
Performance Modelling of Computer Systems

Mirco Tribastone

Institut für Informatik
Ludwig-Maximilians-Universität München

Differential Approximation of PEPA Models

Tribastone (IFI LMU) Performance Modelling of Computer Systems Fluid PEPA 1 / 24



Motivation

State-space explosion for a large number of sequential components.

Example

Download
def
= (transfer , rd).Think

Think
def
= (think, rt).Download

Upload
def
= (transfer , ru).Log

Log
def
= (log , rl).Upload

System := Download [NC ] BC
{transfer}

Upload [NS ]

NC NS ds(System)

1 1 4
2 2 16

10 10 1048576
NC NS 2NC+NS

Tribastone (IFI LMU) Performance Modelling of Computer Systems Fluid PEPA 2 / 24



Deterministic Approximation

The goal is to find an approximation which is independent from the
population counts of the sequential components.

The approximation is deterministic and is based on a system of
ordinary differential equations (ODEs).

Define

N(t) =
(
N(Dowload , t),N(Think, t),N(Upload , t),N(Log , t)

)
.

The ODEs will have the form dN(t)/dt = F
(
N(t)

)
, in components:

dN(Dowload , t)

dt
= f1

(
N(t)

)
,

dN(Think, t)

dt
= f2

(
N(t)

)
,

dN(Upload , t)

dt
= f3

(
N(t)

)
,

dN(Log , t)

dt
= f4

(
N(t)

)
.

N(t) will be the solution of an initial value problem with

N(0) = (NC , 0,NS , 0).

Tribastone (IFI LMU) Performance Modelling of Computer Systems Fluid PEPA 3 / 24



Some Remarks

These ODEs are different than those obtained from the forward
equations of the continuous-time Markov chain which underlies a
PEPA model.

Firstly, because the state descriptor is different.

Secondly, each of the forward equations gives the time-course
evolution of the probability of being in a state of the chain. Therefore
the total number of equations equals the state space size (which may
get extremely large).

Instead, in the approximating ODEs the number of equations is
independent from the population levels, but it does depend on the
number of local states of the sequential components in the system.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Fluid PEPA 4 / 24



Numerical Vector Form

Consider the initial PEPA process Download [NC ] BC
{transfer}

Upload [NS ].

The following general structure for its derivative set may be inferred:

C1 ‖ C2 ‖ . . . ‖ CNC
BC

{transfer}
S1 ‖ S2 ‖ . . . ‖ SNS

,

with, for all 1 ≤ i ≤ NC and 1 ≤ j ≤ NS ,

Ci ∈ ds(Download) = {Download ,Think},
Sj ∈ ds(Upload) = {Upload , Log}.

The numerical vector form (NVF) is an alternative state representation
which counts how many sequential components exhibit a local state. ∑

Ci=Download

1,
∑

Ci=Think

1,
∑

Sj=Upload

1,
∑

Sj=Log

1


Tribastone (IFI LMU) Performance Modelling of Computer Systems Fluid PEPA 5 / 24



Examples

 ∑
Ci=Download

1,
∑

Ci=Think

1,
∑

Sj=Upload

1,
∑

Sj=Log

1

 ≡ (nd , nt , nu, nl)

Process NVF

Download [NC ] BC
{transfer}

Upload [NS ] (NC , 0,NS , 0)

Download ‖ Think BC
{transfer}

Log ‖ Log (1, 1, 0, 2)

Think ‖ Download BC
{transfer}

Log ‖ Log (1, 1, 0, 2)

Tribastone (IFI LMU) Performance Modelling of Computer Systems Fluid PEPA 6 / 24



Programme

The ODEs are obtained through a continuous-time Markov chain in which
the state descriptor is in the numerical vector form. This CTMC is called
the population-based CTMC.

It needs not be explicitly derived, instead a symbolic representation will
contain all the information necessary to forming the ODEs.

In this way, the behaviour of the ODE solution can be related to that of
the stochastic process, thus justifying the differential approximation
introduced.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Fluid PEPA 7 / 24



Population-based CTMC

Consider a PEPA component P such that there exists P
(α,r)−−−→ P ′, with

r > 0, and ds(P) = {P,P ′}.

