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Discrete-Time Markov Chains
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Outline

From random variables to stochastic processes:

Classification

Discrete-time Markov chains

Sojourn time

Path probabilities

Chapman-Kolmogorov equations

We will use the following notions:

Discrete random variables

Conditional probability

Joint probability

Basics of linear algebra (matrix multiplications)
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Stochastic Processes

A stochastic process is a family of random variables {X (t), t ∈ T}, where
the parameter t usually represents time. The range of X (t) is usually
called the state space of the stochastic process and each value in the range
is called a state.

Therefore, a stochastic process is often intended to characterise the
behaviour of a system as a function of time.

Depending on the nature of X (t) and T , the stochastic process
{X (t), t ∈ T} can be classified as:

Continuous-time, if T is an interval of the reals (typically,
T = {t ∈ R : t ≥ 0})
Discrete-time, if T is discrete (typically, T = N)

Continuous-state, X is a continuous random variable

Discrete-state, X is a discrete random variable
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Markov Chains: Definitions and Notation

A Markov chain is a special class of stochastic processes in which the joint
probability distributions between the random variables of the process enjoy
the memoryless property.

For a discrete-time Markov chain (DTMC) the memoryless property says
that

P
(
X (tn+1) = xn+1 | X (tn) = xn,X (tn−1) = xn−1, . . . ,X (t0) = x0

)
= P

(
X (tn+1) = xn+1 | X (tn) = xn

)
,

for all natural numbers n and for all states xn.

We will often write Xn for X (tn) and designate the states with a single
letter such as i , j , k. For instance, we write P(Xn+1 = i) instead of
P
(
X (tn+1) = xi

)
.
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Markov Chains: Definitions and Notation

Memoryless Property

P
(
X (tn+1) = xn+1 | X (tn) = xn,X (tn−1) = xn−1, . . . ,X (t0) = x0

)
= P

(
X (tn+1) = xn+1 | X (tn) = xn

)
The conditional probabilities

pij(n) = P(Xn+1 = j | Xn = i)

are called the transition probabilities of the Markov chain. The probability
matrix P(n) is formed from the transition probabilities as follows:

P(n) =


p00(n) p01(n) · · · p0j(n) · · ·
p10(n) p11(n) · · · p1j(n) · · ·

...
...

...
...

...
pi0(n) pi1(n) · · · pij(n) · · ·

...
...

...
...

...
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Markov Chain: Properties

P(n) =


p00(n) p01(n) · · · p0j(n) · · ·
p10(n) p11(n) · · · p1j(n) · · ·

...
...

...
...

...
pi0(n) pi1(n) · · · pij(n) · · ·

...
...

...
...

...


Since each element of the matrix is a probability

0 ≤ pij(n) ≤ 1, for all i and j .

Also, for all i , ∑
j

pij(n) = 1.
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Markov Chain: Properties

In general, the transition probabilities depend on the time step n. If

P(Xn+1 = j | Xn = i) = P(Xn+1+m = j | Xn+m = i)

for all n and m ≥ 0 then the Markov chain is said to be time-homogeneous.

In a time-homogenous Markov chain, the transition probabilities and the
probability matrix are denoted by pij and P, respectively (i.e., the
parameter n is dropped because the quantities do not depend on n).

We will mostly be working with time-homogeneous Markov chains from
now on.
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Graphical Representation of a DTMC
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Sample-Path Probabilities

Given that the chain is in state i at time tn, we wish to compute the
probability that it is in state j at time tn+1 and in state k at time tn+2:

P(Xn+2 = k, Xn+1 = j | Xn = i) = P(Xn+2 = k | Xn+1 = j , Xn = i)P(Xn+1 = j | Xn = i)

= P(Xn+2 = k |Xn+1 = j) P(Xn+1 = j | Xn = i)

= pjk(n + 1)pij(n).

