Mirco Tribastone

Institut fir Informatik
Ludwig-Maximilians-Universitat Miinchen
tribastone@pst.ifi.lmu.de

Verification with CCS

m CCS model of an exclusion algorithm
m Verification using weak simulation

m Verification of the model using CCS itself

m Check with ECW

Previously. ..

CS1 CSy

(ng,c2)

(ng,nz)

(c1,Nn2)

(w1, C2) T (w1, Wa) a—cl> (C1,W2)

m Concurrent access was taken care of at a higher level of abstraction
m In no state are the two processes in the critical section

Tribastone: Formale Spezifikation und Verifikation

Peterson’s Exclusion Algorithm?

while true do - .
o . mijc {1,2} (process ids)
noncrititical section
b := true m by, by, k are shared variables
k=] m b, = true means that process i is
while b Ak = j do trying to enter the critical section
skip m K is the id of the process in the critical
end while section

critical section

Initially, b, := false and b, := false
b; := false

end while The initial value of k is left unspecified

1G.L. Peterson, Myths About the Mutual Exclusion Problem, Information
Processing Letters, 12(3), 115-116, 1981.

Tribastone: Formale Spezifikation und Verifikation

CCS Model of Peterson’s Algorithm

Identify the collection of communicating systems and their channels

m Obviously, process 1 and 2

m Also, the shared variables can be seen as passive agents that react
to actions performed by the processes

m Processes communicate with variables through read and write
operations
m Processes do not communicate with each other explicitly

Describe the behaviour of each agent

Compose agents through parallel composition and restriction

Tribastone: Formale Spezifikation und Verifikation

Communicating Boolean Variables

m For each process i there is a boolean variable b;

m b; has two local states (i.e., true and false)
Byt = b1rf.Bys + blwf.Bys + blwt.Byy
Byt £ blrt.By + blwf.Bys + blwt.By; .

Similarly,

By = b2rf.Bys + b2wf.Bys + b2wt.By; ,
Bt = b2rt.By; + b2wf.Bys + b2wt.Byy

where the pattern for the channel name is b(i)(x)(y), with
m i€ {1,2} the process id
m x € {r,w} the kind of operation
m y € {f,t} the variable value to be written or read

Tribastone: Formale Spezifikation und Verifikation

Model of the turn Variable k

In the case of a protocol with only two concurrent processes, k may only
take values 1 and 2, respectively denoted by K; and K5 in

Ki £ kr1.Ky + kwl.K; 4+ kw2.K; |
Ko £ kr2.Ky + kwl.Kq + kw2 K, |

where the pattern for the channel name is k(x)(n), with
m x € {r,w} the kind of operation

m n € {1,2} the value to be written or read

How does this model generalise to a variable v taking values over a data
domain D?

Tribastone: Formale Spezifikation und Verifikation 7

Labelled Transition Systems So Far

LTS of By (Bzf is Similar)

blwt

brf, biwf blrt, biwt

bawf

LTS of K;

kw2
m,kwlC@/_\—>@Dm, w2
kw1

Tribastone: Formale Spezifikation und Verifikation

Model of Process 1

while true do
noncrititical section
b := true
k:=j
while bj Ak =j do
skip
end while
critical section
b; := false
end while

Tribastone: Formale Spezifikation und Verifikation

m Abstraction: we ignore the process behaviour
outside the critical section

m The process tries to enter:

P; £ biwt.kw2.Py;

m P1; models the while loop (with short-circuit
evaluation):

P11 £ b2rf.P12 + b2rt.(kr2.P11 + kl’l.Plz)

m P, models the critical section:

P12 £ enter;.exit;.blwf.Py

Process 1 and Process 2

Process 1

P £ blwt.kw2.Py;
P11 = b2rf.Py,

+ b2rt.(kr2.P1; + kr1.P13)
Pi» £ enter;.exit;.biwf.P;

Process 2

P, = b2wt.kwl.Pyy
P21 £ blrf.Py

+ blrt.(kr1.P2; + kr2.Py)
P22 = entery.exity.b2wf.P;

Tribastone: Formale Spezifikation und Verifikation

biwt —
P, —— kWZ.Pll

kw2

bZV \\Zrt
exity kr ZA\

Pi <— kr2. P11+ krl. P12
entery
exitl.lef.Pl

LTS of P4

10

Peterson’s System

.Bis + biwf.By; + blwt.By,

blrf
birt.By + biwf.Bis + blwt.By;
b2rf
b2r

(1>

Bus
Bt
Bar
Bat
K1
Ka

[I>

(1>

b2rf.Bys + b2wf.Bys + b2wt.Byy
b2rt.By + b2wf.By + b2wt.By
krl.Ky +kwil.K; + kw2.K;
kr2.K, + kwl.K; + kw2.K,
biwt.kw2.Pyg
b2rf.P1; + b2rt.(kr2.P1; + kr1.Py2)
enter;.exit; .b1wf.P;
b2wt kw1.Py;
b1rf.Pay + blrt.(kr1.Pa; + kr2.Py;)

P, £ enter,.exit,.b2wf.P,
Peterson = (Buys | Bar | Ky | Py | P2)\L,

L = {blrf,blrt, biwf, biwt, b2rf, b2rt, b2wf, b2wt, kr1, kwi, kr2, kw2}

Tribastone: Formale Spezifikation und Verifikation 11

> 1>

(1>

2.7
NN R e
>l > >

o
)
N

[[>

[I>

(1>

Verification with CCS Itself

Informal Verification Criterion

At no point in the execution of the algorithm will processes P; and P, be
in their critical sections at the same time.

