Formale Spezifikation und Verifikation

Mirco Tribastone

Institut für Informatik Ludwig-Maximilians-Universität München tribastone@pst.ifi.lmu.de

Computation Tree Logic

Overview

- Kripke Structures
- Computation Tree Logic (CTL)
- Model Checking CTL
- Fixed-point characterisation of CTL

Kripke Structures

Definition

Let Atom be a set of atomic propositions. A model (also called Kripke structure) is a tuple $\mathcal{M} = (S, \rightarrow, L)$ where

- S is a set of states
- \rightarrow is a left-total transition relation, i.e., $\rightarrow \subseteq S \times S$ and for each $s \in S$ there exist $s' \in S$ such that $(s, s') \in \rightarrow$
- *L* is a labelling function $L: S \to \mathcal{P}(\mathsf{Atom})$ and $\mathcal{P}(\mathsf{Atom})$ denotes the power-set of Atom.
- As usual, $(s, s') \in \rightarrow$ is often written $s \rightarrow s'$.

Comparing this definition with that of labelled transition systems:

- In LTS transitions are labelled, not states
- An LTS admits deadlocked states, i.e., states without outgoing transitions

Example

$$S = \{s_0, s_1, s_2\}$$

 $\rightarrow = \{(s_0, s_1), (s_0, s_2), (s_1, s_0), (s_1, s_2), (s_2, s_2)\}$
Atom = $\{p, q, r\}$
 $L(s_0) = \{p, q\}$
 $L(s_1) = \{q, r\}$
 $L(s_2) = \{r\}$

Computation Tree

Unwinding of the Kripke Structure from s_0

- Nondeterministic behaviour
- Nonterminating computation
- Branching time

Computation Tree Logic

We wish to define a formal method for specifying properties such as

- Statements over states
 - Does state *s* satisfy the atomic property *p*?
 - Does state *s* satisfy the atomic properties *p* and *q*?
 - Does state *s* satisfy the atomic properties *p* or *q*?
 - **.** . . .
- Statements over paths
 - Is there a path starting from *s* such that property *p* always hold?
 - Is there a path starting from s such that property p holds some time in the future?
 - From all paths starting from *s* does property *p* always hold?
 -

Syntax of CTL - 1

A CTL formula is defined by the following BNF grammar:

$$\begin{split} \phi := & \perp \ \mid \ \top \ \mid \ p \mid \ (\neg \phi) \mid \ (\phi \land \phi) \mid \ (\phi \lor \phi) \mid \ (\phi \to \phi) \mid \\ & \mathbf{AX} \ \phi \mid \ \mathbf{EX} \ \phi \mid \ \mathbf{A} [\ \phi \ \mathbf{U} \ \phi \] \ \mid \ \mathbf{E} [\ \phi \ \mathbf{U} \ \phi \] \ \mid \ \mathbf{AG} \ \phi \mid \\ & \mathbf{EG} \ \phi \mid \ \mathbf{AF} \ \phi \mid \ \mathbf{EF} \ \phi \ , \qquad \text{with} \ p \in \mathsf{Atom} \ . \end{split}$$

- A means along All paths (inevitably)
- E means along at least one path (i.e., there Exists one path) (possibly)
- X means neXt state
- F means some Future state
- G means Globally (all future states)
- U means Until

Syntax of CTL – 2

Binding Priority

- Unary connectives ¬, AG, EG, AF, EF, and AX
- 2 \wedge and \vee
- $3 \rightarrow$, $A[\cdot U \cdot]$, and $E[\cdot U \cdot]$

Parse Tree of $A[AX \neg p \cup E[EX(p \land q) \cup \neg p]]$

Semantics of CTL - 1

Let $\mathcal{M} = (S, \rightarrow, L)$ be a model for CTL. Given $s \in S$ the relation

$$\mathcal{M}, s \models \phi$$
 (often abbreviated $s \models \phi$)

defines whether the CTL formula ϕ holds in s.