(see also tutorial sheet. . . )

In general, given a sample path i , j , k, . . . ,w , z at time steps
tn, tn+1, tn+2, . . . , tn+m−1, tn+m,

P(Xn+m = z ,Xn+m−1 = y , . . . ,Xn+2 = k,Xn+1 = j | Xn = i)

= P(Xn+m = z | Xn+m−1 = y)P(Xn+m−1 = y | Xn+m−2 = x) · · ·
· · ·P(Xn+2 = k | Xn+1 = j)P(Xn+1 = j | Xn = i)

= pyz(n + m − 1)pxy (n + m − 2) · · · pjk(n + 1)pij(n)

= pij(n)pjk(n + 1) · · · pxy (n + m − 2)pyz(n + m − 1).
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Sojourn Time in a DTMC

The probability of the sample path i → i → · · · → i︸ ︷︷ ︸
n

→ j is

pii pii · · · pii︸ ︷︷ ︸
n−1

pij ,

and for some other state k 6= j the probability of the sample path
i → i → · · · → i︸ ︷︷ ︸

n

→ k is

pii pii · · · pii︸ ︷︷ ︸
n−1

pik .

So, the probability that the (n + 1)-th state is not i is

pii pii · · · pii︸ ︷︷ ︸
n−1

1−
∑
j 6=i

pij

 = pn−1
ii (1− pii ).

This is the probability that the chain exits state i after n steps (sojourn
time) and is denoted by the random variable Ri .
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Sojourn Time in a DTMC

Thus, in a time-homogeneous DTMC, the sojourn time Ri of the state i
has the following distribution:

P(Ri = k) =

{
pk−1
ii (1− pii ) if k = 1, 2, . . .

0 otherwise.

This is the geometric distribution. It can be shown that the geometric
distribution is the only discrete random variable which enjoys the
memoryless property, i.e.,

P(Ri > m + n | Ri > m) = P(Ri > n), n > 0.

We have also that

E[Ri ] =
1

1− pii
and Var[Ri ] =

pii

(1− pii )2
.
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Chapman-Kolmogorov Equations

The path probability gives the probability that the chain follows a given
sample path given some initial state. We now wish to compute the
probability that, after m steps from some initial state i , the chain is in
state l , i.e.,

p
(m)
il := P(Xn+m = l | Xn = i).

For example, in a time-homogeneous DTCM with states {i , j , k} we may

wish to compute p
(2)
ik = P(Xn+2 = k | Xn = i).

We compute the probabilities of all possible two-step paths from i to k:

P(Xn+2 = k,Xn+1 = i | Xn = i) = pii pik ,

P(Xn+2 = k,Xn+1 = j | Xn = i) = pij pjk ,

P(Xn+2 = k,Xn+1 = k | Xn = i) = pik pkk ,

Since all these events are disjoint, by the law of total probability

p
(2)
ik = P(Xn+2 = k | Xn = i) = piipik + pijpjk + pikpkk =

∑
z∈{i ,j ,k}

pizpzk .
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A Matrix Interpretation

p
(2)
ik = P(Xn+2 = k | Xn = i) = piipik + pijpjk + pikpkk =

∑
z∈{i ,j ,k}

pizpzk .

A matrix interpretation:

P × P =

 pii pij pik

pji pjj pjk

pki pkj pkk

×
 pii pij pik

pji pjj pjk

pki pkj pkk


(P × P)i ,k = piipik + pijpjk + pikpkk = P(Xn+2 = k | Xn = i)

In general p
(2)
ij = (P2)ij , for a time-homogeneous DTMC.
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Chapman-Kolmogorov Equations

Let us compute

p
(m)
il = P(Xn+m = l | Xn = i)

for m = 3.

The probability of a sample path from i to l has the following general form

P(Xn+3 = l ,Xn+2 = k,Xn+1 = j | Xn = i) = pij pjk pkl .

Applying the law of total probability:

p
(3)
il = P(Xn+3 = l | Xn = i) =

∑
j

∑
k

pijpjkpkl

=
∑

j

pij

∑
k

pjkpkl =
∑

j

pijp
(2)
jl = (P3)il .
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Chapman-Kolmogorov Equations

The result
p

(3)
il = P(Xn+3 = l | Xn = i) =

∑
j

pijp
(2)
jl

may be generalised as follows:

p
(m)
ij := P(Xn+m = j | Xn = i) =

∑
k

p
(l)
ik p

(m−l)
kj , for 0 < l < m.

