Formale Spezifikation und Verifikation

Mirco Tribastone

Institut für Informatik Ludwig-Maximilians-Universität München tribastone@pst.ifi.lmu.de

Fixed-Point Theory

Preliminaries

Tarski's fixed point theorem

Application to strong bisimilarity

Preliminaries

Posets

Let *D* be a set. The pair (D, \sqsubseteq) is called a *partially ordered set* (poset) iff \sqsubseteq is a binary relation over *D* such that:

- \sqsubseteq is reflexive, i.e., for any $d \in D$ it holds that $d \sqsubseteq d$;
- \sqsubseteq is antisymmetric, i.e., for any $d, d' \in D$ if $d \sqsubseteq d'$ and $d' \sqsubseteq d$ then d = d';
- \sqsubseteq is transitive, i.e., for any $d, d', d'' \in D$ if $d \sqsubseteq d'$ and $d' \sqsubseteq d''$ then $d \sqsubseteq d''$.

For instance,

- (N, ≤), where N is the set of the naturals and ≤ is the standard less-or-equal relation, is a poset.
- (\mathbb{R}, \leq) , where \mathbb{R} is the set of the reals, is a poset.
- Let *S* be a set. Then $(2^S, \subseteq)$ is a poset.

Bounds

Let (D, \sqsubseteq) be a poset and $X \subseteq D$.

Upper bounds

 $d \in D$ is said to be an *upper bound* for X iff $x \sqsubseteq d$ for all $x \in X$.

We say that *d* is the *least upper bound* (lub) for *X*, denoted by $\bigsqcup X$, iff the following conditions hold

- d is an upper bound for X;
- for any d' upper bound for X it holds that $d \sqsubseteq d'$.

Lower bounds

 $d \in D$ is said to be a *lower bound* for X iff $d \sqsubseteq x$ for all $x \in X$.

We say that *d* is the *greatest lower bound* (glb) for *X*, denoted by $\prod X$, iff the following conditions hold

- d is a lower bound for X;
- for any d' lower bound for X it holds that $d' \sqsubseteq d$.

Examples

- In the poset (N, ≤) all finite subsets have least upper bounds, which correspond to their largest elements. Infinite subsets do not have upper bounds, i.e. {n ∈ N | n > k} for some k ∈ N. However this set has the greatest lower bound: which one?
- In the poset (2^S, ⊆) every X ⊆ 2^S (i.e., a collection of subsets of S) has an lub and glb, corresponding to UX and ∩X, respectively.

Theorem (Uniqueness)

Let (D, \sqsubseteq) be a poset and $X \subseteq D$. If an lub and a glb exist for X, they are unique.

Proof.

Uniqueness of glb Assume toward a contradiction that d and d' are two distinct glbs. Since they are also lower bounds, it must hold that $d \sqsubseteq d'$ and $d' \sqsubseteq d$. But due to antisymmetry this means that d = d'.

Complete Lattices

A poset (D, \sqsubseteq) is said to be a *complete lattice* iff $\bigsqcup X$ and $\bigsqcup X$ exist for every $X \subseteq D$.

A complete lattice has a least element, denoted by $\bot = \prod D$ (bottom), and a top element $\top = \bigsqcup D$.

The poset (N, ≤) is not a complete lattice, as discussed before.
The poset (2^S, ⊆) is a complete lattice, with ⊥ = Ø and ⊤ = S.

Further Definitions

Monotonic Functions

Let (D, \sqsubseteq) be a poset. A function $f : D \to D$ is *monotonic* iff $d \sqsubseteq d'$ implies $f(d) \sqsubseteq f(d')$ for any $d, d' \in D$.

Fixed points

Let (D, \sqsubseteq) be a poset and $f : D \rightarrow D$ a monotonic function. An element $d \in D$ is said to be a *fixed point* iff d = f(d).

For instance, take the poset $(2^{\mathbb{N}}, \subseteq)$ and $f : 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ as follows:

$$f(X)=X\cup\{1,2\}.$$

f is monotonic and $A = \{1, 2\}$ is a fixed point because

$$f(A) = \{1, 2\} \cup \{1, 2\} = A$$
.

