
Performance Modelling of Computer Systems

Mirco Tribastone

Institut für Informatik
Ludwig-Maximilians-Universität München

Discrete-Event Simulation

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 1 / 35

Discrete-Event Simulation

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 2 / 35

Overview

So far, performance models have been analysed through the solution of a
mathematical problem (i.e., a system of linear equations, a system of
coupled differential equations, etc.).

Simulation is an alternative approach which produces sample traces of the
stochastic process under study.

The generation of these traces requires access to some object which is
capable of providing random numbers.

When implemented on a computer, pseudo-random generators approximate
sequences of random numbers satisfying a desired probability distribution.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 3 / 35

Pseudo-random Generators: Java

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 4 / 35

Pseudo-random Generators: Matlab

rand
Uniformly distributed pseudorandom numbers

Syntax
r = rand(n)
rand(m,n)
rand([m,n])
rand(m,n,p,...)
rand([m,n,p,...])
rand
rand(size(A))
r = rand(..., 'double')
r = rand(..., 'single')

Description
r = rand(n) returns an n-by-n matrix containing pseudorandom values drawn from the standard
uniform distribution on the open interval (0,1). rand(m,n) or rand([m,n]) returns an m-by-n matrix.
rand(m,n,p,...) or rand([m,n,p,...]) returns an m-by-n-by-p-by-... array. rand returns a
scalar. rand(size(A)) returns an array the same size as A.

r = rand(..., 'double') or r = rand(..., 'single') returns an array of uniform values of the
specified class.

Note Note: The size inputs m, n, p, ... should be nonnegative integers. Negative integers are
treated as 0.

The sequence of numbers produced by rand is determined by the internal state of the uniform
pseudorandom number generator that underlies rand, randi, and randn. The default random number
stream properties can be set using @RandStream methods. See @RandStream for details about
controlling the default stream.

Resetting the default stream to the same fixed state allows computations to be repeated. Setting the
stream to different states leads to unique computations, however, it does not improve any statistical
properties. Since the random number generator is initialized to the same state every time MATLAB
software starts up, rand, randn, and randi will generate the same sequence of numbers in each
session until the state is changed.

Note In versions of MATLAB prior to 7.7, you controlled the internal state of the random
number stream used by rand by calling rand directly with the 'seed', 'state', or
'twister' keywords. That syntax is still supported for backwards compatibility, but is
deprecated. For version 7.7, use the default stream as described in the @RandStream reference
documentation.

Examples
Generate values from the uniform distribution on the interval [a, b].

 r = a + (b-a).*rand(100,1);

Replace the default stream at MATLAB startup, using a stream whose seed is based on clock, so that
rand will return different values in different MATLAB sessions. It is usually not desirable to do this
more than once per MATLAB session.

RandStream.setDefaultStream ...
 (RandStream('mt19937ar','seed',sum(100*clock)));
rand(1,5)

Save the current state of the default stream, generate 5 values, restore the state, and repeat the

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 5 / 35

Discrete-Event Simulation

Discrete-event simulation is a technique in which changes of the state of a
system are determined by the occurrence of some event.

The simulator maintains a global variable, currentTime, which gives
current simulated time (usually initialised to 0).

An event is an object which has a property called firingTime which gives
the simulated time when the event is scheduled.

The simulator keeps a global scheduler which maintains a list of events
ordered by increasing firing times (the event with the smallest firing time is
at the top of this list).

The simulation algorithm pops the first event off the list, advances
currentTime to the event’s firingTime, and changes the state of the
system according to the kind of event being processed.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 6 / 35

Discrete-Event Simulation

Discrete-event simulation is a technique in which changes of the state of a
system are determined by the occurrence of some event.

The simulator maintains a global variable, currentTime, which gives
current simulated time (usually initialised to 0).

An event is an object which has a property called firingTime which gives
the simulated time when the event is scheduled.

The simulator keeps a global scheduler which maintains a list of events
ordered by increasing firing times (the event with the smallest firing time is
at the top of this list).

The simulation algorithm pops the first event off the list, advances
currentTime to the event’s firingTime, and changes the state of the
system according to the kind of event being processed.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 6 / 35

Discrete-Event Simulation

Discrete-event simulation is a technique in which changes of the state of a
system are determined by the occurrence of some event.

The simulator maintains a global variable, currentTime, which gives
current simulated time (usually initialised to 0).

An event is an object which has a property called firingTime which gives
the simulated time when the event is scheduled.