For a homogeneous DTMC:

p
(m)
ij := P(Xm = j | X0 = i)

=
∑
k

P(Xm = j ,Xl = k | X0 = i) for 0 < l < m

=
∑
k

P(Xm = j | Xl = k,X0 = i)P(Xl = k | X0 = i)

=
∑
k

P(Xm = j | Xl = k)P(Xl = k | X0 = i) =
∑
k

p
(l)
ik p

(m−l)
kj .
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Chapman-Kolmogorov Equations

p
(m)
ij := P(Xn+m = j | Xn = i) =

∑
k

p
(l)
ik p

(m−l)
kj , for 0 < l < m.

In matrix notation,
P(m) = P(l)P(m−l).

For l = 1,
P(m) = P P(m−1) = P(m−1) P = Pm.
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Probability Distribution of a DTMC

Let us define
π

(n)
i := P(Xn = i).

The row vector

π(n) = [π
(n)
0 , π

(n)
1 , . . . , π

(n)
i , . . . , π

(n)
j , . . .]

is called the probability distribution of the DTMC at time n.

Given π(0) of a DTMC with state space I, π(n) may be computed from
the one-step transition probabilities of the DTMC. For all i ∈ I,

π
(1)
i = P(X1 = i) = P(X1 = i | X0 = 0)P(X0 = 0)

+ P(X1 = i | X0 = 1)P(X0 = 1) + . . .

= p0i (0)π
(0)
0 + p1i (0)π

(0)
1 + . . . =

∑
s∈I

psi (0)π
(0)
s .
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Probability Distribution of a DTMC

In matrix notation,
π(1) = π(0)P(0).

Using the same arguments,

π(2) = π(1)P(1) = π(0)P(0)P(1).

If the DTMC is time-homogeneous, this simplifies to

π(2) = π(1)P = π(0)P2.

These results generalise as follows:

π(n) = π(n−1)P(n − 1) = π(0)P(0)P(1) · · ·P(n − 1)

π(n) = π(n−1)P = π(0)Pn.

π(n) is the transient probability distribution of the Markov chain at step n.
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Example: Munich Weather Model

R

C S

0.7 0.1

0.2

0.6

0.3

0.1

0.1

0.5

0.4

P =

0.1 0.3 0.6
0.7 0.2 0.1
0.1 0.5 0.4

 C
R
S

Suppose that π(0) =
[
0.5000 0.5000 0.0000

]
.

π(1) =
[
0.5000 0.5000 0.0000

] 0.1 0.3 0.6
0.7 0.2 0.1
0.1 0.5 0.4

 =
[
0.4000 0.2500 0.3500

]
.

π(2) =
[
0.4000 0.2500 0.3500

] 0.1 0.3 0.6
0.7 0.2 0.1
0.1 0.5 0.4

 =
[
0.2500 0.3450 0.4050

]
.

π(3) =
[
0.2500 0.3450 0.4050

] 0.1 0.3 0.6
0.7 0.2 0.1
0.1 0.5 0.4

 =
[
0.3070 0.3465 0.3465

]
.

π(4) =
[
0.3070 0.3465 0.3465

] 0.1 0.3 0.6
0.7 0.2 0.1
0.1 0.5 0.4

 =
[
0.3079 0.3347 0.3574

]
.

. . .

π(20) =
[
0.3028 0.3380 0.3592

] 0.1 0.3 0.6
0.7 0.2 0.1
0.1 0.5 0.4

 =
[
0.3028 0.3380 0.3592

]
.

π(21) = π(22) = . . . = π(20)
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Limiting Distribution

We observe that there exists

lim
n→∞

π(n)

which is called a limiting distribution of the DTMC.

We need to check some properties on the states of the Markov chain to be
able answer the following questions:

Does it always exist?

