
Formale Spezifikation und Verifikation

Mirco Tribastone

Institut für Informatik
Ludwig-Maximilians-Universität München

tribastone@pst.ifi.lmu.de

Hennessy-Milner Logic

Verifying Correctness of Reactive Systems

Let Impl be an implementation of a system (e.g., in CCS syntax).

Equivalence Checking Approach

Impl ≡ Spec

≡ is an abstract equivalence, e.g. ∼ or ≈
Spec is often expressed in the same language as Impl

Spec provides the full specification of the intended behaviour

Implementation verification requires the full description of both
models. . .

. . . and the derivation of the respective state spaces.

Some specifications may seem unnatural. . .

Tribastone: Formale Spezifikation und Verifikation 2

Model Checking Approach

Model Checking Approach

Impl |= Property

|= is the satisfaction relation

Property is a particular feature, often expressed via a logic

Property is a partial specification of the intended behaviour

Our Aim

Develop a logic in which we can express interesting properties of reactive
systems.

Tribastone: Formale Spezifikation und Verifikation 3

Logical Properties of Reactive Systems

Modal Properties — what can happen now (possibility, necessity)

drink a coffee (can drink a coffee now)

does not drink tea

drinks both tea and coffee

drinks tea after coffee

Temporal Properties — behaviour in time

never drinks any alcohol
(safety property: nothing bad can happen)

eventually will have a glass of wine
(liveness property: something good will happen)

Can these properties be expressed using equivalence checking?

Tribastone: Formale Spezifikation und Verifikation 4

Hennessy-Milner Logic — Syntax

Syntax (a ∈ Act)

F ,G ::= tt | ff | F ∧ G | F ∨ G | 〈a〉F | [a]F

tt all processes satisfy this property

ff no process satisfies this property

∧, ∨ usual logical AND and OR connectives

〈a〉F (possibility) asserts (of a given P): It is possible for P to
perform an action a and evolve into a Q that satisfies F —
there is at least one a-successor that satisfies F

[a]F (necessity) asserts (of a given P): If P can perform an
action a then it must evolve into a Q that satisfies F —
all a-successors have to satisfy F

Tribastone: Formale Spezifikation und Verifikation 5

Hennessy-Milner Logic — Semantics

Let (Proc,Act , { a−→| a ∈ Act}) be an LTS.

Satisfaction relation p |= F (p ∈ Proc, F a HM formula)

p |= tt for each p ∈ Proc

p |= ff for no p (we also write p 6|= ff)

p |= F ∧ G iff p |= F and p |= G

p |= F ∨ G iff p |= F or p |= G

p |= 〈a〉F iff p a−→ p′ for some p′ ∈ Proc such that p′ |= F

p |= [a]F iff p′ |= F , for all p′ ∈ Proc such that p a−→ p′

We write:
p 6|= F if p does not satisfy F
〈{a1, a2, . . . an}〉F for 〈a1〉F ∨ 〈a2〉F · · · ∨ 〈an〉F
[{a1, a2, . . . an}]F for [a1]F ∧ [a2]F · · · ∧ [an]F

Tribastone: Formale Spezifikation und Verifikation 6

An Alternative (and Equivalent) Characterisation

Let (Proc,Act , { a−→| a ∈ Act}) be an LTS.

Denotational Semantics

Let JFK ∈ Proc, with F an HM formula, be defined by

JttK = Proc ,

Jff K = ∅ ,
JF ∧ GK = JFK ∩ JGK ,

JF ∨ GK = JFK ∪ JGK ,
J〈a〉FK = 〈·a·〉JFK ,
J[a]FK = [·a·]JFK ,

where the operators 〈·a·〉, [·a·] : 2Proc −→ 2Proc are defined by

〈·a·〉S = {p ∈ Proc | p a−→ p′ and p′ ∈ S for some p′},

[·a·]S = {p ∈ Proc | p a−→ p′ implies p′ ∈ S for each p′}.

We write p |= F iff p ∈ JFK.

Tribastone: Formale Spezifikation und Verifikation 7

Examples

E |= 〈tick〉tt
E can do a tick

E |= 〈tick〉〈tock〉tt
E can do a tick and then a tock

E |= 〈{tick , tock}〉tt
E can do a tick or a tock

E |= [tick]ff
E cannot do a tick

E |= 〈tick〉ff
This is equivalent to false!