The satisfaction relation \models is defined by structural induction thus:

- $\blacksquare \mathcal{M}, s \models \top \text{ and } \mathcal{M}, s \not\models \bot \text{ for all } s \in S$.
- \blacksquare \mathcal{M} , $s \models p$ iff $p \in L(s)$.
- $\blacksquare \mathcal{M}, s \models \neg \phi \text{ iff } \mathcal{M}, s \not\models \phi .$
- lacksquare $\mathcal{M}, s \models \phi_1 \land \phi_2 \text{ iff } \mathcal{M}, s \models \phi_1 \text{ and } \mathcal{M}, s \models \phi_2 \text{ .}$
- $\blacksquare \mathcal{M}, s \models \phi_1 \lor \phi_2 \text{ iff } \mathcal{M}, s \models \phi_1 \text{ or } \mathcal{M}, s \models \phi_2 .$
- lacksquare $\mathcal{M}, s \models \phi_1 \rightarrow \phi_2 \text{ iff } \mathcal{M}, s \not\models \phi_1 \text{ or } \mathcal{M}, s \models \phi_2 \text{ .}$

Excursus

Semantics of $p \rightarrow q$

The formula $p \rightarrow q$ is interpreted as checking whether *truth is preserved*.

$$\begin{array}{cccc} \phi & \psi & \phi \rightarrow \psi \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \\ \end{array}$$

Therefore,

$$\mathcal{M}, s \models \phi_1 \rightarrow \phi_2 \text{ iff } \mathcal{M}, s \not\models \phi_1 \text{ or } \mathcal{M}, s \models \phi_2 .$$

Semantics of CTL - 2

Let $\mathcal{M} = (S, \rightarrow, L)$ be a model for CTL. Given $s \in S$ the relation

$$\mathcal{M}, s \models \phi$$
 (often abbreviated $s \models \phi$)

defines whether the CTL formula ϕ holds in s.

The satisfaction relation \models is defined by structural induction thus:

- \mathcal{M} , $s \models$ **AX** ϕ iff for all s' such that $s \rightarrow s'$ we have \mathcal{M} , $s' \models \phi$.
- \mathcal{M} , $s \models \mathsf{EX}\,\phi$ iff for some s' such that $s \to s'$ we have \mathcal{M} , $s' \models \phi$.
- \mathcal{M} , $s \models \mathbf{AG} \phi$ iff for all paths $s_1 \rightarrow s_2 \rightarrow \ldots$, with $s = s_1$, we have \mathcal{M} , $s_i \models \phi$, with $i = 1, 2, \ldots$
- \mathcal{M} , $s \models \mathbf{EG} \phi$ iff there exists a path $s_1 \to s_2 \to \ldots$, with $s = s_1$, such that we have \mathcal{M} , $s_i \models \phi$, with $i = 1, 2, \ldots$

Semantics of CTL - 3

Let $\mathcal{M} = (S, \rightarrow, L)$ be a model for CTL. Given $s \in S$ the relation

$$\mathcal{M}, s \models \phi$$
 (often abbreviated $s \models \phi$)

defines whether the CTL formula ϕ holds in s.

The satisfaction relation \models is defined by structural induction thus:

- \mathcal{M} , $s \models \mathsf{AF} \phi$ iff for all paths $s_1 \to s_2 \to \ldots$, with $s = s_1$, there exists s_i such that \mathcal{M} , $s_i \models \phi$.
- \mathcal{M} , $s \models \mathsf{EF} \phi$ iff for some path $s_1 \to s_2 \to \ldots$, with $s = s_1$, there exists s_i such that \mathcal{M} , $s_i \models \phi$.
- $\mathcal{M}, s \models \mathbf{A}[\phi_1 \cup \phi_2]$ iff for all paths $s_1 \to s_2 \to \ldots$, with $s = s_1$, there is some s_i such that $\mathcal{M}, s_i \models \phi_2$ and, for each j < i we have $\mathcal{M}, s_j \models \phi_1$.
- \mathcal{M} , $s \models \mathbf{E}[\phi_1 \mathbf{U} \phi_2]$ iff for some path $s_1 \to s_2 \to \ldots$, with $s = s_1$, there is some s_i such that \mathcal{M} , $s_i \models \phi_2$ and, for each j < i, we have \mathcal{M} , $s_i \models \phi_1$.