Is it unique?

Does it depend on the initial distribution?
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Classification of States

1 2

3 4 5

6 7 8
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State Classification

A state is said to be

Recurrent if the Markov chain may return to the state infinitely often

A recurrent state is said to be periodic of period k if the chain returns
to that state every k time steps.
The mean recurrence time is the average number of steps to return to
a recurrent state.

If it is finite, the state is said to be positive recurrent
Else, the state is null recurrent (this may happen only if the state space
is infinite)

A recurrent state i is absorbing if pii = 1

Transient if there is non-zero probability that the chain will never
return to that state.
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Ergodicity

The period of a periodic state i is defined as the greatest common divisor

of the set of integers n such that p
(n)
ii > 0. If this is equal to one, then the

state is said to be aperiodic. A positive recurrent and aperiodic state is
said to be ergodic. A Markov chain is said to be ergodic if every state is
ergodic.

Example of a non-ergodic DTMC

1

2 3

1.0

0.5

0.5

0.5 0.5
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State Classification

1 2

3 4 5

6 7 8
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Classification of Groups of States

A nonempty subset S of the state space is said to be closed if none of
the states in S have paths that lead outside S in any number of steps.

For instance, an absorbing state is a closed subset of the state space.

A subset that is not closed is said to be open.

If the state space is closed and no proper subset is closed then the
Markov chain is said to be irreducible. Else, the Markov chain is
reducible.

An alternative definition of irreducibility is that for every pair of states

(i , j) there exists at least a path that leads from i to j , i.e., p
(n)
ij > 0

for some n.
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Classification of Groups of States

6 1 2

5 3

4
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Properties of Markov chains

If a Markov chain is finite and irreducible then it is positive recurrent.

The states of an aperiodic, finite, irreducible Markov chain are
ergodic.
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Limiting Distribution

We saw earlier on that the weather model admitted a limiting distribution.
The general definition follows.

Limiting Distribution

Given a transition probability matrix P of a time-homogeneous DTMC and
π(0) an initial probability distribution, if the limit

lim
n→∞

P(n) = lim
n→∞

Pn

exists then the probability distribution

πl := lim
n→∞

π(n) = π(0) lim
n→∞

P(n) = π(0) lim
n→∞

Pn

exists and is called a limiting distribution of the DTMC.
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Results

Limiting Distribution of an Ergodic Chain

If the states of the Markov chain are ergodic, then the limiting distribution
exists and is unique.

The same results holds if the Markov chain is finite, irreducible and
aperiodic because the first two properties imply that the chain is positive
recurrent (see earlier).

If these conditions do not hold, the chain may not have a limiting
distribution . . .
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Example

Consider the following transition probability matrix:

P =

0 1 0
0 0 1
1 0 0


It may be seen that

P2 =

0 0 1
1 0 0
0 1 0

 ,P3 =

1 0 0
0 1 0
0 0 1

 ,P4 =

1 0 0
0 1 0
0 0 1

 , . . .

that is,
P,P2,P3,P4 = P,P5 = P2,P6 = 3,P7 = P, . . .

which clearly does not admit any limiting distribution.
What goes wrong with P?
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Steady-State Distribution

When P(n) converges, different initial conditions may lead to different
limiting distributions.

Steady-state Distribution

A limiting distribution π is a steady-state distribution if it converges,
independently of the initial distribution π(0), to a vector whose
components are strictly positive and sum to 1. If a steady-state
distribution exists, it is unique.

The steady-state distribution gives the distribution of the probability mass
in the Markov chain when the process is sufficiently away from the initial
condition such that it is no influence on the behaviour of the system. For
this reason it is also called the long-run probability distribution.
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Stationary Distribution

Let P be the transition probability matrix of a DTMC, and let the vector
z = (. . . , zj , . . .) be a probability distribution, i.e.,

0 ≤ zj < 1, for all j and
∑

j

zj = 1.

The vector z is said to be a stationary distribution if

z = zP.

Therefore, it follows that

z = zP = zP2 = . . . = zPn = . . .