The process P[2] = P ‖ P admits the following two derivations

P
(α,r)−−−→ P ′

P ‖ P (α,r)−−−→ P ′ ‖ P
and

P
(α,r)−−−→ P ′

P ‖ P (α,r)−−−→ P ‖ P ′

Similarly, the process P[3] = P ‖ P ‖ P admits three derivations:

P ‖ P ‖ P (α,r)−−−→ P ′ ‖ P ‖ P,

P ‖ P ‖ P (α,r)−−−→ P ‖ P ′ ‖ P,

P ‖ P ‖ P (α,r)−−−→ P ‖ P ‖ P ′.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Fluid PEPA 8 / 24



Array of Components

In general, the process P[np], for any np ∈ N, admits np derivations where
np − 1 components do not change state and one component behaves as P ′:

P ‖ P ‖ . . . ‖ P︸ ︷︷ ︸
np

(α,r)−−−→ P ′ ‖ P ‖ P ‖ . . . ‖ P︸ ︷︷ ︸
np−1

,

P ‖ P ‖ . . . ‖ P︸ ︷︷ ︸
np

(α,r)−−−→ P ‖ . . . ‖ P︸ ︷︷ ︸
i

‖ P ′ ‖ P ‖ . . . ‖ P︸ ︷︷ ︸
np−i−1

, 1 ≤ i ≤ np − 2

P ‖ P ‖ . . . ‖ P︸ ︷︷ ︸
np

(α,r)−−−→ P ‖ . . . ‖ P︸ ︷︷ ︸
np−1

‖ P ′.

In the population-based CTMC, we observe that all target states
correspond to the same state (np − 1, 1), hence one can write

(np, 0)
(α,np×r)−−−−−→ (np − 1, 1)

and this holds for any process P, and for any np, α, and r > 0.
Tribastone (IFI LMU) Performance Modelling of Computer Systems Fluid PEPA 9 / 24



Arrays in Parallel

Therefore, from the knowledge of a single process P
(α,r)−−−→ P ′ we can infer

the behaviour of np such processes in parallel.

Now, let us consider the process P[np] ‖ Q[nq], where ds(Q) = {Q,Q ′}
and there exists Q

(β,s)−−−→ Q ′, s > 0.
According to the semantics of PEPA, we can write np derivations of kind,

P[np] ‖ Q[nq]
(α,r)−−−→ P ‖ . . . ‖ P︸ ︷︷ ︸

i

‖ P ′ ‖ P ‖ . . . ‖ P︸ ︷︷ ︸
np−i−1

‖ Q[nq], 0 ≤ i ≤ np,

and nq derivations of kind

P[np] ‖ Q[nq]
(β,s)−−−→ P[np] ‖ Q ‖ . . . ‖ Q︸ ︷︷ ︸

j

‖ Q ′ ‖ Q ‖ . . . ‖ Q︸ ︷︷ ︸
nq−j−1

, 0 ≤ j ≤ nq.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Fluid PEPA 10 / 24



Arrays in Parallel

In the NVF, these two groups of transitions can be represented as follows:

(np, 0, nq, 0)
(α,np×r)−−−−−→ (np − 1, 1, nq, 0)

(np, 0, nq, 0)
(β,nq×s)−−−−−→ (np, 0, nq − 1, 1)

In general, for a state (np, np′ , nq, nq′), with np′ , nq′ > 0 the transitions
may be written as follows:

(np, np′ , nq, nq′)
(α,np×r)−−−−−→ (np − 1, np′ + 1, nq, nq′)

(np, np′ , nq, nq′)
(α,nq×s)−−−−−→ (np, np′ , nq − 1, nq′ + 1)

(. . . and all transitions in which P ′ and Q ′ are involved)

Again, the population-based transition may be inferred
from the behaviour of the single components

Tribastone (IFI LMU) Performance Modelling of Computer Systems Fluid PEPA 11 / 24



Arrays in Parallel

In, the running example, the initial state Download [NC ] BC
{transfer}

Upload [NS ]

enables us to say that the generic state of the population-based CTMC
will be in the form:

Download [nd ] ‖ Think[nt ] BC
{transfer}

Upload [nu] ‖ Log [nl ]

with state descriptor (nd , nt , nu, nl).

The derivations so far considered allow us to infer transitions for
Download [nd ] ‖ Think[nt ].

