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For any real |x| < 1,
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Birth-Death Processes

m Continuous-time Markov chain with states labelled 0,1,...,k,...
m Jumps are only allowed between neighbouring states:

m State 0 may only make a transition to 1.
m A state kK > 0 may make transitions to kK — 1 and k + 1.

Population increases (births) happen at rate Ay > 0.

Population decreases (deaths) happen at rate px > 0.

Births and deaths are independent.

Model assumptions
P(exactly one birth in (t,t + At) | X(t) = k) = AcAt + o(At),
P(exactly zero births in (t,t + At) | X(t) = k) =1 — M\(At + o(At),
P(exactly one death in (t,t + At) | X(t) = k) = ukAt + o(At),
P(exactly zero deaths in (t,t + At) | X(t) = k) =1 — uxAt + o(At).
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Chapman-Kolmogorov Equations of Birth-Death Processes
Denote
pi(t) == P(X(t) = k), k > 0.
By the law of total probability:
po(t + At) = po(t)(1 — NoAt) + u1p1(t)At + o(At),
pi(t + At) = pr_1 () Me1At + pi(t)(1 — AAt)(1 — peAt)
+ Prr1(t) kAt + o(At)
= pro1() M1 At + pi(t) [1 — pue At — MDAt + Aepue At
+ prr1(t) k1At + o(At), for k > 0.
Rearranging yields

po(t + At) — po(t) o(At)

= —Xopo(t) + p1pa(t) +

Af At
pi(t + AAtZ =P8 e 1 (8) — O+ ) pel )
o(At)

t for kK > 0.
+ pr1pr1(t) + Ap 0o

Tribastone (IFI LMU) Performance Modelling of Computer Systems Queueing Theory 4 /30



Chapman-Kolmogorov Equations of Birth-Death Processes

po(t + At) — po(t) o(At)
At opo(t) + papi(t) + N
t+ At) — t
o(At
+ per1prr1(t) + (At ), for k > 0.
Taking the limit At — 0 yields
dpo(t
p;( ) _ —Xopo(t) + papa(t),
t
dp(t
pckig - Ak—1Pk—1(t) = (A + i) pic(t) + pk1prsa(t), k> 0.
Ak+1
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A Generic Recursive Stationary Solution (1/2)

Ak+1

m\\ﬁ\

Hk+1

dpo(t
p3£ ) = —Xopo(t) + p1p1(t),

dpi(t
Pdkt() = )\k—lpk—l(t) — ()\k —+ Mk)Pk(t) + ,l“(_~_1pl(_i_1(1_L)7 k> 0.

Setting dp(t)/dt = 0 for all k > 0 yields

A—1Tk—1 — (Ak + ok )Tk + pks17k+1 = 0,  with \; = pu; =0 for all i < 0.
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A Generic Recursive Stationary Solution (2/2)

Rearranging A\g_1mk—1 — (A + k) Tk + tk+1mk+1 = 0 gives
Ak—1Tk—1 — PkTk = ATk — Jk+1Tk+1 -
g(k)

Observe that
gk —1) = g(k), for all k,

therefore g(k) must be constant with k. From dpy(t)/dt = 0 we get that
g(k) = 0. Therefore, we obtain the recursive solution

\ k=1

k i

7Tk+1:77rk:>77k:7T0H , k=0,1,2,...
Frk+1 i Hit1

product form type
Question: How to compute 77

. 1
Mo =1-— T = — .
2 SR T

k=1 =0 pjgg
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The Poisson Process

Consider a pure-birth process with Ay = A for kK > 0 and px = 0 for k > 0,
and assume that pp(0) = 1 and p,(0) = 0 for all k > 0. The equations

simplify to
dpolt) _ —Apo(t)

dt
dpk(t
PO v (1) — Api(t), k>0,
Solving the first equation po(t) = e, by induction it is proven that

e_)‘t(/\t)k

pe(t) = S— . k=0

This is the Poisson process, a counting process with exponentially
distributed increments with mean 1/\.

(D2 (DD
=\
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Properties of Poisson Process

m Mean:
0 —At
e )\t
E[N(t)] = Z kpe(t) =Y k——22
k=0
k k
At ADY e (At)
- ° Z(/<—1 |~ © Z(/<—1)!
e M(\t) M(At)eM = At.
k=0
m Variance: Var[N(t)] = At.
m Memoryless property:
k oAt
B(N(s. s+ 1) = k) = P €
where N(s,s + t) is defined as the number of arrivals between s and

s+ t.
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Why Are Poisson Processes Relevant?