The simulator keeps a global scheduler which maintains a list of events
ordered by increasing firing times (the event with the smallest firing time is
at the top of this list).

The simulation algorithm pops the first event off the list, advances
currentTime to the event’s firingTime, and changes the state of the
system according to the kind of event being processed.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 6 / 35

Discrete-Event Simulation

Discrete-event simulation is a technique in which changes of the state of a
system are determined by the occurrence of some event.

The simulator maintains a global variable, currentTime, which gives
current simulated time (usually initialised to 0).

An event is an object which has a property called firingTime which gives
the simulated time when the event is scheduled.

The simulator keeps a global scheduler which maintains a list of events
ordered by increasing firing times (the event with the smallest firing time is
at the top of this list).

The simulation algorithm pops the first event off the list, advances
currentTime to the event’s firingTime, and changes the state of the
system according to the kind of event being processed.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 6 / 35

Discrete-Event Simulation

Discrete-event simulation is a technique in which changes of the state of a
system are determined by the occurrence of some event.

The simulator maintains a global variable, currentTime, which gives
current simulated time (usually initialised to 0).

An event is an object which has a property called firingTime which gives
the simulated time when the event is scheduled.

The simulator keeps a global scheduler which maintains a list of events
ordered by increasing firing times (the event with the smallest firing time is
at the top of this list).

The simulation algorithm pops the first event off the list, advances
currentTime to the event’s firingTime, and changes the state of the
system according to the kind of event being processed.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 6 / 35

Discrete-Event Simulation

When an event is processed, the simulation typically updates some data
structures which are needed to observe the indices of performance of
interest to the modeller.

The processing of an event may in turn generate some other event, which
will be then scheduled according to its firing time.

The algorithm may terminate when the event list is empty.

For ergodic models, the algorithm terminates when a given time horizon is
reached (the event list will never be empty).

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 7 / 35

Discrete-Event Simulation

When an event is processed, the simulation typically updates some data
structures which are needed to observe the indices of performance of
interest to the modeller.

The processing of an event may in turn generate some other event, which
will be then scheduled according to its firing time.

The algorithm may terminate when the event list is empty.

For ergodic models, the algorithm terminates when a given time horizon is
reached (the event list will never be empty).

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 7 / 35

Discrete-Event Simulation

When an event is processed, the simulation typically updates some data
structures which are needed to observe the indices of performance of
interest to the modeller.

The processing of an event may in turn generate some other event, which
will be then scheduled according to its firing time.

The algorithm may terminate when the event list is empty.

For ergodic models, the algorithm terminates when a given time horizon is
reached (the event list will never be empty).

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 7 / 35

Discrete-Event Simulation

When an event is processed, the simulation typically updates some data
structures which are needed to observe the indices of performance of
interest to the modeller.

The processing of an event may in turn generate some other event, which
will be then scheduled according to its firing time.

The algorithm may terminate when the event list is empty.

For ergodic models, the algorithm terminates when a given time horizon is
reached (the event list will never be empty).

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 7 / 35

Discrete-Event Simulation

Example

We wish to study a system in which users arrive with exponential
inter-arrival times with mean 1/λ, with λ > 0. We are interested to know
how many users there are in the system after 10 time units.

To simulate this system, we consider the arrival of an user as a discrete
event. When this is processed, we record the current time and the total
number of users at that time. Then, we schedule a new arrival event for
the next user.

In the object-oriented pseudo-code that we will use, an arrival is a class
which is constructed with a parameter denoting the firing time of the
event.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 8 / 35

Discrete-Event Simulation

Example

We wish to study a system in which users arrive with exponential
inter-arrival times with mean 1/λ, with λ > 0. We are interested to know
how many users there are in the system after 10 time units.

To simulate this system, we consider the arrival of an user as a discrete
event. When this is processed, we record the current time and the total
number of users at that time. Then, we schedule a new arrival event for
the next user.

In the object-oriented pseudo-code that we will use, an arrival is a class
which is constructed with a parameter denoting the firing time of the
event.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 8 / 35

Discrete-Event Simulation

Example

We wish to study a system in which users arrive with exponential
inter-arrival times with mean 1/λ, with λ > 0. We are interested to know
how many users there are in the system after 10 time units.

To simulate this system, we consider the arrival of an user as a discrete
event. When this is processed, we record the current time and the total
number of users at that time. Then, we schedule a new arrival event for
the next user.