Illustrations - 1

$$\mathcal{M}, s \models p \land \mathsf{black}$$

 $\mathcal{M}, s \models \mathsf{black} \lor \mathsf{grey}$

 $\mathcal{M}, s \models \mathbf{AX}$ black

 $\mathcal{M}, s \models \mathbf{EX} \, \mathsf{black}$

 $\mathcal{M}, \textit{s} \models \textit{EF} \, \textit{black}$

Illustrations – 2

Until Semantics

Practical Patterns of Specification

It is possible to get to a state where the machine has been started, but it is not ready yet:

EF(started
$$\land \neg$$
ready)

For any state, if a message arrives, then it will eventually be acknowledged:

$$AG(arrived \rightarrow AF ack)$$

An upwards travelling elevator at the second floor does not change its direction when it has passengers wishing to travel to the fifth floor:

AG(floor=2
$$\land$$
 direction=up \land button pressed=5 \rightarrow **A**[direction = up **U** floor = 5])

An Example

Given the Kripke structure ${\cal M}$


```
\mathcal{M}, s_0 \models \mathbf{AG} \text{ black } ?
```

 $\mathcal{M}, s_0 \models \mathsf{EF} \, \mathsf{black} \, ?$

 $\mathcal{M}, s_0 \models \mathbf{AF} \, \mathsf{black} \, ?$

 $\mathcal{M}, s_0 \models \mathsf{EF} \mathsf{AG} \mathsf{black} ?$

 $\mathcal{M}, s_0 \models \mathsf{EF}\,\mathsf{EG}\,\mathsf{black}\,?$

 $\mathcal{M}, s_0 \models \mathsf{AG} \, \mathsf{EF} \, \mathsf{EG} \, \mathsf{black} \, ?$

 $\mathcal{M}, s_0 \models \mathsf{AG}(\mathsf{black} \to \mathsf{AF} \neg \mathsf{black})$?

 $\mathcal{M}, s_0 \models \mathbf{AG}(\mathsf{black} \rightarrow \mathsf{EF} \neg \mathsf{black}) ?$

 $\mathcal{M}, s_0 \models \mathsf{AG}(\mathsf{A}[\neg \mathsf{black} \, \mathsf{U} \, \mathsf{black} \,]) \, ?$

Another Example

$$egin{aligned} \mathcal{M}, s_0 &\models
ho \wedge q \ \mathcal{M}, s_0 &\models \neg r \ \mathcal{M}, s_0 &\models \top \ \mathcal{M}, s_0 &\models \mathsf{EX}(q \wedge r) \ \mathcal{M}, s_0 &\models \neg \, \mathsf{AX}(q \wedge r) \ \mathcal{M}, s_0 &\models \neg \, \mathsf{EF}(p \wedge r) \end{aligned}$$

$$\mathcal{M}, s_2 \models \mathbf{EG} \, r$$
 $\mathcal{M}, s_2 \models \mathbf{AG} \, r$
 $\mathcal{M}, s_0 \models \mathbf{AF} \, r$
 $\mathcal{M}, s_0 \models \mathbf{E}[\ (p \land q) \, \mathbf{U} \, r\]$
 $\mathcal{M}, s_0 \models \mathbf{A}[\ p \, \mathbf{U} \, r\]$

Equivalences Between Formulas

Definition

Two CTL formulas ϕ and ψ are said to be *semantically equivalent*, written $\phi \equiv \psi$, if $\mathcal{M}, s \models \phi \iff \mathcal{M}, s \models \psi$, for any state s in any model \mathcal{M} .