A Variant

If one process, say Py, is in its critical section, the other process P, may
enter only after P; has exited its critical section.

How can we verify this property?
m Check if Peterson is strongly bisimilar to some other specification.
m Check if Peterson is weakly bisimilar to some other specification.
m Check if Peterson weakly simulates some other specification.

m Combine Peterson with an observer process that emits a bad action
if the critical section is not accessed correctly.

Tribastone: Formale Spezifikation und Verifikation 12

Verification with Equivalence Relations

Informal Verification Criterion

At no point in the execution of the algorithm will processes P; and P, be
in their critical sections at the same time.

MutexSpec £ enter; .exit; .MutexSpec + enter,.exit, .MutexSpec .

Is MutexSpec ~ Peterson?

Using the game characterisation of strong bisimulation:

m Attacker says: MutexSpec enter, exit; .MutexSpec
m Defender loses because no enter; action is enabled by Peterson:

Peterson = (B | By | Ky | kw2.P11 | P2)\L ,and
Peterson = (Bys | Byt | K1 | P1 | kw1.Pop)\L .

Tribastone: Formale Spezifikation und Verifikation 13

Using Weak Bisimulation?

MutexSpec £ enter; .exit; .MutexSpec + enter,.exit, .MutexSpec .

Is MutexSpec ~ Peterson?
Attacker chooses right for a sufficient number of times to have
Peterson = (By | Bat | P12 | P21 | Ko)\L,
to which the defender responds by
MutexSpec = MutexSpec .
Now, the attacher chooses left and says
MutexSpec % exit,.MutexSpec

but the defender does not afford any enter,-transitions.

Tribastone: Formale Spezifikation und Verifikation 14

Weak Simulation

Weak Traces and Weak Trace Equivalence

A weak trace of a process P is a sequence a; - - - ax, k > 1, of
observable actions such that there exists a sequence of transitions

P=Py 2P, &...%p

for some Py, ..., Px. Process P is a weak trace approximation of process
Q if the set of weak traces of P is included in that of Q.

Two processes are weak trace equivalent if the afford the same weak
traces.

Property

If a process does not afford internal transitions then its set of weak traces
coincides with its set of traces.

Tribastone: Formale Spezifikation und Verifikation 15

Weak Simulation

m It is possible to show that Peterson is weak trace equivalent to
MutexSpec.

m However, this is a stronger condition than we need to prove the
correctness of the algorithm.

m We may be content with just verifying that Peterson is a weak trace
approximation of MutexSpec.

Weak Simulation

A binary relation R over the set of states of an LTS is called a weak
simulation iff, whenever s; R s, and « is an action (including 7), if

s1 — s} then there is a transition s, = s}, such that s] R sb.

We say that s’ weakly simulates s iff there is a weak simulation R with
sRs'.

Proposition If s’ weakly simulates s then each weak trace of s is also a
weak trace of s’.

Tribastone: Formale Spezifikation und Verifikation

16

Verification Using CCS lItself: Observer Process

Informal Verification Criterion

At no point in the execution of the algorithm will processes P; and P, be
in their critical sections at the same time.

m Once the observer has seen an enter action, say entery, it goes to a
state where it may see the corresponding exit; action.

m However, in this new state it must not see enter,. If it does observe
enter,, it must emit a bad action highlighting the breach of the
protocol.

m Analogously, if the observer sees enter,, it goes to a state where it
may see exity.

m If it sees enter; instead, then it will emit the bad action.

m Once the correct exit action is observed, the observer goes back to
a state where it may see either enter action.

Tribastone: Formale Spezifikation und Verifikation

17

Formalisation of the Verification Criterion

Informal Verification Criterion

At no point in the execution of the algorithm will processes P; and P, be
in their critical sections at the same time.

Consider the following CCS process:

MutexTest = enter;.MutexTest; + enter,.MutexTest,
MutexTest; £ exit; . MutexTest + enter,.bad.0

MutexTest, £ exit,.MutexTest + enter;.bad.0
and combine it as follows
(Peterson | MutexTest)\M |,

where M = {enters, enter,, exit , exita }.

Tribastone: Formale Spezifikation und Verifikation 18

Verification with Observers

m Indeed, the LTS of (Peterson | MutexTest)\M does not have states
which afford bad transitions.

m The observer does not affect the communicating behaviour inside
Peterson, i.e., the process MutexTest is left unaltered if
Peterson = Peterson’.

Peterson —s Peterson’

Peterson | MutexTest —» Peterson’ | MutexTest

(Peterson | MutexTest)\M =+ (Peterson’ | MutexTest)\M

Tribastone: Formale Spezifikation und Verifikation 19

Commands for ECW -1

Model Declarations

agent Bilf=’birf.Bl1f + blwf.B1f + blwt.Bit;
agent Blt=’blrt.Blt + blwf.Blf + blwt.Blt;

set L={birf,blrt,blwf,blwt,b2rf,b2rt,b2wf,b2wt,krl, kwl, kr2,kw2};
agent Peterson = (B1f | B2f | K1 | P1 | P2) L;

Specification Declarations

agent MutexSpec= enterl.exitl.MutexSpec+enter2.exit2.MutexSpec;

Visualise All Declarations

print;

Tribastone: Formale Spezifikation und Verifikation

20

strongeq(Peterson, MutexSpec) ;

eq(Peterson, MutexSpec);

mayeq (Peterson, MutexSpec);

agent Div = tau.Div;
pre(Peterson | Div, MutexSpec);

