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Overview

So far, performance models have been analysed through the solution of a
mathematical problem (i.e., a system of linear equations, a system of
coupled differential equations, etc.).

Simulation is an alternative approach which produces sample traces of the
stochastic process under study.

The generation of these traces requires access to some object which is
capable of providing random numbers.

When implemented on a computer, pseudo-random generators approximate
sequences of random numbers satisfying a desired probability distribution.
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/**

Returns a <code>double</code> value with a positive sign, greater
than or equal to <code>@.0</code> and less than <code>1.0</code>.
Returned values are chosen pseudorandomly with (approximately)
uniform distribution from that range.

<p>When this method is first called, it creates a single new
pseudorandom-number generator, exactly as if by the expression
<blockquote><pre>new java.util.Random</pre></blockquote> This
new pseudorandom-number generator is used thereafter for all
calls to this method and is used nowhere else.

<p>This method is properly synchronized to allow correct use by
more than one thread. However, if many threads need to generate
pseudorandom numbers at a great rate, it may reduce contention
for each thread to have its own pseudorandom-number generator.

LR R I O R R R R I R R

@return a pseudorandom <code>double</code> greater than or equal
* to <code>0.0</code> and less than <code>1.0</code>.

* @see java.util.Random#nextDouble()

*/

public static double
if (randomNumberGenerator == null) initRNGQ);
return randomNumberGenerator.nextDouble();




Pseudo-random Generators: Matlab

rand

Uniformly distributed pseudorandom numbers

Syntax

r = rand(n)
rand(m,n)
rand([m,n])
rand(m,n,p,...)

rand([m,n,p,...])

rand

rand(size(A))

r = rand(..., 'double')

r = rand(..., 'single')
Description

r = rand(n) returns an n-by-n matrix containing pseudorandom values drawn from the standard
uniform distribution on the open interval (0,1). rand(m,n) or rand([m,n]) returns an m-by-n matrix.
rand(m,n,p,...) Orrand([m,n,p,...]) returns an m-by-n-by-p-by-... array. rand returns a
scalar. rand(size(A)) returns an array the same size as A.

r = rand(..., 'double')orr = rand(..., 'single') returns an array of uniform values of the
specified class.
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Discrete-Event Simulation

Discrete-event simulation is a technique in which changes of the state of a
system are determined by the occurrence of some event.

The simulator maintains a global variable, currentTime, which gives
current simulated time (usually initialised to 0).
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Discrete-Event Simulation

Discrete-event simulation is a technique in which changes of the state of a
system are determined by the occurrence of some event.

The simulator maintains a global variable, currentTime, which gives
current simulated time (usually initialised to 0).

An event is an object which has a property called firingTime which gives
the simulated time when the event is scheduled.

The simulator keeps a global scheduler which maintains a list of events
ordered by increasing firing times (the event with the smallest firing time is
at the top of this list).

The simulation algorithm pops the first event off the list, advances
currentTime to the event's firingTime, and changes the state of the
system according to the kind of event being processed.
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Discrete-Event Simulation

When an event is processed, the simulation typically updates some data
structures which are needed to observe the indices of performance of
interest to the modeller.

The processing of an event may in turn generate some other event, which
will be then scheduled according to its firing time.
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Discrete-Event Simulation

When an event is processed, the simulation typically updates some data
structures which are needed to observe the indices of performance of
interest to the modeller.

The processing of an event may in turn generate some other event, which
will be then scheduled according to its firing time.

The algorithm may terminate when the event list is empty.

For ergodic models, the algorithm terminates when a given time horizon is
reached (the event list will never be empty).
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We wish to study a system in which users arrive with exponential
inter-arrival times with mean 1/\, with A > 0. We are interested to know
how many users there are in the system after 10 time units.




Discrete-Event Simulation

Example

We wish to study a system in which users arrive with exponential
inter-arrival times with mean 1/X, with A > 0. We are interested to know
how many users there are in the system after 10 time units.

