Mirco Tribastone

Institut flr Informatik
Ludwig-Maximilians-Universitat Miinchen
tribastone@pst.ifi.lmu.de

Computation Tree Logic

m Kripke Structures
m Computation Tree Logic (CTL)

m Model Checking CTL

m Fixed-point characterisation of CTL

Kripke Structures

Definition
Let Atom be a set of atomic propositions. A model (also called Kripke
structure) is a tuple M = (S, —, L) where

m Sis a set of states

m — is a left-total transition relation, i.e., — C S x S and for each
s € Sthere exist s’ € Ssuch that (s,s') € —

m L is alabelling function L : S — P(Atom) and P(Atom) denotes the
power-set of Atom.

m Asusual, (s,s’) € — is often written s — .

Comparing this definition with that of labelled transition systems:
m In LTS transitions are labelled, not states

m An LTS admits deadlocked states, i.e., states without outgoing
transitions

Tribastone: Formale Spezifikation und Verifikation

So
So
S= {So, Sq, Sg}
— = {(s0, $1). (S0, 52), (51 %0), (51, 52), (52, 52) }
Atom = {p, q, r}
L(so) = {p, q}
L(s1) ={q.r}

L(s2) = {r}

Computation Tree

Unwinding of the Kripke Structure from sy

0N
®
FE N

m Nondeterministic behaviour
m Nonterminating computation
m Branching time

Tribastone: Formale Spezifikation und Verifikation

Computation Tree Logic

We wish to define a formal method for specifying properties such as
m Statements over states
m Does state s satisfy the atomic property p?
m Does state s satisfy the atomic properties p and q?
m Does state s satisfy the atomic properties p or g?
...
m Statements over paths
m Is there a path starting from s such that property p always hold?
m |s there a path starting from s such that property p holds some time in
the future?
m From all paths starting from s does property p always hold?
...

Tribastone: Formale Spezifikation und Verifikation

Syntax of CTL — 1

A CTL formula is defined by the following BNF grammar:

=L | T |p|(=¢)|(eAd)]| (V)| (¢—)]
AX¢ | EX¢ | A[oU®] | E[¢oU¢] | AGH |
EGo | AF¢ | EF$, with p € Atom.

A means along All paths (inevitably)

E means along at least one path (i.e., there Exists one path)
(possibly)

X means neXt state

F means some Future state

G means Globally (all future states)
U means Until

Tribastone: Formale Spezifikation und Verifikation

Syntax of CTL — 2

Binding Priority
Unary connectives —, AG, EG, AF, EF, and AX
A and V
—,A[-U-],and E[-U"]

Parse Tree of A| AX—pUE]| EX(p AQ)U-p]]

"

SN

.
P/ \q

Tribastone: Formale Spezifikation und Verifikation

Semantics of CTL — 1

Let M = (S, —, L) be a model for CTL. Given s € S the relation
M,sE= ¢ (often abbreviated s = ¢)

defines whether the CTL formula ¢ holds in s.
The satisfaction relation |= is defined by structural induction thus:
mM,sE=Tand M,s}j- Lforallse S.
m M, skE=piffpe L(s).
M, sE-¢iff M,s = ¢ .
B M, sE o1 Apoiff M,s = ¢yand M, s = @2 .
BM,sE o1 Voiff M,s = ¢ or M,s = g2 .
B M, sk o1 — ¢oiff M,sE pgor M, s = oo .

Tribastone: Formale Spezifikation und Verifikation

The formula p — q is interpreted as checking whether truth is preserved.

¢ Y o= ¢ Y —PVY
T T T T T T
T F F T F F
FT T FT T
FF T FF T

Therefore,

M, s = ¢1 — g iff M, s~ ¢y or M, s |= 2 .

Semantics of CTL -2

Let M = (S, —, L) be a model for CTL. Given s € S the relation
M,sE= ¢ (often abbreviated s = ¢)

defines whether the CTL formula ¢ holds in s.
The satisfaction relation |= is defined by structural induction thus:
m M,s = AX ¢ iff for all s such that s — s’ we have M, s’ = ¢ .

m M, s = EX ¢ iff for some s’ such that s — s’ we have M, s’ |= ¢ .

m M, s = AG ¢ iff for all paths sy — s, — ..., with s = sy, we have
M,si ¢ withi=1,2,...

m M, s = EG ¢ iff there exists a path sy — s, — ..., with s = sq,
such that we have M, s; = ¢, withi=1,2,...

Tribastone: Formale Spezifikation und Verifikation

Semantics of CTL — 3

Let M = (S, —, L) be a model for CTL. Given s € S the relation
M,sE= ¢ (often abbreviated s = ¢)

defines whether the CTL formula ¢ holds in s.
The satisfaction relation |= is defined by structural induction thus:
m M, s = AF ¢ iff for all paths sy — s, — ..., with s = sy, there exists
si such that M, s; = ¢ .
m M, s = EF ¢ iff for some path sy — s, — ..., with s = sy, there
exists s; such that M, s; = ¢ .
m M,s = Al ¢1 U g2] iff for all paths sy — s, — ..., with s = s,
there is some s; such that M, s; = ¢» and, for each j < i we have
./\/l, Sj ’: q51.
B M,s = E[¢1U¢2 | iff for some path s; — sp — ..., with s = sy,
there is some s; such that M, s; = ¢» and, for each j < i, we have
M, Sj }: D1 .

