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Lumpability



Lumpability

Let X be a homogeneous, finite and irreducible CTMC with states
S ={1,...,n} and let the transition rate from i to j be denoted by q(/, ).
Let X = {X1,...,Xn} be a partition of the state space, with

N
XiCS, Xi#0, foralli, X;nX;=0, foralli#j, and UX,-zS.
i=1
We say that X is lumpable with respect to X if, for any X;, Xj € X and

i, Ilr € X;, it holds that
> aling) = alia)).
JEX; JEX;
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Let X = {X1,...,Xn} be a partition of the state space, with

N
XiCS, Xi#0, foralli, X;nX;=0, foralli#j, and UX,-zS.
i=1
We say that X is lumpable with respect to X if, for any X;, Xj € X and
i, Ilr € X;, it holds that

> qling) = alia ).

jex; jex;
Theorem
X yields an aggregated (lumped) CTMC X’ with states {Xi,...,Xn} and

q(Xi, Xj) = Z q(i,j), for an arbitrary i€ X;.
jex;
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Let (m1,...,mn) denote the stationary distribution of X and (7}, ..

the stationary distribution of X'. Then, it holds that

M=) m L<j<N.
i€X;

S TN)




Let (m1,...,m,) denote the stationary distribution of X and (7f,...,m))
the stationary distribution of X'. Then, it holds that

7TJ'-=Z7T/', 1</ <N
i€X;

For instance, let us consider the model
Go & (r, u).C1 G dZEF(t, V).C()
So Z(r,w).5 S1 Z(i,x).5 Sys := Co[N] B So[M] .



Lumpability

Theorem
Let (m1,...,mn) denote the stationary distribution of X and (w}, ..., 7))
the stationary distribution of X'. Then, it holds that

m=) m 1<j<N.

i€X;

For instance, let us consider the model
def

G E(r,u).G G E(t,v).G
So Z(r,w).5 S1 Z(i,x).S Sys := Go[N] X1 So[M] .

m |ds(Sys)| = 2V*M grows exponentially in N and M. Numerical
analysis via explicit state enumeration is infeasible.
m Often, for many performance analyses, it is sufficient to know the

distributions of the populations of the sequential components Cy, (i,
So, and Sj.
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Lumpability — An Example

Let us denote a state in ds(Sys) by (i1, ..., in,j1,---,jm) € {0,1}N+M.

Observing that the populations are given by the function

NN
(s in s i) = (N = ik Y i, M — ij,ZJk

k=1 k=1 k=1 k=1

suggests to construct the partition from the equivalence relation
~ C ds(Sys) x ds(Sys) defined by

(its - oins i i) ~ (s it - du) o

N N M M
Zik = Z'/i N ij = ZJL

k=1 k=1 k=1 k=1
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Lumpability — An Example

Let us denote a state in ds(Sys) by (i1, ..., in,j1,---,jm) € {0,1}N+M.
Observing that the populations are given by the function

N
(s in s i) = (N = ik Y i, M — ij,ZJk

N
k=1 k=1 k=1 k=1

suggests to construct the partition from the equivalence relation
~ C ds(Sys) x ds(Sys) defined by

(s eesing gty o oodm) ~ (i oy i s - )
N N M M
PSR I EDI 2
k=1 k=1 k=1 k=1

Indeed, one can prove that the CTMC of Sys is lumpable with respect to
the partition ds(Sys)/ ~.
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Let us fix X, Xj € ds(Sys)/ ~ and i1, i> € X;. We have to show that

a1 %) = 3 alin ) L 3 a6, /) = aliz, X))

JjeX; JEX;



Lumpability — An Example

Let us fix Xj, Xj € ds(Sys)/ ~ and i1, > € X;. We have to show that

q(in, X;) ==Y alir. j) 0 > alia, ) = a(i2, Xp).

JEX; JEX;

Together with k € {1,2}, X; = [(G}, C¢{, S5, S, X; = [(C}, €L, S8, S1)] we
can infer

m case [(G, ¢, S, S = [(Ch—1,¢] +1,8) — 1, S{ + 1)]:

. u wo . i i i i . i i
qin, Xj) = (uC’ WSl min(uCy, W50)> +(Go - Sg) = min(uCo, wSp)
0 0
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Let us fix Xj, Xj € ds(Sys)/ ~ and i1, > € X;. We have to show that

q(in, X;) ==Y alir. j) 0 > alia, ) = a(i2, Xp).

JEX; JEX;

Together with k € {1,2}, X; = [(C}, Ci, S§, S, X; = [(C), €1, S), S2)] we
can infer

m case [(G, ¢, S, S = [(Ch—1,¢] +1,8) — 1, S{ + 1)]:

u
uCé WS’

q(ix, Xj) = ( min(uC}, WSO)> (Ch - S5) = min(uC§, wS})

m case (), &, 4, SDI = (G + 1, € — 1,54, SI: alix, X)) = v
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u
uCé WS’

q(ix, Xj) = ( min(uC}, WSO)> (Ch - S5) = min(uC§, wS})

m case [(Cé, C{,Sé,sj)] [(CO +1, C’ 1 56,5i)]: q(ix, Xj) = vC1
m case [(C}, Cf, S}, S = (G4, €I, S§+ 1,8 — 1] q(ik, X;) = wS]
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Let us fix Xj, Xj € ds(Sys)/ ~ and i1, > € X;. We have to show that

q(in, X;) ==Y alir. j) 0 > alia, ) = a(i2, Xp).

JEX; JEX;

Together with k € {1,2}, X; = [(C}, Ci, S§, S, X; = [(C), €1, S), S2)] we
can infer

m case [(G, ¢, S, S = [(Ch—1,¢] +1,8) — 1, S{ + 1)]:

u
uCé WS

q(ix, Xj) = ( min(uC}, WSO)> (Ch - S5) = min(uC§, wS})

m case [(C), ¢, S}, S0 = [(Co +1,Cf — 1,5, S]] qlin, X;) = vCi
m case [(C, €1, S, S = [(C4, €I, Sy +1,S) — 1)]: qik, X;) = wS
m otherwise: q(ik, Xj) =0
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Lumpability — An Example

(CO + 17 C]. - 1750751)

v(y

min(uCo, wSp)
(Co, C1, S0, S1) (G-1,G+1,5%—-1,5+1)

x51

(Co, G, S0+ 1,5 —1)

m The transitions out of a state in the lumped CTMC.
m The lumped CTMC has (N + 1)(M + 1) states.
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