To simulate this system, we consider the arrival of an user as a discrete
event. When this is processed, we record the current time and the total
number of users at that time. Then, we schedule a new arrival event for
the next user.
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Discrete-Event Simulation

Example

We wish to study a system in which users arrive with exponential
inter-arrival times with mean 1/X, with A > 0. We are interested to know
how many users there are in the system after 10 time units.

To simulate this system, we consider the arrival of an user as a discrete
event. When this is processed, we record the current time and the total
number of users at that time. Then, we schedule a new arrival event for
the next user.

In the object-oriented pseudo-code that we will use, an arrival is a class
which is constructed with a parameter denoting the firing time of the
event.
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Algorithm

currentTime = 0
nUsers =0
Trace = {(currentTime, nUsers) }
new Arrival(currentTime + getRandomExp())
while EventList # () do

arrival = EventList.pop()

currentTime = arrival.firingTime

if currentTime > 10 then

break

end if

nUsers = nUsers + 1

Trace = Trace U {(currentTime, nUsers)}

new Arrival(currentTime + getRandomExp())
end while
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Algorithm

currentTime = 0
nUsers =0
Trace = {(currentTime, nUsers) }
new Arrival(currentTime + getRandomExp())
while EventList # () do

arrival = EventList.pop()

currentTime = arrival.firingTime

if currentTime > 10 then

break

end if

nUsers = nUsers + 1

Trace = Trace U {(currentTime, nUsers)}

new Arrival(currentTime + getRandomExp())
end while

Notes:
m This algorithm may be simplified

m The data structure Trace allows us to plot the sample path obtained
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Suppose that we are interested to know what is the expected number of
users after ten time units: How many traces do we need?



Termination Criteria

Suppose that we are interested to know what is the expected number of
users after ten time units: How many traces do we need?

12
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Average number of users

N

Tribastone (IFI LMU)

200 400 600

Number of replicas

Performance Modelling of Computer Systems

800 1000

Stochastic Simulation

20 / 35



For this particular model we know that the exact expected value is 10.



For this particular model we know that the exact expected value is 10.

After 1000 replications we have a statistical average of 10.290, hence an
absolute relative percentage error

10.000 — 10.290
10.000

% Error = ‘ ‘ x 100 = 2.9%



Termination Criteria

For this particular model we know that the exact expected value is 10.

After 1000 replications we have a statistical average of 10.290, hence an
absolute relative percentage error

10.000 — 10.290
10.000

% Error = ‘ ’ x 100 = 2.9%

A termination condition could be based on this error being less than some
given threshold. Unfortunately, in general we do not know the exact
solution — otherwise we would not simulate the model — therefore
termination conditions must be based on some form of statistical analysis
of the samples obtained.
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We consider a simulation with n runs in which the i-th run gives a random
observation x; (for instance, the total number of users after 10 time units

in the previous example). We assume that x; are independent and
identically distributed.



Confidence Intervals

We consider a simulation with n runs in which the /-th run gives a random
observation x; (for instance, the total number of users after 10 time units

in the previous example). We assume that x; are independent and
identically distributed.

We wish to know the accuracy of the statistical average i = > ; x;.
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Confidence Intervals

We consider a simulation with n runs in which the /-th run gives a random
observation x; (for instance, the total number of users after 10 time units
in the previous example). We assume that x; are independent and
identically distributed.

We wish to know the accuracy of the statistical average i = > ; x;.

A confidence interval for the true mean m is a probability bound of the
kind

Pla<m<b)>¢
where a and b are obtained from the data and £ is a given confidence level
(typically, £ = 0.95 or £ = 0.99).
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Confidence Intervals

For sufficiently large n, an approximate confidence interval for the mean at

level 1 — « is s
N :l: n ,
I Ufﬁ

where s, is the statistical standard deviation

i=1

and 7 is the (1 — «/2) quantile of the normal distribution Np ;.
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Confidence Intervals

For sufficiently large n, an approximate confidence interval for the mean at

level 1 — « is s
N :l: n ,
I Ufﬁ

where s, is the statistical standard deviation

i=1
and 7 is the (1 — «/2) quantile of the normal distribution Np ;.