Next, we wish to infer derivations for P[np] BC
L
Q[nq], with L 6= ∅, from the

basic synchronisation behaviour of P BC
L
Q.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Fluid PEPA 12 / 24



Synchronisation between Arrays

Let ds(P) = {P,P ′}, P (α,r)−−−→ P ′ and ds(Q) = {Q,Q ′}, Q (α,s)−−−→ Q ′.

P BC
{α}

Q
(α, rr×

s
s
×min(r ,s))

−−−−−−−−−−−→ P ′ BC
{α}

Q ′

Consider now the process P[2] BC
{α}

Q[2].

P[2] BC
{α}

Q[2]
(α, r

2×r×
s

2×s min(2×r ,2×s))
−−−−−−−−−−−−−−−−−→ P ′ ‖ P BC

{α}
Q ′ ‖ Q

P[2] BC
{α}

Q[2]
(α, r

2×r×
s

2×s min(2×r ,2×s))
−−−−−−−−−−−−−−−−−→ P ′ ‖ P BC

{α}
Q ‖ Q ′

P[2] BC
{α}

Q[2]
(α, r

2×r×
s

2×s min(2×r ,2×s))
−−−−−−−−−−−−−−−−−→ P ‖ P ′ BC

{α}
Q ′ ‖ Q

P[2] BC
{α}

Q[2]
(α, r

2×r×
s

2×s min(2×r ,2×s))
−−−−−−−−−−−−−−−−−→ P ‖ P ′ BC

{α}
Q ‖ Q ′

In the NVF (np, np′ , nq, nq′) there is a transition

(2, 0, 2, 0)
4× r

2×r
× s

2×s
min(2×r ,2×s)=min(2×r ,2×s)

−−−−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 1, 1)

Tribastone (IFI LMU) Performance Modelling of Computer Systems Fluid PEPA 13 / 24



Apparent Rate Calculation

Apparent rates can be also inferred from the rates of the individual
components:

rα(P[np]) = np × rα(P)

rα(P[np] ‖ Q[nq]) = np × rα(P) + nq × rα(Q)

rα(P[np] BC
L
Q[nq]) =

{
min(np × rα(P), nq × rα(Q)) if α ∈ L

np × rα(P) + nq × rα(Q) otherwise

. . .

Tribastone (IFI LMU) Performance Modelling of Computer Systems Fluid PEPA 14 / 24



General Procedure

1 Given a PEPA model, the cooperation structure of the process can be
found. For example, Download [NC ] BC

{transfer}
Upload [NS ] gives rise to

Download [nd ] ‖ Think[nt ] BC
{transfer}

Upload [nu] ‖ Log [nl ],

with NVF n = (nd , nt , nu, nl).

2 Interpret the symbols within square brackets (e.g., nd , nt , nu, nl) as
variables. For instance setting nd = NC , nt = nl = 0, nu = NS gives
the initial state.

3 Infer transitions for the generic state (parametric in the counter
variables) from the behaviour of the single components. . .

Tribastone (IFI LMU) Performance Modelling of Computer Systems Fluid PEPA 15 / 24



Parametric Transitions

P
(α,r)−−−→ P ′

P[np]
(α,np×r)−−−−−→∗ P[np − 1] ‖ P ′

For example,

Download
(transfer ,rd )−−−−−−−→ Think

Download [nd ]
(transfer ,nd×rd )−−−−−−−−−−→∗ Download [nd − 1] ‖ Think

.

Upload
(transfer ,ru)−−−−−−−→ Log

Upload [nu]
(transfer ,nu×ru)−−−−−−−−−→∗ Upload [nu − 1] ‖ Log

.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Fluid PEPA 16 / 24



Parametric Transitions

P
(α,rp(n))−−−−−→∗ P ′

P BC
L
Q

(α,rp(n))−−−−−→∗ P ′ BC
L
Q
, α 6∈ L,

Q
(α,rq(n))−−−−−→∗ Q ′

P BC
L
Q

(α,rp(n))−−−−−→∗ P BC
L
Q ′
, α 6∈ L

For example,

Download [nd ]
(transfer,nd×rd )−−−−−−−−−→∗ Download [nd − 1] ‖ Think

Download [nd ] ‖ Think[nt ]
(transfer,nd×rd )−−−−−−−−−→∗ Download [nd − 1] ‖ Think ‖ Think[nt ]