Tribastone: Formale Spezifikation und Verifikation

[llustrations — 1

SN /N
N N
/)\OOO A/O\O.C.).O

O O O O

M, s |= black M, s |= black Vv grey

AN A AN
/O\OOO ‘/O\O”0.0

o O o O

M, s = p Ablack M, s = AXblack

Tribastone: Formale Spezifikation und Verifikation

M, s = EXblack

AN
/O\O-(-)-O

[] O

M, s = EF black

[llustrations — 2

M, s = EGblack M, s = AG black M, s = AF black

Until Semantics
p P P P g9 p q

So 51 So S3 S4 Ss Se S7

M,si=E[pUq], 0<i<83.
M, ss EE[pUQq]?
M,ss =E[pUQq]?
M,ss =E[pUQq]?

Tribastone: Formale Spezifikation und Verifikation

Practical Patterns of Specification

m It is possible to get to a state where the machine has been started,
but it is not ready yet:

EF(started A —ready)

m For any state, if a message arrives, then it will eventually be
acknowledged:
AG(arrived — AF ack)

m An upwards travelling elevator at the second floor does not change
its direction when it has passengers wishing to travel to the fifth floor:

AG(floor=2 A direction=up A button pressed=5 —
A[direction = up U floor =5)

Tribastone: Formale Spezifikation und Verifikation 15

An Example

Given the Kripke structure M

M, sy = AGblack ?

M, sy = EF black ?

M, sy = AFblack ?

M, sy = EF AGblack ?

M, sy = EFEGblack ?

M, sy = AGEFEG black ?

M, sy |= AG(black — AF —black) ?
M, sy = AG(black — EF —black) ?
M, sy = AG(A[—black Ublack]) ?

Tribastone: Formale Spezifikation und Verifikation

So

Another Example

M,so EpAQ
M,So):ﬂf

M,so =T

M, sy EEX(gAT)
M,sg =—AX(gATr)
M, sy =—-EF(pAT)

Tribastone: Formale Spezifikation und Verifikation

M, s):EGI’

M,Sg):AGI’

M, sg):AFI’

M,so =E[(pAg)Ur]
M,so =A[pUTr]

Equivalences Between Formulas

Definition
Two CTL formulas ¢ and ¢ are said to be semantically equivalent, written
p=Y,if M, s ¢ < M,s [1, for any state s in any model M.

T=vyV -
PAY =—(=¢ V1))
¢—h==¢V
- AF ¢ = EG—¢
~EF ¢ = AG —¢
~AX ¢ = EX ¢
AFp=A[TUQ]
EFop=E[TU®|
A[oUY] =—(E[¢ U(=¢ A —¢)]V EG—))

Tribastone: Formale Spezifikation und Verifikation 18

Other Crucial Equivalences

AG ¢ = ¢ A AXAG ¢

EG¢ = ¢ AEXEG ¢

AF ¢ = ¢ V AXAF ¢

EF ¢ = ¢V EXEF¢
AloUy =9V (¢ AAXA[GUY])
E[¢Uv]=v¢V (o NEXE[UV])

For instance, EG ¢ means that ¢ must be always true along some path.
But this is equivalent to stating that it must be true now and that there
exist a successor such that ¢ holds along at least one of its paths.

Tribastone: Formale Spezifikation und Verifikation

Other Crucial Equivalences

AG ¢ = ¢ A AXAG ¢

EG¢ = ¢ AEXEG ¢

AF ¢ = ¢ V AXAF ¢

EF ¢ = ¢V EXEF¢
AloUy =9V (¢ AAXA[GUY])
E[¢Uv]=v¢V (o NEXE[UV])

Similarly, AF ¢ means that ¢ must be true at some point along each path.
But this is equivalent to stating that either it must be true now, or all the
successors must be such that ¢ holds at some point along each of their
paths.

Tribastone: Formale Spezifikation und Verifikation 20

Preprocessing of CTL Formulas

Theorem

Any CTL formula can be transformed into a semantically equivalent CTL formula
which uses only the logical connectives L, =, A, AF, EU, and EX. We say that
these connectives are an adequate set for CTL.

function TRANS(¢)
if »is T then
return —L
else if ¢ is L or ¢ € Atom then
return ¢
else if ¢ is —¢¢ then
return —TRANS(¢4)
else if ¢ is 1 A ¢o then
return TRANS(¢1) A TRANS(¢2)
else if ¢ is ¢1 V ¢ then
return
= (=TRANS(¢1) A =TRANS(¢2))
else if ¢ is ¢1 — ¢o then
return TRANS(—¢1 V ¢2)
else if ¢ is AX ¢1 then
return TRANS(—EX —¢1)
end if...

Tribastone: Formale Spezifikation und Verifikation

if ¢ is EX ¢1 then
return EXTRANS(¢1)
else if ¢ is AG ¢ then
return TRANS(—EF —¢1)
else if ¢ is EG ¢ then
TRANS(— AF —¢¢)
else if ¢ is AF ¢4 then
AF TRANS(¢1)
else if ¢ is EF ¢ then
return TRANS(E[T U ¢1])
else if ¢ is A[#1 U #2 | then
return
TRANS(=(E[~¢2 U(—¢1 A ~¢2) | V EG ~¢2))
else if ¢ is E[¢1 U ¢2] then
return E[TRANS(¢1) U TRANS(¢2) |
end if

21