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Processes 33 / 62



Stationary and Steady-State Distributions

The steady-state distribution gives the distribution after the influence
of the initial condition has passed.

The stationary distribution instead is a distribution that, if reached,
never changes after any length of time.

When a steady-state distribution exists, then that distribution is also
the unique stationary distribution.

However, the existence of a stationary distribution does not imply
that a steady-state distribution exists . . .
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Stationary and Steady-State Distributions

The DTMC with transition probability matrix

P =

0 1 0
0 0 1
1 0 0


has a stationary distribution

[
1/3 1/3 1/3

]
but P(n) does not converge.
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Stationary and Steady-State Distribution

A DTMC may admit more than one stationary distributions. For instance,
given

P =


0.4 0.6 0.0 0.0
0.6 0.4 0.0 0.0
0.0 0.0 0.5 0.5
0.0 0.0 0.5 0.5


all vectors z =

[
α/2, α/2, (1− α)/2, (1− α)/2

]
, 0 ≤ α ≤ 1 are stationary

distributions.

Sufficient Condition for Uniqueness

However, if the Markov chain is finite and irreducible, then a unique
stationary distribution exists. This unique distribution can be found by
solving the linear system of equations

z(P − I ) = 0, and
∑

i

zi = 1.
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Stationary and Steady-State Distribution

In many cases of interest we will be dealing with finite, irreducible,
and aperiodic Markov chains.

For such chains there exist a unique stationary distribution, which is
also the unique steady-state distribution of the chain.

If a stationary distribution exists, it means that in the system of linear
equations

z(P − I ) = 0

the coefficient matrix (P − I ) must be singular, otherwise it would have
the only solution z = 0. Since it is singular, it gives rise to linearly
dependent equations . . .
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Solving for the Stationary Distribution

Given the following time-homogeneous DTMC,

P =

0.1 0.3 0.6
0.7 0.2 0.1
0.1 0.5 0.4


we have that

z(P − I ) =
[
z1 z2 z3

] −0.9 0.3 0.6
0.7 −0.8 0.1
0.1 0.5 −0.6


=


−0.9z1 + 0.7z2 + 0.1z3 = 0
0.3z1 − 0.8z2 + 0.5z3 = 0
0.6z1 + 0.1z2 − 0.6z3 = 0
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Solving for the Stationary Distribution


−0.9z1 + 0.7z2 + 0.1z3 = 0
0.3z1 − 0.8z2 + 0.5z3 = 0
0.6z1 + 0.1z2 − 0.6z3 = 0

Since only two of such equations are sufficient (e.g., the first two), we
replace one (e.g., the third) with the normalising condition

∑
i zi = 1, i.e.:

−0.9z1 + 0.7z2 + 0.1z3 = 0
0.3z1 − 0.8z2 + 0.5z3 = 0
z1 + z2 + z3 = 1

In matrix notation, this corresponds to having the following system of
equations [

z1 z2 z3

] −0.9 0.3 1.0
0.7 −0.8 1.0
0.1 0.5 1.0

 =

0
0
1
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Continuous-Time Markov Chains
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The O Notation

We define for a c ∈ R ∪ {±∞}

f (x) ∈ o(g(x)) for x → c :⇔ lim
x→c

∣∣∣∣ f (x)

g(x)

∣∣∣∣ = 0

f (x) ∈ O(g(x)) for x → c :⇔ lim
x→c

∣∣∣∣ f (x)

g(x)

∣∣∣∣ < ∞,

if g is non-zero for values which are sufficiently close to c .
A common abbreviation is

f1(x) = f2(x) + o(g(x)) :⇔ f1(x)− f2(x) ∈ o(g(x))

f1(x) = f2(x) +O(g(x)) :⇔ f1(x)− f2(x) ∈ O(g(x)) .

For instance

x ∈ O(x2) for x →∞
x2 ∈ o(x) for x → 0

ex =
∞∑

k=0

xk

k!
= 1 + x +

x2

2
+O(x3) for x → 0
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CTMC: Definitions

Like a DTMC, a CTMC is characterised by discrete random variables.
However, unlike a DTMC, time can vary continuously. Without loss of
generality we shall use {t ∈ R : t ≥ 0} as the interval of time in which the
CTMC is defined.