In the object-oriented pseudo-code that we will use, an arrival is a class
which is constructed with a parameter denoting the firing time of the
event.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 8 / 35

Algorithm

currentTime = 0
nUsers = 0
Trace = {(currentTime, nUsers)}
new Arrival(currentTime + getRandomExp())
while EventList 6= ∅ do

arrival = EventList.pop()
currentTime = arrival.firingTime
if currentTime > 10 then

break
end if
nUsers = nUsers + 1
Trace = Trace ∪ {(currentTime, nUsers)}
new Arrival(currentTime + getRandomExp())

end while

Notes:

This algorithm may be simplified

The data structure Trace allows us to plot the sample path obtained

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 9 / 35

Algorithm

currentTime = 0
nUsers = 0
Trace = {(currentTime, nUsers)}
new Arrival(currentTime + getRandomExp())
while EventList 6= ∅ do

arrival = EventList.pop()
currentTime = arrival.firingTime
if currentTime > 10 then

break
end if
nUsers = nUsers + 1
Trace = Trace ∪ {(currentTime, nUsers)}
new Arrival(currentTime + getRandomExp())

end while

Notes:

This algorithm may be simplified

The data structure Trace allows us to plot the sample path obtained

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 9 / 35

Trace of a Simulation Run

0 2 4 6 8 10
0

2

4

6

8

10

12

Time

N
um

be
r

of
 U

se
rs

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 10 / 35

Some Traces

0 2 4 6 8 10
0

2

4

6

8

10

12

Time

N
um

be
r

of
 U

se
rs

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 11 / 35

Some Traces

0 2 4 6 8 10
0

2

4

6

8

10

Time

N
um

be
r

of
 U

se
rs

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 12 / 35

Some Traces

0 2 4 6 8 10
0

2

4

6

8

Time

N
um

be
r

of
 U

se
rs

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 13 / 35

Some Traces

0 2 4 6 8 10
0

2

4

6

8

10

12

Time

N
um

be
r

of
 U

se
rs

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 14 / 35

Some Traces

0 2 4 6 8 10
0

2

4

6

8

10

Time

N
um

be
r

of
 U

se
rs

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 15 / 35

Some Traces

0 2 4 6 8 10
0

2

4

6

8

10

Time

N
um

be
r

of
 U

se
rs

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 16 / 35

Some Traces

0 2 4 6 8 10
0

2

4

6

8

10

12

14

Time

N
um

be
r

of
 U

se
rs

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 17 / 35

Some Traces

0 2 4 6 8 10
0

2

4

6

8

10

Time

N
um

be
r

of
 U

se
rs

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 18 / 35

Some Traces

0 2 4 6 8 10
0

2

4

6

8

10

Time

N
um

be
r

of
 U

se
rs

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 19 / 35

Termination Criteria

Suppose that we are interested to know what is the expected number of
users after ten time units: How many traces do we need?

0 200 400 600 800 1000
7

8

9

10

11

12

Number of replicas

A
ve

ra
ge

 n
um

be
r

of
 u

se
rs

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 20 / 35

Termination Criteria

Suppose that we are interested to know what is the expected number of
users after ten time units: How many traces do we need?

0 200 400 600 800 1000
7

8

9

10

11

12

Number of replicas

A
ve

ra
ge

 n
um

be
r

of
 u

se
rs

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 20 / 35

Termination Criteria

For this particular model we know that the exact expected value is 10.

After 1000 replications we have a statistical average of 10.290, hence an
absolute relative percentage error

% Error =

∣∣∣∣10.000− 10.290

10.000

∣∣∣∣× 100 = 2.9%

A termination condition could be based on this error being less than some
given threshold. Unfortunately, in general we do not know the exact
solution — otherwise we would not simulate the model — therefore
termination conditions must be based on some form of statistical analysis
of the samples obtained.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 21 / 35

Termination Criteria

For this particular model we know that the exact expected value is 10.

After 1000 replications we have a statistical average of 10.290, hence an
absolute relative percentage error

% Error =

∣∣∣∣10.000− 10.290

10.000

∣∣∣∣× 100 = 2.9%

A termination condition could be based on this error being less than some
given threshold. Unfortunately, in general we do not know the exact
solution — otherwise we would not simulate the model — therefore
termination conditions must be based on some form of statistical analysis
of the samples obtained.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 21 / 35

Termination Criteria

For this particular model we know that the exact expected value is 10.