A is not the only fixed point. Indeed, any B such that $A \subseteq B$ (e.g., $B = \{1, 2, 3\}$) is a fixed point also.

Theorem

Let (D, \sqsubseteq) be a complete lattice and let $f : D \to D$ be monotonic. Then f has a largest fixed point, z_{max} , and a least fixed point, z_{min} , given by

$$z_{max} = \bigsqcup \{ x \in D \mid x \sqsubseteq f(x) \} ,$$
$$z_{min} = \bigsqcup \{ x \in D \mid f(x) \sqsubseteq x \} .$$

Proof.

(on blackboard)

Examples of Fixed Points

Consider the complete lattice $(2^S, \subseteq)$ for some set *S*, and a monotonic function $f : 2^S \to 2^S$. The statement of Tarski's theorem then reads

$$z_{max} = \bigcup \left\{ \underbrace{X \subseteq S}_{i.e., X \in 2^{S}} \mid X \subseteq f(X) \right\},$$
$$z_{min} = \bigcap \left\{ X \subseteq S \mid f(X) \subseteq X \right\}.$$

In particular, for $(2^{\mathbb{N}}, \subseteq)$ and $f(X) = X \cup \{1, 2\}, X \subseteq \mathbb{N}$ we have that

$$z_{max} = \bigcup \{ X \subseteq \mathbb{N} \mid X \subseteq X \cup \{1, 2\} \} = \mathbb{N} ,$$
$$z_{min} = \bigcap \{ X \subseteq \mathbb{N} \mid X \cup \{1, 2\} \subseteq X \} = \{1, 2\}$$

How to algorithmically compute z_{max} and z_{min} ?

Computing Fixed Points

Definition

Let *D* be a set, $d \in D$ and $f : D \to D$. For each natural *n*, $f^n(d)$ is defined as follows:

$$f^{0}(d) = d$$
 and $f^{n+1}(d) = f(f^{n}(d))$.

Theorem

Let (D, \sqsubseteq) a finite complete lattice and let $f : D \to D$ be monotonic. Then the least fixed point for f is computed as

$$z_{min}=f^m(\perp)$$
,

for some natural m. The largest fixed point is computed as

$$z_{max} = f^M(\top)$$

for some natural M.

Tribastone: Formale Spezifikation und Verifikation

Example

Consider the set $S = \{0, 1, 2\}$, the poset $(2^S, \subseteq)$, and the monotonic function $f : 2^S \to 2^S$ defined by

$$f(X) = (X \cap \{1\}) \cup \{2\}$$
.

Recalling that $\bot = \emptyset$ and $\top = S$, the least fixed point is {2} since

$$\begin{split} f^{0}(\bot) &= \emptyset \;, \\ f^{1}(\bot) &= f(\emptyset) = \{2\} \;, \\ f^{2}(\bot) &= f(\{2\}) = \{2\} = f^{1}(\bot) \;. \end{split}$$

The largest fixed point is $\{1, 2\}$ since

$$\begin{split} f^0(\top) &= \{0, 1, 2\} ,\\ f^1(\top) &= f(\{0, 1, 2\}) = \{1, 2\} ,\\ f^2(\top) &= f(\{1, 2\}) = \{1, 2\} = f^1(\top) . \end{split}$$

Bisimulation: Original Definitions

Strong Bisimulation

Let $(Q, A, \{ \xrightarrow{a} | a \in A \})$ be an LTS. A relation $R \subseteq Q \times Q$ is *strong bisimulation* if, for any pair of states *p* and *q* such that $(p, q) \in R$, the following hold:

- 1 for all $a \in A$ and $p' \in Q$, if $p \xrightarrow{a} p'$ then $q \xrightarrow{a} q'$ for some $q' \in Q$ such that $(p', q') \in R$;
- 2 for all $a \in A$ and $q' \in Q$, if $q \xrightarrow{a} q'$ then $p \xrightarrow{a} p'$ for some $p' \in Q$ such that $(p', q') \in R$.