A stochastic process {X (t)} is said to be a CTMC if for all states and for
any sequence t0 < t1 < . . . < tn < tn+1,

P
(
X (tn+1) = xn+1 | X (tn) = xn,X (tn−1) = xn−1, . . . ,X (t0) = x0)

= P
(
X (tn+1) = xn+1 | X (tn) = xn

)
.

Notice that this definition is similar to that of a DTMC, however here
changes of state can happen at any moment in time.
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CTMC: Definitions

As an equivalent definition, we say that the stochastic process {X (t)} is a
CTMC if, for any states i , j , k and for all time points s, t, u such that
t ≥ 0, s ≥ 0, and 0 ≤ u ≤ s, we have that

P
(
X (s + t) = j | X (s) = i ,X (u) = k

)
= P

(
X (s + t) = j | X (s) = i

)
Similarly to the DTMC case, we write

pij(s, t) := P
(
X (t) = j | X (s) = i

)
, for t ≥ s

which is the transition probability for a nonhomogeneous CTMC.
In a time-homogeneous CTMC, the transition probabilities do not depend
on the specific time instants s and t, but only on the difference τ = t − s,

pij(τ) := P
(
X (t + τ) = j | X (t) = i

)
, for τ ≥ 0.

We must have that
∑

j pij(τ) = 1 for any i and all τ .
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Transition Rates

Usually the notion of transition rate is preferred to that of transition
probability when dealing with CTMCs. Since the stochastic process may
change state at any time instant, it makes sense to reason about the speed
at which changes may occur.

Mathematically, this is captured by the following definition of transition
rate:

qij(t) = lim
∆t→0

pij(t, t + ∆t)

∆t
, for i 6= j ,

from which we have

pij(t, t + ∆t) = qij(t)∆t + o(∆t), for i 6= j .

Intuitively, this captures the fact that, as ∆t → 0, the probability of
leaving state i goes to zero.
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Transition Rates

Using
pij(t, t + ∆t) = qij(t)∆t + o(∆t), for i 6= j

and the property of conservation of probability

1 = pii (t, t + ∆t) +
∑
i 6=j

pij(t, t + ∆t),

we may write

pii (t, t + ∆t) = 1−
∑
i 6=j

pij(t, t + ∆t) = 1−
∑
i 6=j

qij(t)∆t + o(∆t).

Therefore

lim
∆t→0

1− pii (t, t + ∆t)

∆t
=
∑
i 6=j

qij(t).

We let qii (t) = −
∑

i 6=j qij(t).
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Generator Matrix

The matrix Q(t) with ij-th element equal to qij(t) is called the generator
matrix of the CTMC.

In general, Q(t) depends on time. However, if the CTMC is time
homogeneous, then the following quantities are independent from t

lim
∆t→0

pij(t, t + ∆t)

∆t
= lim

∆t→0

pij(∆t)

∆t
:= qij ,

qii := −
∑
i 6=j

qij ,

and the generator matrix is written Q.
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Graphical Representation

1

2 3

q12 q13

q23

q21 q31

q32

Q =

−(q12 + q13) q12 q13

q21 −(q21 + q23) q23

q31 q32 −(q31 + q32)


No self loops

The matrix is not stochastic (but the sum across rows equals zero)

qij may be greater than zero!
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CTMC and the Exponential Distribution

Given a non-absorbing state i , define Ti as the sojourn time in i . It can be
shown that, for positive s > 0 and t > 0,

P(Ti > s + t | Ti > s) = P(Ti > t).

That is, the distribution of the residual time is equal to the distribution
itself. But this property is satisfied iff Ti is an exponential distribution,
therefore the sojourn time in a non-absorbing state of a CTMC is
exponentially distributed.
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CTMC and the Exponential Distribution

In a homogeneous CTMC:

The distribution of the time until a transition from state i to j occurs
is exponentially distributed with parameter qij .