For a desired « the corresponding value of 1, 7,, is available in
ready-to-use tables. For instance, for 1905 = 1.960 (95% confidence
interval) and 79,01 = 2.576 (99% confidence interval).
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Let us define the percentage error as ‘n /u‘ x 100.



Example

Let us define the percentage error as ‘n\s/"ﬁ/ﬁ’ x 100.

For our Poisson example, we obtained the following results:

Iteration Mean Error 95% Error 99%

1000 10.190 1.882 2,474

5000 9.996 0.871 1.145
10000  9.993 0.619 9.813
15000 10.011 0.506 0.665
20000 10.004 0.438 0.575
25000 10.011 0.391 0.514
30000 9.988 0.358 0.471
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Example

Let us define the percentage error as ‘n\s/"ﬁ/ﬁ’ x 100.

For our Poisson example, we obtained the following results:

Iteration Mean Error 95% Error 99%

1000 10.190 1.882 2,474

5000 9.996 0.871 1.145
10000  9.993 0.619 9.813
15000 10.011 0.506 0.665
20000 10.004 0.438 0.575
25000 10.011 0.391 0.514
30000 9.988 0.358 0.471

To halve the error requires a fourfold increase in the number of samples!
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The method of independent replicas is particularly suited to simulating
models when transient measures are to be estimated.



Steady-State Simulation

The method of independent replicas is particularly suited to simulating
models when transient measures are to be estimated.

The method of batch means instead is preferred when one is interested in
steady-state simulation. With the former method, the average is obtained
across samples. With the latter the average is a time average.
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Steady-State Simulation

The method of independent replicas is particularly suited to simulating
models when transient measures are to be estimated.

The method of batch means instead is preferred when one is interested in
steady-state simulation. With the former method, the average is obtained
across samples. With the latter the average is a time average.

The simulation consists of a single long run of length T, which tracks the
evolution of a performance index, /(t). The average across that index is

given by
1 T
1= — I
fi T/o (t)dt
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Number of Users
N

f= 1_10 x [0 x 0.88 4 1 x (1.69 — 0.88) + 2 x (3.63 — 1.69)+

3 x (3.70 — 3.63) + 4 x (3.79 — 3.70) + 5 x (5.23 — 3.79)+
6 x (5.72—5.23) + 7 x (7.58 — 5.72) + 7 x (8 — 7.58)]



To compute confidence intervals, the single run is divided into b batches of
the same length T /b and the following estimates are computed
b iT/b
fi= = I(t)dt, fori=1,...b
T Ji-v7/b



Accuracy of Steady-State Simulation

To compute confidence intervals, the single run is divided into b batches of
the same length T /b and the following estimates are computed

b [iT/b
fii = = I(t)dt, fori=1,...b
T Ji-11/b

Then, a confidence interval is computed for the fi;, as usual.

Tribastone (IFlI LMU) Performance Modelling of Computer Systems Stochastic Simulation 27 / 35



Accuracy of Steady-State Simulation

To compute confidence intervals, the single run is divided into b batches of
the same length T /b and the following estimates are computed
p [iT/b

fii = = I(t)dt, fori=1,...b
T Ji-11/b

Then, a confidence interval is computed for the fi;, as usual.

Often, the model is subjected to transient removal, i.e., the statistics are
not collected over some initial period of time to exclude those samples
which are related to the stochastic process being away from stationary
conditions.

