- *A* be a set of channel names (sometimes, simply called names). For instance, *tea* and *coffee* are channel names.
- $\mathcal{L} = \mathcal{A} \cup \overline{\mathcal{A}}$ be a set of labels where
 - $\overline{\mathcal{A}} = \{\overline{a} \mid a \in \mathcal{A}\}$ (elements of $\overline{\mathcal{A}}$ are called co-names)
 - by convention $\overline{\overline{a}} = a$

$$\tau \not\in \mathcal{A}$$

- Act = L ∪ {τ} is the set of actions where
 τ is the internal or silent action
 (e.g. τ, tea, coffee are actions)
- *K* is a set of process names (or constants) (usually with upper-case initials).

Definition of CCS (expressions)

Process constants ($K \in \mathcal{K}, K \triangleq P$) Prefix ($\alpha \in Act$) Summation (I is an arbitrary index set) Parallel composition Restriction ($L \subseteq \mathcal{A}$) Relabelling ($f : Act \rightarrow Act$) such that $\mathbf{I} f(\tau) = \tau$ $\mathbf{I} f(\overline{a}) = \overline{f(a)}$

The set of all terms generated by the abstract syntax is the set of CCS process expressions (and is denoted by \mathcal{P}).

Notation

$$P_1 + P_2 = \sum_{i \in \{1,2\}} P_i$$

$$Nil = \mathbf{0} = \sum_{i \in \emptyset} P_i$$

Precedence

Precedence

- Restriction and relabelling (tightest binding)
- 2 Action prefixing
- 3 Parallel composition
- 4 Summation

Example

$R + a.P \mid b.Q \setminus L$ means $R + ((a.P) \mid (b.(Q \setminus L)))$.

CCS program

A collection of defining equations of the form

$$K \triangleq P$$

where $K \in \mathcal{K}$ is a process constant and $P \in \mathcal{P}$ is a CCS process expression.

- Only one defining equation per process constant.
- **Recursion is allowed:** e.g. $A \triangleq \overline{a}.A \mid A$.

Given a collection of CCS defining equations, we define the following LTS (*Proc*, *Act*, $\{\stackrel{a}{\longrightarrow} | a \in Act\}$):

- $Proc = \mathcal{P}$ (the set of all CCS process expressions)
- $Act = \mathcal{L} \cup \{\tau\}$ (the set of all CCS actions including τ)
- The transition relations are given by SOS rules of the form:

SOS Rules for CCS ($\alpha \in Act, a \in \mathcal{L}$)

$$\begin{array}{l} \text{ACT} \ \overline{\alpha.P \xrightarrow{\alpha} P} & \text{SUM}_{j} \ \frac{P_{j} \xrightarrow{\alpha} P_{j}'}{\sum_{i \in I} P_{i} \xrightarrow{\alpha} P_{j}'} \ j \in I \\ \\ \text{COM1} \ \frac{P \xrightarrow{\alpha} P'}{P|Q \xrightarrow{\alpha} P'|Q} & \text{COM2} \ \frac{Q \xrightarrow{\alpha} Q'}{P|Q \xrightarrow{\alpha} P|Q'} \\ \\ \text{COM3} \ \frac{P \xrightarrow{a} P' Q \xrightarrow{\overline{\alpha}} Q'}{P|Q \xrightarrow{\tau} P'|Q'} \\ \\ \text{RES} \ \frac{P \xrightarrow{\alpha} P'}{P \setminus L \xrightarrow{\alpha} P' \setminus L} \ \alpha, \overline{\alpha} \notin L & \text{REL} \ \frac{P \xrightarrow{\alpha} P'}{P[f] \xrightarrow{f(\alpha)} P'[f]} \\ \\ \text{CON} \ \frac{P \xrightarrow{\alpha} P'}{K \xrightarrow{\alpha} P'} \ K \triangleq P \end{array}$$

Let $A \triangleq a.A$. Then

$$((A | \overline{a}.\mathbf{0}) | b.\mathbf{0})[c/a] \xrightarrow{c} ((A | \overline{a}.\mathbf{0}) | b.\mathbf{0})[c/a].$$

Why?

$$\operatorname{REL} \frac{\operatorname{COM1} \frac{ACT}{A \xrightarrow{a} A}}{\operatorname{COM1} \frac{A \xrightarrow{a} A}{A \xrightarrow{a} A}}{A \xrightarrow{a} A} A \stackrel{\triangle}{=} a.A$$
$$\frac{\operatorname{COM1} \frac{A \xrightarrow{a} A}{A | \overline{a}.0 \xrightarrow{a} A | \overline{a}.0}}{(A | \overline{a}.0) | b.0 \xrightarrow{a} (A | \overline{a}.0) | b.0}$$
$$(A | \overline{a}.0) | b.0) [c/a] \xrightarrow{c} ((A | \overline{a}.0) | b.0) [c/a]$$

LTS of the Process $a.0 | \overline{a}.0$

Using Restriction

LTS of
$$(a.0 | \overline{a}.0) \setminus \{a\}$$

$$(a.\mathbf{0} | \overline{a}.\mathbf{0}) \setminus \{a\} \xrightarrow{\tau} (\mathbf{0} | \mathbf{0}) \setminus \{a\}$$

Another Example

 $(Work | Machine) \setminus \{coin, coffee\}$ $Work \triangleq work.Break$ $Break \triangleq \overline{coin}.Drink$ $Drink \triangleq coffee.Work$ $Machine \triangleq coin.Brew$ $Brew \triangleq \overline{coffee}.Machine$ $(Break | Machine) \setminus \{coin, coffee\}$ τ $(Drink | Brew) \setminus \{coin, coffee\}$

Definition

Let *S* be a set. A binary relation $R \subseteq S \times S$ is called an equivalence relation if the following hold:

- **a** *R* is reflexive, i.e., it holds that $\langle s, s \rangle \in R$ for all $s \in S$
- **a** *R* is symmetric, i.e., if $\langle s_1, s_2 \rangle \in R$ then $\langle s_2, s_1 \rangle \in R$ for all $s_1, s_2 \in S$
- *R* is transitive, i.e., if $\langle s_1, s_2 \rangle \in R$ and $\langle s_2, s_3 \rangle \in R$ then $\langle s_1, s_3 \rangle \in R$ for all $s_1, s_2, s_3 \in S$

A binary relation that is reflexive and transitive is called a preorder.

