
Formale Spezifikation und Verifikation

Mirco Tribastone

Institut für Informatik
Ludwig-Maximilians-Universität München

tribastone@pst.ifi.lmu.de

Verification with CCS

Overview

CCS model of an exclusion algorithm

Verification using weak simulation

Verification of the model using CCS itself

Check with ECW

Tribastone: Formale Spezifikation und Verifikation 2

Previously. . .

〈n1, n2〉

〈w1, n2〉 〈n1,w2〉

〈w1,w2〉

〈c1, n2〉 〈n1, c2〉

〈c1,w2〉〈w1, c2〉

ns1 ns2

ns2

ac1

cs1

ns2

ac2

ns1

cs2

ns1

ac1ac2

cs1cs2

Concurrent access was taken care of at a higher level of abstraction

In no state are the two processes in the critical section

Tribastone: Formale Spezifikation und Verifikation 3

Peterson’s Exclusion Algorithm1

while true do

noncrititical section

bi := true

k := j

while bj ∧ k = j do

skip

end while

critical section

bi := false

end while

i, j ∈ {1, 2} (process ids)

b1, b2, k are shared variables

bi = true means that process i is
trying to enter the critical section

k is the id of the process in the critical
section

Initially, b1 := false and b2 := false

The initial value of k is left unspecified

1G.L. Peterson, Myths About the Mutual Exclusion Problem, Information
Processing Letters, 12(3), 115–116, 1981.

Tribastone: Formale Spezifikation und Verifikation 4

CCS Model of Peterson’s Algorithm

1 Identify the collection of communicating systems and their channels

Obviously, process 1 and 2

Also, the shared variables can be seen as passive agents that react
to actions performed by the processes

Processes communicate with variables through read and write
operations

Processes do not communicate with each other explicitly

2 Describe the behaviour of each agent

3 Compose agents through parallel composition and restriction

Tribastone: Formale Spezifikation und Verifikation 5

Communicating Boolean Variables

For each process i there is a boolean variable bi

bi has two local states (i.e., true and false)

B1f , b1rf .B1f + b1wf .B1f + b1wt .B1t ,

B1t , b1rt .B1t + b1wf .B1f + b1wt .B1t .

Similarly,

B2f , b2rf .B2f + b2wf .B2f + b2wt .B2t ,

B2t , b2rt .B2t + b2wf .B2f + b2wt .B2t ,

where the pattern for the channel name is b〈i〉〈x〉〈y〉, with

i ∈ {1, 2} the process id

x ∈ {r ,w} the kind of operation

y ∈ {f , t} the variable value to be written or read

Tribastone: Formale Spezifikation und Verifikation 6

Model of the turn Variable k

In the case of a protocol with only two concurrent processes, k may only
take values 1 and 2, respectively denoted by K1 and K2 in

K1 , kr1.K1 + kw1.K1 + kw2.K2 ,

K2 , kr2.K2 + kw1.K1 + kw2.K2 ,

where the pattern for the channel name is k〈x〉〈n〉, with

x ∈ {r ,w} the kind of operation

n ∈ {1, 2} the value to be written or read

Exercise

How does this model generalise to a variable v taking values over a data
domain D?

Tribastone: Formale Spezifikation und Verifikation 7

Labelled Transition Systems So Far

LTS of B1f (B2f is similar)

B1f B1t

b1wt

b1rf , b1wf

b1wf

b1rt , b1wt

LTS of K1

K1 K2

kw2

kr1, kw1

kw1

kr2, kw2

Tribastone: Formale Spezifikation und Verifikation 8

Model of Process 1

while true do

noncrititical section

bi := true

k := j

while bj ∧ k = j do

skip

end while

critical section

bi := false

end while

Abstraction: we ignore the process behaviour
outside the critical section

The process tries to enter:

P1 , b1wt .kw2.P11

P11 models the while loop (with short-circuit
evaluation):

P11 , b2rf .P12 + b2rt .(kr2.P11 + kr1.P12)

P12 models the critical section:

P12 , enter1.exit1.b1wf .P1

Tribastone: Formale Spezifikation und Verifikation 9

Process 1 and Process 2

Process 1

P1 , b1wt .kw2.P11

P11 , b2rf .P12

+ b2rt .(kr2.P11 + kr1.P12)

P12 , enter1.exit1.b1wf .P1

Process 2

P2 , b2wt .kw1.P21

P21 , b1rf .P22

+ b1rt .(kr1.P21 + kr2.P22)

P22 , enter2.exit2.b2wf .P2

P1 kw2.P11

P11

P12 kr2.P11 + kr1.P12

exit1.b1wf .P1

b1wt

kw2

b2rf b2rt

kr2

kr1

enter1

exit1

LTS of P1

Tribastone: Formale Spezifikation und Verifikation 10

Peterson’s System

B1f , b1rf .B1f + b1wf .B1f + b1wt .B1t

B1t , b1rt .B1t + b1wf .B1f + b1wt .B1t

B2f , b2rf .B2f + b2wf .B2f + b2wt .B2t

B2t , b2rt .B2t + b2wf .B2f + b2wt .B2t

K1 , kr1.K1 + kw1.K1 + kw2.K2

K2 , kr2.K2 + kw1.K1 + kw2.K2

P1 , b1wt .kw2.P11

P11 , b2rf .P12 + b2rt .(kr2.P11 + kr1.P12)

P12 , enter1.exit1.b1wf .P1

P2 , b2wt .kw1.P21

P21 , b1rf .P22 + b1rt .(kr1.P21 + kr2.P22)

P22 , enter2.exit2.b2wf .P2

Peterson ,
(

B1f | B2f | K1 | P1 | P2
)

\L ,

L = {b1rf , b1rt , b1wf , b1wt , b2rf , b2rt , b2wf , b2wt , kr1, kw1, kr2, kw2}
Tribastone: Formale Spezifikation und Verifikation 11

Verification with CCS Itself

Informal Verification Criterion

At no point in the execution of the algorithm will processes P1 and P2 be
in their critical sections at the same time.

A Variant

If one process, say P1, is in its critical section, the other process P2 may
enter only after P1 has exited its critical section.

How can we verify this property?

Check if Peterson is strongly bisimilar to some other specification.

Check if Peterson is weakly bisimilar to some other specification.

Check if Peterson weakly simulates some other specification.

Combine Peterson with an observer process that emits a bad action
if the critical section is not accessed correctly.

Tribastone: Formale Spezifikation und Verifikation 12

Verification with Equivalence Relations

Informal Verification Criterion

At no point in the execution of the algorithm will processes P1 and P2 be
in their critical sections at the same time.

Strong Bisimulation

MutexSpec , enter1.exit1.MutexSpec + enter2.exit2.MutexSpec .

Is MutexSpec ∼ Peterson?

Using the game characterisation of strong bisimulation:

Attacker says: MutexSpec
enter1−−−→ exit1.MutexSpec

Defender loses because no enter1 action is enabled by Peterson:

Peterson
τ

−→ (B1t | B2f | K1 | kw2.P11 | P2)\L , and

Peterson
τ

−→ (B1f | B2t | K1 | P1 | kw1.P21)\L .

Tribastone: Formale Spezifikation und Verifikation 13

Using Weak Bisimulation?

MutexSpec , enter1.exit1.MutexSpec + enter2.exit2.MutexSpec .

Is MutexSpec ≈ Peterson?

1 Attacker chooses right for a sufficient number of times to have

Peterson
τ

=⇒ (B1t | B2t | P12 | P21 | K1)\L ,

2 to which the defender responds by

MutexSpec
τ

=⇒ MutexSpec .

3 Now, the attacher chooses left and says

MutexSpec
enter2−−−→ exit2.MutexSpec

4 but the defender does not afford any enter2-transitions.