Other Crucial Equivalences

$$\begin{aligned} \mathbf{AG}\,\phi &\equiv \phi \wedge \mathbf{AX}\,\mathbf{AG}\,\phi \\ \mathbf{EG}\,\phi &\equiv \phi \wedge \mathbf{EX}\,\mathbf{EG}\,\phi \\ \mathbf{AF}\,\phi &\equiv \phi \vee \mathbf{AX}\,\mathbf{AF}\,\phi \\ \mathbf{EF}\,\phi &\equiv \phi \vee \mathbf{EX}\,\mathbf{EF}\,\phi \\ \mathbf{A}[\,\phi\,\mathbf{U}\,\psi\,] &\equiv \psi \vee \left(\phi \wedge \mathbf{AX}\,\mathbf{A}[\,\phi\,\mathbf{U}\,\psi\,]\right) \\ \mathbf{E}[\,\phi\,\mathbf{U}\,\psi\,] &\equiv \psi \vee \left(\phi \wedge \mathbf{EX}\,\mathbf{E}[\,\phi\,\mathbf{U}\,\psi\,]\right) \end{aligned}$$

For instance, **EG** ϕ means that ϕ must be always true along some path. But this is equivalent to stating that it must be true now and that there exist a successor such that ϕ holds along at least one of its paths.

Other Crucial Equivalences

$$\begin{aligned} \mathbf{AG}\,\phi &\equiv \phi \wedge \,\mathbf{AX}\,\mathbf{AG}\,\phi \\ \mathbf{EG}\,\phi &\equiv \phi \wedge \,\mathbf{EX}\,\mathbf{EG}\,\phi \\ \mathbf{AF}\,\phi &\equiv \phi \vee \,\mathbf{AX}\,\mathbf{AF}\,\phi \\ \mathbf{EF}\,\phi &\equiv \phi \vee \,\mathbf{EX}\,\mathbf{EF}\,\phi \\ \mathbf{A}[\,\phi\,\mathbf{U}\,\psi\,] &\equiv \psi \vee \left(\phi \wedge \,\mathbf{AX}\,\mathbf{A}[\,\phi\,\mathbf{U}\,\psi\,]\right) \\ \mathbf{E}[\,\phi\,\mathbf{U}\,\psi\,] &\equiv \psi \vee \left(\phi \wedge \,\mathbf{EX}\,\mathbf{E}[\,\phi\,\mathbf{U}\,\psi\,]\right) \end{aligned}$$

Similarly, $\mathbf{AF}\,\phi$ means that ϕ must be true at some point along each path. But this is equivalent to stating that either it must be true now, or all the successors must be such that ϕ holds at some point along each of their paths.

Preprocessing of CTL Formulas

Theorem

Any CTL formula can be transformed into a semantically equivalent CTL formula which uses only the logical connectives $\bot, \neg, \land, \mathbf{AF}, \mathbf{EU}$, and \mathbf{EX} . We say that these connectives are an *adequate set* for CTL.

```
function TRANS(\phi)
if \phi is \top then
    return ¬ |
else if \phi is \bot or \phi \in Atom then
    return \phi
else if \phi is \neg \phi_1 then
    return \neg TRANS(\phi_1)
else if \phi is \phi_1 \wedge \phi_2 then
    return TRANS(\phi_1) \wedge TRANS(\phi_2)
else if \phi is \phi_1 \vee \phi_2 then
    return
    \neg (\neg \mathsf{TRANS}(\phi_1) \land \neg \mathsf{TRANS}(\phi_2))
else if \phi is \phi_1 \rightarrow \phi_2 then
    return TRANS(\neg \phi_1 \lor \phi_2)
else if \phi is AX \phi_1 then
    return TRANS(\neg EX \neg \phi_1)
end if...
```

```
if \phi is EX \phi_1 then
    return EXTRANS(\phi_1)
else if \phi is AG \phi_1 then
    return TRANS(\neg EF \neg \phi_1)
else if \phi is EG \phi_1 then
    TRANS(\neg AF \neg \phi_1)
else if \phi is AF \phi_1 then
    AF TRANS(\phi_1)
else if \phi is EF \phi_1 then
     return TRANS(\mathbf{E}[\top \mathbf{U} \phi_1])
else if \phi is A[ \phi_1 U \phi_2 ] then
    return
    TRANS(\neg( \mathbf{E}[\neg \phi_2 \mathbf{U}(\neg \phi_1 \wedge \neg \phi_2)] \lor \mathbf{EG} \neg \phi_2))
else if \phi is \mathbf{E}[\phi_1 \mathbf{U} \phi_2] then
    return \mathbf{E}[\mathsf{TRANS}(\phi_1) \mathbf{U} \mathsf{TRANS}(\phi_2)]
end if
```