In addition to mathematical tractability, they model many phenomena:

Arrivals of calls in a telephone network;

Decay of radioactive elements (gamma-ray emissions);

Army soldiers killed due to being kicked by their horses;!

A large number of independent renewal processes will tend to a
Poisson process.

m The birth-death process may be interpreted as a queueing system
where increments (with rate \) denote arrivals of request and
decrements (with rate ) are related to services.

m It is denoted in Kendall notation as the M/M /1 system:

m Exponentially distributed interarrival times;
m Exponentially distributed services;
m Single-server system.

'Kleinrock, Queueing Systems: Volume | — Theory, Wiley Interscience, NY, 1975.
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Kendall's Notation

A queueing system is often denoted by A/B/C/X/Y /Z, where:

A gives the distribution of interarrival times
(eg., M, E, G, D, ...);

B gives the service time distribution;
C gives the service multiplicity (1,2,...,00);
X gives the system capacity;

Y gives the customer population;
Z gives the queue discipline (i.e., FIFO, LIFO, RANDOM, etc.).
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Stationary Distribution of the M/M /1 System (1/2)

Consider again the equations of motion:

dpgit) = —Apo(t) + ppa(1),
dpcl;ift) = Apk—1(t) = (A + ) pic(t) + ppicia(2), k > 0.

We look for a probability vector © = [mo, 71, ..., 7k, .. .| such that

—Amo + pmy =0,
A1 — (A + p)Th + pmpyr = 0, k >0,

(o]
Z m; = 1.
i=0

m From the first equation, w1 = (A/p)mo.
m For k =1, Amg — (A + p)my + pme = 0, from which

T = (N p+ Dm — (N p)mo = (M p)mo.
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Stationary Distribution of the M/M /1 System (2/2)

By induction one can prove that

e = (N p)kmo, for k > 0.

m=1-— Z?Tk =1- Z(A/u)kwo = 7o (1 + Z()\/,u)k> =1
k=1

k=1 k=1
If A\ < p then the series converges. Therefore

1

1
+1—>\/u

Setting p = A/u we obtain

= p*(1 = p), for all k > 0.
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Performance Metrics for the M/M /1 Queue (1/2)

m Mean queue length: average number of customers in the system.

L= kzkm = kzkpk(l —-p)=(1 —p)pz kp*?
=0 =0

— (=Y ot = (=g Y o

k=0 k:

d | p I—p+p P
=g [T5] = = g

m Utilisation: probability that the server is busy.
m Formally, it may be defined as the expected value of a function of the
random variable that underlies the stationary distribution.

if X =
u(X) = 0 i .0,
1 otherwise.

U=E[u(X)] =) p(l-p)=1-m=p.
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Performance Metrics for the M/M /1 Queue (2/2)

m Average response time. We invoke Little’s law, which states that for a

system in steady state
L=\W,

where:

~

is the average number of users in the system;

A is the steady-state rate of arrivals into the system
(which is equal to the throughput, i.e., the steady-state
rate of departures from the system);

W is the average response time.

m In the M/M/1 queue,
P 1 1

A=pX  wl=p) pn—X

W=L/\=
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The M/M /oo System

Service capacity is proportional to the number of customers in the system.

A A A A A A
~
0S0BOBECuon
iz 24 3u (k—1Dp ku

A
ATy = pumy = m1 = —7o
7

AW

By induction, mx = Z(A/p)*mo, k > 0. From the normalisation condition,
k o0 k o0 k
1 /A 1 /A
L () | () =
=1 M k=0 " \H

1 /2
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Performance of the M /M /oo System

m Average queue length

[e'e) [e%¢) 1 A k Y 0 1 A k By
L:Zkﬂ'k: kﬁ <'u> e #:Zkﬂ <'u> e ®
k=0 k=0 k=1
VN S S (A) > 1 <A>“
— o Me 2) M2 -
= e =€
kz_:l(k—l)! <M> Il kz_:l(k—l)' p
QISR (e
") = n \ u M M

m Average response time: W =1/p.
m Question: What is the utilisation?
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The M/M/m System

A multi-server system with finite capacity m.