Upload [nu]
(transfer,nu×ru)−−−−−−−−−→∗ Upload [nu − 1] ‖ Log

Upload [nu] ‖ Log [nl ]
(transfer,nu×ru)−−−−−−−−−→∗ Upload [nu − 1] ‖ Log ‖ Log [nl ]

Tribastone (IFI LMU) Performance Modelling of Computer Systems Fluid PEPA 17 / 24



Parametric Transitions

P
(α,rp(n))−−−−−→∗ P ′ Q

(α,rq(n))−−−−−→∗ Q ′

P BC
L
Q

(α,R(n))−−−−−→∗ P ′ BC
L
Q ′

, α ∈ L

R(n) =
rp(n)

rα(P)

rq(n)

rα(Q)
min(rα(P), rα(Q))

For example,

D[nd ] ‖ T [nt ]
(transfer ,nd×rd )−−−−−−−−−−→∗ D[nd − 1] ‖ T [nt + 1]

U[nu] ‖ L[nl ]
(transfer ,nu×ru)−−−−−−−−−→∗ U[nu − 1] ‖ L ‖ L[nl ]

D[nd ] ‖ T [nt ] BC{α}U[nu] ‖ L[nl ]
(transfer ,min(nd rd ,nu ru))−−−−−−−−−−−−−−−→∗

D[nd − 1] ‖ T [nt + 1] BC
{α}

U[nu − 1] ‖ L[nl + 1]

(nd , nt , nu, nl)
(transfer ,min(nd rd ,nu ru))−−−−−−−−−−−−−−−→∗ (nd − 1, nt + 1, nu − 1, nl + 1)

Tribastone (IFI LMU) Performance Modelling of Computer Systems Fluid PEPA 18 / 24



Continuous Approximation

(nd , nt , nu, nl)
(transfer ,min(nd rd ,nu ru))−−−−−−−−−−−−−−−→∗ (nd − 1, nt + 1, nu − 1, nl + 1)

(nd , nt , nu, nl)
(think,nt rt)−−−−−−−→∗ (nd + 1, nt − 1, nu, nl)

(nd , nt , nu, nl)
(log ,nl rl )−−−−−→∗ (nd , nt , nu + 1, nl − 1)

N(t) =
(
N(Dowload , t),N(Think, t),N(Upload , t),N(Log , t)

)
is a vector of

continuous variables.

After one time unit, the population counts of some components change by
an amount equal to the transition rate, e.g.

N(Dowload , t+1) ≈ N(Dowload , t)−min(N(Dowload , t) rd ,N(Upload , t) ru).

We assume that after ∆t time units, components change linearly with this
rate, e.g.

N(Dowload , t + ∆t) = N(Dowload , t)

−min(N(Dowload , t) rd ,N(Upload , t) ru)∆t + o(∆t)

Tribastone (IFI LMU) Performance Modelling of Computer Systems Fluid PEPA 19 / 24



Continuous Approximation

(nd , nt , nu, nl)
(transfer ,min(nd rd ,nu ru))−−−−−−−−−−−−−−−→∗ (nd − 1, nt + 1, nu − 1, nl + 1)

(nd , nt , nu, nl)
(think,nt rt)−−−−−−−→∗ (nd + 1, nt − 1, nu, nl)

(nd , nt , nu, nl)
(log ,nl rl )−−−−−→∗ (nd , nt , nu + 1, nl − 1)

N(Dowload , t + ∆t) = N(Dowload , t)

−min(N(Dowload , t) rd ,N(Upload , t) ru)∆t + o(∆t)

Rearranging and taking the limit ∆t → 0 yields

dN(Download , t)

dt
= −min(N(Dowload , t) rd ,N(Upload , t) ru)

But this is only a partial view of the overall model!

dN(Download , t)

dt
= −min(N(Dowload , t) rd ,N(Upload , t) ru) + N(Think, t)rt

Tribastone (IFI LMU) Performance Modelling of Computer Systems Fluid PEPA 20 / 24



ODE Generation

(nd , nt , nu, nl)
(transfer ,min(nd rd ,nu ru))−−−−−−−−−−−−−−−→∗ (nd − 1, nt + 1, nu − 1, nl + 1)

(nd , nt , nu, nl)
(think,nt rt)−−−−−−−→∗ (nd + 1, nt − 1, nu, nl)

(nd , nt , nu, nl)
(log ,nl rl )−−−−−→∗ (nd , nt , nu + 1, nl − 1)

In general, for a transition n
(α,f (n))−−−−−→ n′ define fα(n, l) := f (n), with l = n′ − n.