Bisimilarity

Two states $p, q \in Q$ are strongly *bisimilar*, written $p \sim q$, if there exists a strong bisimulation *R* such that $(p, q) \in R$.

$$\sim = \bigcup \{ R \mid R \text{ is a strong bisimulation} \}$$

Fixed-Point Theory for Bisimulation

- Given an LTS $(Q, A, \{\stackrel{a}{\longrightarrow} | a \in A\})$, where Q is finite, take $S = Q \times Q$ and consider the poset $(2^S, \subseteq)$
- A strong bisimulation R is therefore an element of 2^S .
- Consider now the set $\bigcup \{R \mid R \text{ is a strong bisimulation}\}$. It can be shown that the following equalities hold

$$\sim = igcup \{ R \mid R ext{ is a strong bisimulation} \} = igcup iggl\{ R \in 2^{\mathcal{S}} \mid R \subseteq \mathcal{F}(R) iggr\}$$

if
$$\mathcal{F} : 2^S \to 2^S$$
 is defined as follows:
 $(p,q) \in \mathcal{F}(R)$ for all $p, q \in Q$ iff
 $p \xrightarrow{a} p'$ implies $q \xrightarrow{a} q'$ for some q' such that $(p',q') \in R$;
 $q \xrightarrow{a} q'$ implies $p \xrightarrow{a} p'$ for some p' such that $(p',q') \in R$.

■ \mathcal{F} can be shown to be monotonic. Thus, ~ corresponds to the largest fixed point of \mathcal{F} , which is equal to $\mathcal{F}^{\mathcal{M}}(\top) = \mathcal{F}^{\mathcal{M}}(\mathcal{Q} \times \mathcal{Q})$.

Example

$$egin{aligned} &Q_1 \triangleq b.Q_2 + a.Q_3 \ &Q_2 \triangleq c.Q_4 \ &Q_3 \triangleq c.Q_4 \ &Q_4 \triangleq b.Q_2 + a.Q_3 + a.Q_1 \end{aligned}$$

Before, in order to construct \sim we would consider that $Q_i \sim Q_i$, with $1 \leq i \leq 4$. Then we would check whether $Q_i \sim Q_j$, for all possible $i \neq j$, using the bisimulation game (and noticing that $Q_i \sim Q_j \iff Q_j \sim Q_i$).

For instance, to show that $Q_1 \not\sim Q_4$:

1
$$(Q_1, Q_4)$$
 A: $Q_4 \xrightarrow{a} Q_1$ **D**: $Q_1 \xrightarrow{a} Q_3$

2
$$(Q_3, Q_1)$$
 A: $Q_3 \xrightarrow{c} Q_4$ **D**: $Q_1 \not\xrightarrow{c}$

Example

$$Q_1 \triangleq b.Q_2 + a.Q_3$$
$$Q_2 \triangleq c.Q_4$$
$$Q_3 \triangleq c.Q_4$$
$$Q_4 \triangleq b.Q_2 + a.Q_3 + a.Q_1$$

Now, let $I = \{(Q_i, Q_i) \in Proc \times Proc \mid 1 \le i \le 4\}$. We have that:

$$\begin{split} \mathcal{F}^{0}(\top) &= \mathcal{F}^{0}(\textit{Proc} \times \textit{Proc}) = \textit{Proc} \times \textit{Proc} \\ \mathcal{F}^{1}(\top) &= \mathcal{F}(\textit{Proc} \times \textit{Proc}) = \{(Q_{1}, Q_{4}), (Q_{4}, Q_{1}), (Q_{2}, Q_{3}), (Q_{3}, Q_{2})\} \cup I \\ \mathcal{F}^{2}(\top) &= \{(Q_{2}, Q_{3}), (Q_{3}, Q_{2})\} \cup I \\ \mathcal{F}^{3}(\top) &= \{(Q_{2}, Q_{3}), (Q_{3}, Q_{2})\} \cup I = \mathcal{F}^{2}(\top) \end{split}$$