Since more states can be reached from a state i , a race condition
occurs. The transition with the fastest time until occurrence is
chosen. This means that the sojourn time is the minimum of a
number of exponentially distributed random variables with rates qij .

But we have seen that the minimum of exponentially distributed
random variables is an exponentially distributed random variable.
Therefore, the sojourn time in state i is exponentially distributed with
parameter

∑
j 6=i qij = −qii .

So, given that the CTMC is in state i the probability that the
transition to some ĵ is made is equal to

qi ĵ∑
j 6=i qij
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Chapman-Kolmogorov Equations

The continuous-time analogue of the Chapman-Kolmogorov equations
seen in the discrete-time case are:

P(X (t) = j | X (s) = i) = pij(s, t) =
∑
k

pik(s, u)pkj(u, t),

for any i and j and s ≤ u ≤ t.
For a homogeneous CTMC, they simplify as follows:

pij(t + ∆t) =
∑
k

pik(t)pkj(∆t) =
∑
k 6=j

pik(t)pkj(∆t) + pij(t)pjj(∆t).

Therefore,

pij(t + ∆t)− pij(t)

∆t
=
∑
k 6=j

pik(t)
pkj(∆t)

∆t
+ pij(t)

(
pjj(∆t)− 1

)
∆t

.

Taking the limit ∆t → 0,

dpij(t)

dt
=
∑
k 6=j

pik(t)qkj + pijqjj =
∑
all k

pik(t)qkj .
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Chapman-Kolmogorov Equations

dpij(t)

dt
=
∑
k 6=j

pik(t)qkj + pijqjj =
∑
all k

pik(t)qkj .

In matrix notation,
dP(t)

dt
= P(t)Q.

These equations are called the Kolmogorov forward equations.
The solution is given by:

P(t) = eQt = I +
∞∑
i=1

Qntn

n!
.

Using pij(t + ∆t) =
∑

k pik(∆t)pkj(t) instead of
pij(t + ∆t) =

∑
k pik(t)pkj(∆t) leads to the Kolmogorov backward

equations:
dP(t)

dt
= QP(t)
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Transient Distribution

We wish to find πi (t) := P
(
X (t) = i

)
for all t and all states i for a

homogeneous CTMC.

πi (t + ∆t) = P
(
X (t + ∆t) = i

)
= P

(
X (t + ∆t) = i | X (t) = 0

)
P
(
X (t) = 0

)
+ P

(
X (t + ∆t) = i | X (t) = 1

)
P
(
X (t) = 1

)
+ . . .

+ P
(
X (t + ∆t) = i | X (t) = k

)
P
(
X (t) = k

)
+ . . .

= pii (∆t)πi (t) +
∑
k 6=i

pki (∆t)πk(t).

πi (t + ∆t)− πi (t) =
(
pii (∆t)− 1

)
πi (t) +

∑
k 6=i

pki (∆t)πk(t)

πi (t + ∆t)− πi (t)

∆t
=

(
pii (∆t)− 1

)
∆t

πi (t) +
∑
k 6=i

pki (∆t)

∆t
πk(t)
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Transient Distribution

πi (t + ∆t)− πi (t)

∆t
=

(
pii (∆t)− 1

)
∆t

πi (t) +
∑
k 6=i

pki (∆t)

∆t
πk(t)

dπi (t)

dt
= qiiπi (t) +

∑
k 6=i

qkiπk(t) =
∑
k

qkiπk(t)

In matrix notation the transient distribution can be written as:

dπ(t)

dt
= π(t)Q.

This is a system of first-order coupled differential equations which has
solution

π(t) = π(0)eQt = π(0)

(
I +

∞∑
i=1

Q i t i

i !