Convention

It is customary to write $s_1 R s_2$ to indicate $\langle s_1, s_2 \rangle \in R$

Behavioural Equivalence

Implementation

 $CM \triangleq coin.\overline{coffee}.CM$ $PR \triangleq \overline{hello}.\overline{coin}.coffee}.\overline{drink}.PR$

 $UNI \triangleq (CM | PR) \setminus \{coin, coffee\}$

Specification

 $Spec \triangleq \overline{hello}.\tau.\tau.\overline{drink}.Spec$

- We are given an abstract system specification Spec
- We devise an implementation *Imp* by assembling many interacting components

Are the processes Imp and Spec "behaviourally equivalent"?

- Fix a "good" notion of equivalence
- Prove that the two processes equivalent or find a counterexample and re-design *Imp*

What could be a reasonable equivalence relation?

- 1 Two processes are equivalent if their parse trees are identical
 - e.g., P + Q + R = (P + Q) + R!
 - ... but this fails to capture the intuition that P + Q = Q + P
- 2 Two processes are equivalent up to renaming of the defining constants
 - e.g., $X \triangleq a.X$ is equivalent to $Y \triangleq a.Y$
- 3 Two processes are equivalent if the exhibit the same behaviour, i.e., if they give rise to the same LTS
 - ... but this yields too many distinctions:

$$X \triangleq a.X$$
 $Y \triangleq a.a.Y$ $Z \triangleq a.a.a.Z$

have different LTSs but both processes can (only) execute infinitely many *a*-actions, and should be considered equivalent.

Which Equivalence (2 / 2)?

What should a reasonable behavioural equivalence satisfy?

- Abstracts from states (consider only the actions)
- Abstracts from internal behaviour (τ steps are not visible)
- Identifies processes whose LTSs are isomorphic
- Considers two processes equivalent only if both can execute the same actions sequences
- Allows to replace a subprocess by an equivalent counterpart without changing the overall semantics of the system
- Be deadlock sensitive, i.e., if one has a deadlock after a given trace s, then then the other process has a deadlock after the same trace (and vice versa).

Congruence Property

$$P \equiv Q$$
 implies that $C(P) \equiv C(Q)$

Behavioural Equivalences

Problem: Are these three systems equivalent?

Let (Q, A, \rightarrow) be an LTS, with $q \in Q$.

Traces

Let $s = a_1 a_2 \cdots a_k \in A^*$, for any $k \ge 1$, be a trace of q if there exists a sequence of transitions $q \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots \xrightarrow{a_k} q_k$, with $q_i \in Q$ for all $1 \le i \le k$.

Let T(q) be the set of all traces of state q.

Trace Equivalence

Two states p and q are trace equivalent, written $p =_T q$, if T(p) = T(q).

Two Trace-Equivalent Systems

Trace Equivalence and Process Algebra

Consider two trace-equivalent versions of a vending machine:

$$VM_1 \triangleq coin.(\overline{coffee}.VM_1 + \overline{tea}.VM_1),$$

 $VM_2 \triangleq coin.\overline{coffee}.VM_2 + coin.\overline{tea}.VM_2$

Allow each machine to interact with a user who wishes to have only coffee:

$$User \triangleq \overline{coin.coffee.User}$$

Consider now the two systems

$$(User | VM_1) \setminus \{coin, coffee, tea\}, (User | VM_2) \setminus \{coin, coffee, tea\}.$$

Question

Are $(User | VM_1) \setminus \{coin, coffee, tea\}$ and $(User | VM_2) \setminus \{coin, coffee, tea\}$ trace equivalent?

Tribastone: Formale Spezifikation und Verifikation

Solution

 $VM_1 \triangleq coin.(\overline{coffee}.VM_1 + \overline{tea}.VM_1)$ $VM_2 \triangleq coin.\overline{coffee}.VM_2 + coin.\overline{tea}.VM_2$ $User \triangleq \overline{coin.coffee}.User$

 VM_1 serves coffee:

 $\begin{array}{c} (\textit{User} \mid \textit{VM}_1) \setminus \{\textit{coin},\textit{coffee},\textit{tea}\} \xrightarrow{\tau} \\ (\textit{coffee}.\textit{User} \mid (\overline{\textit{coffee}}.\textit{VM}_1 + \overline{\textit{tea}}.\textit{VM}_1)) \setminus \{\textit{coin},\textit{coffee},\textit{tea}\} \xrightarrow{\tau} \\ (\textit{User} \mid \textit{VM}_1) \setminus \{\textit{coin},\textit{coffee},\textit{tea}\} . \end{array}$

VM₂ may steal the coin:

$$\begin{array}{c} \left(\textit{User} \mid \textit{VM}_2\right) \setminus \{\textit{coin},\textit{coffee},\textit{tea}\} \xrightarrow{\tau} \\ \left(\textit{coffee}.\textit{User} \mid (\overline{\textit{tea}}.\textit{VM}_2)\right) \setminus \{\textit{coin},\textit{coffee},\textit{tea}\} \not\rightarrow \end{array} \right.$$