The system of ODEs is defined as

dN(t)

dt
=
∑
α

∑
l

lfα
(
N(t), l

)
.

In our example,

dN(t)

dt
= (−1, 1,−1, 1) min(N(Dowload , t) rd ,N(Upload , t) ru)

+ (1,−1, 0, 0)N(Think, t)rt + (0, 0, 1,−1)N(Log , t)rl

Tribastone (IFI LMU) Performance Modelling of Computer Systems Fluid PEPA 21 / 24



ODE Generation

(nd , nt , nu, nl)
(transfer ,min(nd rd ,nu ru))−−−−−−−−−−−−−−−→∗ (nd − 1, nt + 1, nu − 1, nl + 1)

(nd , nt , nu, nl)
(think,nt rt)−−−−−−−→∗ (nd + 1, nt − 1, nu, nl)

(nd , nt , nu, nl)
(log ,nl rl )−−−−−→∗ (nd , nt , nu + 1, nl − 1)

In components:

dN(Download , t)

dt
= −min(N(Dowload , t) rd ,N(Upload , t) ru) + N(Think, t)rt

dN(Think, t)

dt
= + min(N(Dowload , t) rd ,N(Upload , t) ru)− N(Think, t)rt

dN(Upload , t)

dt
= −min(N(Dowload , t) rd ,N(Upload , t) ru) + N(Log , t)rl

dN(Log , t)

dt
= + min(N(Dowload , t) rd ,N(Upload , t) ru)− N(Log , t)rl

Tribastone (IFI LMU) Performance Modelling of Computer Systems Fluid PEPA 22 / 24



Relationship between ODE and CTMC

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

Time

D
en

si
ty

 

 
ODE
N=10
N=100
N=1000

Tribastone (IFI LMU) Performance Modelling of Computer Systems Fluid PEPA 23 / 24



Relationship between ODE and CTMC 14

TABLE 5
Comparison between the expected value of the Markov process and the ODE solution at time t = 20.0. For each
value of n and each coordinate in the NVF are listed the average percentage relative errors and the 5% and 95%

percentiles across the validation set of 200 randomly generated model instances.

n = 1 n = 10 n = 50 n = 100
Component 5% Avg. 95% 5% Avg. 95% 5% Avg. 95% 5% Avg. 95%

Cl :Request 0.09% 19.62% 74.20% 0.01% 5.15% 29.09% 0.01% 1.87% 8.73% 0.01% 1.16% 4.85%
Cl :Wait 0.22% 17.09% 59.36% 0.03% 1.97% 7.57% 0.02% 0.76% 2.60% 0.02% 0.55% 1.70%

Cl :Think 0.70% 31.13% 87.57% 0.09% 2.96% 9.92% 0.06% 1.71% 6.00% 0.07% 1.62% 5.16%
Sr :Wait 0.31% 13.02% 50.49% 0.06% 2.46% 9.66% 0.05% 1.24% 4.56% 0.05% 1.23% 4.14%
Sr :Fresh 0.56% 20.21% 60.54% 0.09% 3.74% 12.81% 0.03% 2.09% 7.03% 0.06% 1.82% 5.68%
Sr :Force 1.20% 31.02% 85.57% 0.29% 4.39% 11.49% 0.22% 3.63% 9.17% 0.21% 3.27% 7.80%
Sr :Write 0.95% 27.68% 80.39% 0.21% 4.14% 12.38% 0.12% 2.91% 9.26% 0.10% 2.64% 8.91%
Sr :Reply 0.26% 24.69% 71.60% 0.07% 3.70% 13.10% 0.04% 1.69% 4.70% 0.05% 1.48% 5.44%