Tribastone: Formale Spezifikation und Verifikation 14

Weak Simulation

Weak Traces and Weak Trace Equivalence

A weak trace of a process P is a sequence a1 · · · ak , k ≥ 1, of
observable actions such that there exists a sequence of transitions

P = P0
a1=⇒ P1

a2=⇒ · · ·
ak=⇒ Pk ,

for some P1, . . . ,Pk . Process P is a weak trace approximation of process
Q if the set of weak traces of P is included in that of Q.
Two processes are weak trace equivalent if the afford the same weak
traces.

Property

If a process does not afford internal transitions then its set of weak traces
coincides with its set of traces.

Tribastone: Formale Spezifikation und Verifikation 15

Weak Simulation

It is possible to show that Peterson is weak trace equivalent to
MutexSpec.

However, this is a stronger condition than we need to prove the
correctness of the algorithm.

We may be content with just verifying that Peterson is a weak trace
approximation of MutexSpec.

Weak Simulation

A binary relation R over the set of states of an LTS is called a weak
simulation iff, whenever s1 R s2 and α is an action (including τ), if
s1

α

−→ s′1 then there is a transition s2
α

=⇒ s′2 such that s′1 R s′2.
We say that s′ weakly simulates s iff there is a weak simulation R with
s R s′.
Proposition If s′ weakly simulates s then each weak trace of s is also a
weak trace of s′.

Tribastone: Formale Spezifikation und Verifikation 16

Verification Using CCS Itself: Observer Process

Informal Verification Criterion

At no point in the execution of the algorithm will processes P1 and P2 be
in their critical sections at the same time.

Once the observer has seen an enter action, say enter1, it goes to a
state where it may see the corresponding exit1 action.

However, in this new state it must not see enter2. If it does observe
enter2, it must emit a bad action highlighting the breach of the
protocol.

Analogously, if the observer sees enter2, it goes to a state where it
may see exit2.

If it sees enter1 instead, then it will emit the bad action.

Once the correct exit action is observed, the observer goes back to
a state where it may see either enter action.

Tribastone: Formale Spezifikation und Verifikation 17

Formalisation of the Verification Criterion

Informal Verification Criterion

At no point in the execution of the algorithm will processes P1 and P2 be
in their critical sections at the same time.

Consider the following CCS process:

MutexTest , enter1.MutexTest1 + enter2.MutexTest2

MutexTest1 , exit1.MutexTest + enter2.bad .0

MutexTest2 , exit2.MutexTest + enter1.bad .0

and combine it as follows

(Peterson | MutexTest)\M ,

where M = {enter1, enter2, exit1, exit2}.

Tribastone: Formale Spezifikation und Verifikation 18

Verification with Observers

Indeed, the LTS of (Peterson | MutexTest)\M does not have states
which afford bad transitions.

The observer does not affect the communicating behaviour inside
Peterson, i.e., the process MutexTest is left unaltered if
Peterson

τ

−→ Peterson′.

Peterson
τ

−→ Peterson′

Peterson | MutexTest
τ

−→ Peterson′ | MutexTest

(Peterson | MutexTest)\M
τ

−→ (Peterson′ | MutexTest)\M

Tribastone: Formale Spezifikation und Verifikation 19

Commands for ECW – 1

Model Declarations
agent B1f=’b1rf.B1f + b1wf.B1f + b1wt.B1t;

agent B1t=’b1rt.B1t + b1wf.B1f + b1wt.B1t;

...

set L={b1rf,b1rt,b1wf,b1wt,b2rf,b2rt,b2wf,b2wt,kr1,kw1,kr2,kw2};
agent Peterson = (B1f | B2f | K1 | P1 | P2) L;

Specification Declarations

agent MutexSpec= enter1.exit1.MutexSpec+enter2.exit2.MutexSpec;

Visualise All Declarations
print;

Tribastone: Formale Spezifikation und Verifikation 20

Commands for ECW – 2

Strong Bisimilarity

strongeq(Peterson, MutexSpec);

Weak Bisimilarity

eq(Peterson, MutexSpec);

Weak Trace Equivalence

mayeq(Peterson, MutexSpec);

Weak Simulation
agent Div = tau.Div;

pre(Peterson | Div, MutexSpec);

Tribastone: Formale Spezifikation und Verifikation 21