Tribastone (IFlI LMU) Performance Modelling of Computer Systems Stochastic Simulation 27 / 35



Stochastic Simulation for Java

m Stochastic Simulation for Java is a framework for discrete-event
simulation for Java

m It is freely available at
http://www.iro.umontreal.ca/~simardr/ssj/indexen.html

m It supports a wide array of random number generators, statistics
collectors, a graph visualisation toolkit, etc.
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http://www.iro.umontreal.ca/~simardr/ssj/indexen.html

A Queue

with SSJ

import umontreal.iro.lecuyer.simevents.*;
import umontreal.iro.lecuyer.rng.*;
import umontreal.iro.lecuyer.randvar.*;
import umontreal.iro.lecuyer.stat.*;
import java.util.Linkedlist;

public class QueueEv {

RandomVariateGen genArr;

RandomVariateGen genServ;

LinkedList<Customer> waitList = new LinkedList<Customer> ();
LinkedList<Customer> servList = new LinkedList<Customer> ();
Tally custWaits = new Tally ("Waiting times");
Accumulate totWait = new Accumulate ("Size of queue');

class Customer { double arrivTime, servTime; }

public QueueEv (double lambda, double mu) {
genArr = new ExponentialGen (new MRG32k3a(), lambda);
genServ = new ExponentialGen (new MRG32k3a(), mu);

}

public void simulateOneRun (double timeHorizon) {
Sim.init(Q);
new End0fSim().schedule (timeHorizon);
new Arrival().schedule (genArr.nextDouble());
Sim.start();
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30 class Arrival extends Event {

at public void actions() {

£ new Arrival().schedule (genArr.nextDouble()); // Next arriy
£ Customer cust = new Customer(); // Cust just arrived.
£ cust.arrivTime = Sim.time(Q);

s cust.servTime = genServ.nextDouble();

3 if (servlList.size() > @) { // Must join the queue.
a7 waitlList.addLast (cust);

a8 totWait.update (waitlList.size());

a9 } else { // Starts service.

0 custWaits.add (0.0);

41 servList.addLast (cust);

a2 new Departure().schedule (cust.servTime);

43

44 }

45 }

46 class Departure extends Event {

4 public void actions() {

a8 servList.removeFirst();

49 if (waitlList.size() > @) {

s // Starts service for next one in queue.

st Customer cust = waitlist.removeFirst();

52 totWait.update (waitlList.size());

53 custWaits.add (Sim.time() - cust.arrivTime);

s4 servList.addLast (cust);

55 new Departure().schedule (cust.servTime);

56

57 } }

s8 }
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50 class EndOfSim extends Event {

&1 public void actions() {

62 Sim.stopQ);

63

“« 1

65

66 public static void main (String[] args) {

&7 QueueEv queue = new QueueEv (1.0, 2.0);

] queue.simulateOneRun (1000.0);

&9 System.out.println (queue.custWaits.report());
0 System.out.println (queue.totWait.report());
Kl

2 } }




Monte Carlo Simulation

m Discrete-event simulation does not make assumptions on the
simulated system.

m In particular, no assumptions are made on the probability
distributions.

m Monte Carlo simulation is an algorithm for continuous-time Markov
chain, which exploits the properties of the exponential distribution.
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In a homogeneous CTMC,

At t 4+ At
gj = lim —pU(’ + A1)

Alm At , for all t.
t—



Monte Carlo Simulation

In a homogeneous CTMC,

. pij(t, t+ At)
q;j:AlltrgoT, for all t.
Given a state /, the holding time is exponentially distributed with rate
Zj gij = —qii. Drawing x from a uniform distribution in (0, 1) and
computing

1
y=—In(l-—x
qii ( )
gives a sample of the holding time in i (see early tutorial).
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Monte Carlo Simulation

In a homogeneous CTMC,

. pij(t, t+ At)
q;j:AlltrgoT, for all t.
Given a state /, the holding time is exponentially distributed with rate
Zj gij = —qii. Drawing x from a uniform distribution in (0, 1) and
computing
1
y=—In(l-—x
qii ( )
gives a sample of the holding time in i (see early tutorial).

The probability that the transition from i to k happens is given by
qik/ Zj gij. A sample is obtained by drawing z from a uniform distribution
Zf;ll qij

in (0,1) and choosing the smallest k such that z > ST
j dij
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Transition Selection

9/ G
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t=0

5§5=5

while termination criteria are not satisfied do
draw x, y in U(0,1)
At = qiss In(1— x)

S gy
chose smallest k such that y > z’:;s’
j 9si

t=1t+ At

s=k

record transition from s to k in At units
end while