Sr :Repair 0.16% 13.19% 50.63% 0.01% 2.77% 11.37% 0.01% 1.32% 5.32% 0.02% 0.90% 3.92%
Db :Wait 0.01% 3.64% 20.21% 0.01% 0.77% 3.66% 0.01% 0.43% 1.70% 0.01% 0.38% 1.33%

Db :Update 0.04% 4.04% 17.08% 0.03% 1.07% 4.33% 0.01% 0.79% 2.93% 0.01% 0.81% 2.76%
Rb :Gather 0.05% 4.00% 16.56% 0.02% 1.09% 3.54% 0.02% 0.95% 3.23% 0.02% 0.89% 3.52%
Rb :Write 0.03% 2.82% 15.60% 0.02% 1.03% 3.12% 0.02% 0.91% 3.01% 0.01% 0.89% 3.00%

may lead to particularly problematic (or particularly
good) cases. Moreover, some parameter sets may give
rise to stiff differential equations which are difficult to
integrate with explicit numerical solvers. Future work
shall be concerned with these issues. A promising line
of research seems to be, in the context of PEPA, the
use of theoretical error probability bounds of density-
dependent chains [15]. For a numerical investigation
into the quality of the approximation of stiff large-scale
models, the interested reader is referred to [16].

6 RELATED WORK

The earlier work on the deterministic approximation of
Markovian PEPA is due to Hillston [8]. In addition to
the syntactical restrictions to the language discussed in
Section 5.1, another major difference between our work
and [8] concerns methodological aspects. Instead of an
operational semantics for the language, [8] presents an
algorithm for automatic generation of the ODE based on
static inspection of the PEPA description which is not
related to a corresponding CTMC. An alternative deter-
ministic interpretation of PEPA in the style of [8] has
been proposed in [17] for applications to epidemiology,
albeit still with the aforementioned restrictions. The use
of differential equations as the underlying mathematics
of PEPA first appeared in the context of computational
system biology in [18], where the authors present a
methodology for the extraction of differential equations
using a semantics called the reagent-centric view. This
approach deviates significantly from the original inter-
pretation of PEPA—most notably, the semantics of syn-
chronisation captures the biologically interesting mass
action kinetics as opposed to the standard notion of
bounded capacity. Furthermore, unlike our approach, a
sequential component does not represent a single entity
of the system; rather, it is the abstraction of a concentra-
tion level of a species. This accomplishes an orthogonal
goal with respect to ours, as the semantics associates a
sequential component with an entire population instead

of a single entity. Bounded capacity and mass action
kinetics semantics for fluid models are merged in [19],
in which a slight extension to the cooperation operation
is provided to model signalling pathways which exhibit
both kinds of reaction laws. An important contribution
of this work is that the Markov process generated from
the pathway-centric style of [20] is shown to converge
in the limit to the underlying ODE by using Kurtz’s
results [6]. Density dependency and the interpretation
of the ODE as the fluid limit of Markov process is
also investigated in [21], in which some assumptions
on the syntactical structure of the PEPA models are
not removed and the generation of ODE is described
algorithmically.

Apart from the context of PEPA, Cardelli has inves-
tigated the relationship between the deterministic and
the discrete-state representation of the Chemical Ground
Form, a process algebra designed for the modelling of
chemical reactions [22]. In [23], Bortolussi and Policriti
investigate the differential approximation of models of
biochemical models using the stochastic Concurrent Con-
straint Programming process algebra.

A general modelling framework which exploits results
of asymptotic convergence of stochastic processes to a
differential-equation model is that of mean-field anal-
ysis (cfr. [24] and the bibliography therein). Similarly
to our approach, it infers the collective (continuous)
dynamics of a system from the description of a single
participating object, which evolves through a (discrete)
set of states. Mean-field analysis lends itself well to
situations in which all objects have the same behaviour—
indeed, it has been employed in performance studies of
peer-to-peer protocols [25], [26]—and it easily allows for
the modelling of communication between components of
the same kind. Such a form of interaction is not available
within the fluid-flow framework of PEPA because at its
core is the notion of independence among components
of an array. However, the semantics of our approach can
be more readily used in cases where distinct kinds of
interacting objects are to be considered.

Numerical experimentation over 300 randomly generated models. Percentage absolute

error with respect to steady-state stochastic simulation of the PEPA model.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Fluid PEPA 24 / 24