A A A A A
\/ \/
H wmin(m,?2) wmin(m,3) wmin(m, k) pmin(m, k 4+ 1)

If in the k-th state there are fewer clients than servers then the balance equations are as
in the M/M /oo system, thus yielding

k
ﬂ'kzi A o, forall1 < k< m.
k! \

In state m, Amm—1 + MumTme1 = mumm + Am, leads to:

( A ) A
Tm+l = 14+ — Tm — —TTm—1
mp mu

AN 1 /A A 1 PN
=(l1+—)—= |- mo——F— | — o
mp ) mb\ p mp (m—1)" \ p
AN 1 /A" 1 /A\" A1 /A" 1/ A\
=|1+— | —=|—-) 7"o—— (=) mo=——|—) M= — 0.
mu ) m! \ p m! \ p mu m! \ m \ i
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The M/M/m System

In general, it holds that

1 /A\*
k|<> 0, 1§k§m7
P\ 1w

M1 1\
(,) m'(m) To, fe=m,

from which one obtains
0k 1 /" 1 -
ERO ) ]
kz:lk! 1 m \u/) 1—=X(mp)
Performance Measures
(A )™ 1
W = -
[(m—l)!(mu—w T

_ (A )" A A
t= [(m— 1)!(mu — A)?] A

Tk —

T —
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Comparison

0.6 0.7 0.8 0.9
I
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Finite Capacity: The M/M/1/K System

A A A A
OBOBOBRE0
-
1 1 1 1
Ao = pm,

AT + U = ATp—1 + Umks1, 0< k<K,

ATK 1 = UTK-

A k
T, = () o, k> 0.
1

k=1 k=1 k=0
KON @ M= )R A £
s Lz_% (u) ] :{1/(K+1) if A= s
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Performance Measures for the M/M/1/K System

A A A A
OBOBOBRE0
v
I I 1 1
From

k
mo=(1—=XA/p)/(1- ()\/M)KH) and 7, = (2) m, k>0,

and setting p = \/p,

l-m  1-(1=p)/QA-p"") — (Q-p"*"NH—-(1-p)
1—m 1= (1—p)pK/(1—pK+t1) (1= pK+1) — (1 — p)pK
p— phtt
—o K

which yields the relationship

M1 —7k) = pu(l —mo) [effective arrival rate = effective service rate].
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Measures as Rewards

Consider the following function of a r.v. over the state space of the
M/M/1/K system:

XJMZ{A,Hk¢K

0 ,if k=K.
K K-1

E[Xa] = Zxa(k)ﬂ'k =\ Z T = )\(]_ —_ 7TK)-
k=0 k=0

Similarly, define

Xo(k) = 4 ¥ Jif k #0,
0 ,ifk=0.

S K
E[Xs] =Y Xe(K)me =1y mie = p(1 — mo)
k=0 k=1
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The Erlang Distribution

m Exponential service phases in tandem

Begin @ @ End
m Each phase is defined by a r.v. Y with pdf

fy(y) = pe ", y >0.

m The total service time is given by X = Y + Y, which has pdf

+o00
fu(x) = / Fr (1) (x — y)dy

—0o0
X
:/ Mefuyluefu(xfy)dy
0
2 —ux X 2 X
= u‘e dy = pu“xe M, x > 0.
0

m X is called the Erlang-2 distribution (Ej).
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Properties of the Erlang Distribution

m Mean and Variance
+o0 oo
E[X] = / xfx(x)dx = u2/ x2e Mdx = 2/p,
0 0
Var[X] = 2/p2.

m Compare now an exponentially distributed r.v. with rate 4 and an
Erlang distribution with phase 2.

O, — (=)~

Mean : 1/u Mean : 1/u

Variance : 1/ Variance : 1/2
m Generalisation: the Erlang-r distribution

NN N

Mean : r/pu Variance : r/p?
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The M/E,/1 System

m Features:

m Poisson arrivals;
m Erlang-distributed service with r phases: if a customer is currently
served at phase /, 1 </ < r then no other customer may be served in

any of the other phases;
m Single-server model.
m Model description: a state is described by the pair (k, i) where
m k denotes the number of customer in the system, including the one in

service;
m / denotes the phase of service being received by the customer,
0 < i <r; i =0 when the queue is empty.
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State Transition Diagram for the M/E,/1 System

Analysis techniques:

0,0 C
(0.0) 1. Quasi-birth-death (QBD) form for
A g the transition rate matrix?
(1,1)&(1,2)ﬂ>m7(1,r) [Bo Bii 0 0 0 ]
ru BlO A1 A2 0 0
A A A 0 A A A 0
(2,1)ﬂ>(2,2)ﬂ>~--7(2,r) Q=10 0 A A A
0 0 0 Ay A
A A A . . . .
A ru 2. Using z-transforms®
A A A
ru W\ *W.J. Stewart. Probability, Markov
(k1) —> (k,2) —> - —> (ki) Chains, Queues, and Simulation, 2009,
Princeton University Press.
A A A bKleinrock, Queueing Systems: Volume |
— Theory, Wiley Interscience, NY, 1975.
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