E |= [tick]tt
This is equivalent to true!

Tribastone: Formale Spezifikation und Verifikation 8

Checking Satisfaction

C , tick .C

Does C satisfy property [tick](〈tick〉tt ∧ [tock]ff)?

Tribastone: Formale Spezifikation und Verifikation 9

Logical Negation

For every formula F we define the formula F c as follows:

ttc = ff

ff c = tt

(F ∧ G)c = F c ∨ Gc

(F ∨ G)c = F c ∧ Gc

(〈a〉F)c = [a]F c . For instance (〈a〉tt)c = [a]ff

([a]F)c = 〈a〉F c . For instance ([a]ff)c = 〈a〉tt

Theorem (F c is equivalent to the negation of F)

For any p ∈ Proc and any HML formula F

1 p |= F =⇒ p 6|= F c

2 p 6|= F =⇒ p |= F c

Tribastone: Formale Spezifikation und Verifikation 10

Checking Validity of HML Formulae

1 Decompose the HML formula into all its subformulas

2 Starting with the smallest subformula, label all states of the LTS
where it holds

3 Repeat the previous step for the smallest remaining formula

4 If the state is labeled with the formula to be checked the formula is
valid that state, otherwise, it is invalid.

Tribastone: Formale Spezifikation und Verifikation 11

Examples of Model Checking

Does the transition system corresponding to a.0 + a.b.0 satisfy the
formula 〈a〉〈b〉tt

〈b〉tt

〈a〉〈b〉tt

Subformulae of 〈a〉〈b〉tt :
tt 〈b〉tt 〈a〉〈b〉tt

Tribastone: Formale Spezifikation und Verifikation 12

Examples of Model Checking

Does the transition system corresponding to a.0 + a.b.0 satisfy formula
〈a〉[b]ff

[b]ff

[b]ff

[b]ff

〈a〉[b]ff

Subformulae of 〈a〉[b]ff :
ff [b]ff 〈a〉[b]ff

Tribastone: Formale Spezifikation und Verifikation 13

Examples of Model Checking

Does the transition system corresponding to a.0 + a.b.0 satisfy formula
[a]〈b〉tt

〈b〉tt
[a]〈b〉tt

[a]〈b〉tt

[a]〈b〉tt

Tribastone: Formale Spezifikation und Verifikation 14

Examples of Model Checking

Does the transition system corresponding to a.0 + a.b.0 satisfy formula
[a][b]ff

[b]ff

[b]ff

[b]ff

[a][b]ff

[a][b]ff

[a][b]ff

Tribastone: Formale Spezifikation und Verifikation 15

HML and Bisimulation

Examples

a.(b.0 + c.0) |= 〈a〉(〈b〉tt ∧ 〈c〉tt)
a.b.0 + a.c.0 6|= 〈a〉(〈b〉tt ∧ 〈c〉tt)

a.b.0 |= [a]〈b〉tt
a.b.0 + a.0 6|= [a]〈b〉tt

a.b.(c.0 + d .0) |= [a]〈b〉〈c〉tt
a.b.c.0 + a.b.d .0 6|= [a]〈b〉〈c〉tt

a.(b.c.0 + b.d .0) |= [a](〈b〉〈c〉tt ∧ 〈b〉〈d〉tt)
a.b.c.0 + a.b.d .0 6|= [a](〈b〉〈c〉tt ∧ 〈b〉〈d〉tt)

Tribastone: Formale Spezifikation und Verifikation 16

HML and Bisimulation

Theorem

P ∼ Q if and only P |= F if and only if Q |= F for every HML formula F .

Proof

(=⇒) Proceeds by induction on F . The interesting case is [a]F .
(⇐=) We show that the set S of all pair of processes that satisfy the
same HML formulae is a bisimulation. Suppose S is not a bisimulation.
Then, there exists a pair < P,Q >∈ S such that Q cannot match a move
P a−→ P ′. There are two cases.
Case 1: Q does not have a transition Q a−→ Q′, but then clearly P and Q
do not satisfy the same formulae.
Case 2: for every evolution of Q a−→ Q′, Q′ and P ′ do not satisfy the
same formulae. Then, it is possible to construct a formula (of the form
〈a〉F with F = F1 ∧ . . . ∧ Fn) that P satisfies but Q does not.

Tribastone: Formale Spezifikation und Verifikation 17