)
,

where π(0) is some initial distribution for the CTMC.
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Numerical Example

1

2 3

1.0 0.5

3.0

4.0 0.1

7.0

Q =

−1.5 1.0 0.5
4.0 −7.0 3.0
0.1 7.0 −7.1


π(0) =

[
1/3 1/3 1/3

]
π(t) = π(0)eQt

π(0.1) =
[
0.4152 0.3347 0.2501

]
π(0.2) =

[
0.4796 0.3119 0.2084

]
π(0.5) =

[
0.5803 0.2588 0.1609

]
π(1.0) =

[
0.6201 0.2353 0.1446

]
π(2.0) = π(5.0) = . . . =

[
0.6266 0.2314 0.1419

]
lim

t→+∞
π(0)eQt =

[
0.6266 0.2314 0.1419

]
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Numerical Example

1

2 3

1.0 0.5

3.0

4.0 0.1

7.0

Q =

−1.5 1.0 0.5
4.0 −7.0 3.0
0.1 7.0 −7.1


π(0) =

[
1 0 0

]
π(t) = π(0)eQt

π(0.1) =
[
0.8772 0.0794 0.0434

]
π(0.2) =

[
0.7954 0.1301 0.0745

]
π(0.5) =

[
0.6785 0.2005 0.1209

]
π(1.0) =

[
0.6339 0.2271 0.1390

]
π(2.0) = π(5.0) = . . . =

[
0.6266 0.2314 0.1419

]
lim

t→+∞
π(0)eQt =

[
0.6266 0.2314 0.1419

]
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Limiting Distribution

When the limit exists, and all its components are strictly positive, and
when the limit is independent from the initial probability distribution π(0)
then the limit is unique and is called the steady-state distribution of the
CTMC.

The chain reaches a condition in which the rate of change of the
probability vector is zero, i.e.

dπ(t)

dt
= πQ = 0.

If the CTMC is finite and irreducible, the steady-state distribution exists.
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Numerical Example

1

2 3

1.0 0.5

3.0

4.0 0.1

7.0

Q =

−1.5 1.0 0.5
4.0 −7.0 3.0
0.1 7.0 −7.1



We observe that[
0.6266 0.2314 0.1419

]
· Q =

[
0 0 0

]
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Global Balance Equations of a CTMC

1

2 3

q12 q13

q23

q21 q31

q32

Q =

q11 q12 q13

q21 q22 q23

q31 q32 q33



[
π1 π2 π3

]
Q = 0 ⇒


π1q11 + π2q21 + π3q31 = 0
π1q12 + π2q22 + π3q32 = 0
π1q13 + π2q23 + π3q33 = 0

⇒


π1q12 + π1q13 = π2q21 + π3q31

π2q21 + π2q23 = π1q12 + π3q32

π3q31 + π3q32 = π1q13 + π2q23

flux out = flux in!
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Stationary Distribution

Analogously to a DTMC, a stationary distribution is nonzero vector π such
that πQ = 0,

∑
i πi = 1 and πi ≥ 0 for all i .

One of the resulting equations is dependent linearly on the others. If the
replacement of an equation with the normalising condition makes the
coefficient matrix non-singular, then the stationary distribution is unique.

A stationary distribution is unique if the CTMC is irreducible and finite. In
this case, it is identical to the steady-state distribution of the Markov
chain.
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Solution Routine

For a finite, irreducible CTMC, in order to obtain the stationary
distribution we need to solve the following system of equations:

πQ = 0, with
∑

i

πi = 1.

Given the singularity of Q, let Q̂ be the coefficient matrix Q where one
column is replaced with a vector of ones. The problem is equivalent to
solving:

πQ̂ =
[
0 0 . . . 1

]
In practice, we (i.e., software tools) can solve systems in the form Ax = b,
with x unknown, therefore the consider the transposed equations instead:

Q̂TπT =


0
0

. . .
1

⇒ πT = (Q̂T )−1


0
0

. . .
1
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Solution Routine

Essentially, the solution methods is the same for both DTMCs and
CTMCs. The difference is that in a DTMC, the coefficient matrix is
formed by replacing one column of P − I with a vector of ones, whereas in
CTMC we replace a column of Q.

Therefore, the numerical solvers available for linear systems of equations in
the form Ax = b can be used for both.
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