After 1000 replications we have a statistical average of 10.290, hence an
absolute relative percentage error

% Error =

∣∣∣∣10.000− 10.290

10.000

∣∣∣∣× 100 = 2.9%

A termination condition could be based on this error being less than some
given threshold. Unfortunately, in general we do not know the exact
solution — otherwise we would not simulate the model — therefore
termination conditions must be based on some form of statistical analysis
of the samples obtained.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 21 / 35

Confidence Intervals

We consider a simulation with n runs in which the i-th run gives a random
observation xi (for instance, the total number of users after 10 time units
in the previous example). We assume that xi are independent and
identically distributed.

We wish to know the accuracy of the statistical average µ̂ =
∑n

i=1 xi .

A confidence interval for the true mean m is a probability bound of the
kind

P(a < m < b) ≥ ξ

where a and b are obtained from the data and ξ is a given confidence level
(typically, ξ = 0.95 or ξ = 0.99).

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 22 / 35

Confidence Intervals

We consider a simulation with n runs in which the i-th run gives a random
observation xi (for instance, the total number of users after 10 time units
in the previous example). We assume that xi are independent and
identically distributed.

We wish to know the accuracy of the statistical average µ̂ =
∑n

i=1 xi .

A confidence interval for the true mean m is a probability bound of the
kind

P(a < m < b) ≥ ξ

where a and b are obtained from the data and ξ is a given confidence level
(typically, ξ = 0.95 or ξ = 0.99).

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 22 / 35

Confidence Intervals

We consider a simulation with n runs in which the i-th run gives a random
observation xi (for instance, the total number of users after 10 time units
in the previous example). We assume that xi are independent and
identically distributed.

We wish to know the accuracy of the statistical average µ̂ =
∑n

i=1 xi .

A confidence interval for the true mean m is a probability bound of the
kind

P(a < m < b) ≥ ξ

where a and b are obtained from the data and ξ is a given confidence level
(typically, ξ = 0.95 or ξ = 0.99).

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 22 / 35

Confidence Intervals

For sufficiently large n, an approximate confidence interval for the mean at
level 1− α is

µ̂± η sn√
n
,

where sn is the statistical standard deviation

s2
n =

1

n

n∑
i=1

(
xi − µ̂2

n

)
and η is the (1− α/2) quantile of the normal distribution N0,1.

For a desired α the corresponding value of η, ηα, is available in
ready-to-use tables. For instance, for η0.05 = 1.960 (95% confidence
interval) and η0.01 = 2.576 (99% confidence interval).

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 23 / 35

Confidence Intervals

For sufficiently large n, an approximate confidence interval for the mean at
level 1− α is

µ̂± η sn√
n
,

where sn is the statistical standard deviation

s2
n =

1

n

n∑
i=1

(
xi − µ̂2

n

)
and η is the (1− α/2) quantile of the normal distribution N0,1.

For a desired α the corresponding value of η, ηα, is available in
ready-to-use tables. For instance, for η0.05 = 1.960 (95% confidence
interval) and η0.01 = 2.576 (99% confidence interval).

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 23 / 35

Example

Let us define the percentage error as
∣∣∣η sn√

n
/µ̂
∣∣∣× 100.

For our Poisson example, we obtained the following results:

Iteration Mean Error 95% Error 99%

1000 10.190 1.882 2.474
5000 9.996 0.871 1.145

10000 9.993 0.619 9.813
15000 10.011 0.506 0.665
20000 10.004 0.438 0.575
25000 10.011 0.391 0.514
30000 9.988 0.358 0.471

To halve the error requires a fourfold increase in the number of samples!

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 24 / 35

Example

Let us define the percentage error as
∣∣∣η sn√

n
/µ̂
∣∣∣× 100.

For our Poisson example, we obtained the following results:

Iteration Mean Error 95% Error 99%

1000 10.190 1.882 2.474
5000 9.996 0.871 1.145

10000 9.993 0.619 9.813
15000 10.011 0.506 0.665
20000 10.004 0.438 0.575
25000 10.011 0.391 0.514
30000 9.988 0.358 0.471

To halve the error requires a fourfold increase in the number of samples!

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 24 / 35

Example

Let us define the percentage error as
∣∣∣η sn√

n
/µ̂
∣∣∣× 100.

For our Poisson example, we obtained the following results:

Iteration Mean Error 95% Error 99%

1000 10.190 1.882 2.474
5000 9.996 0.871 1.145

10000 9.993 0.619 9.813
15000 10.011 0.506 0.665
20000 10.004 0.438 0.575
25000 10.011 0.391 0.514
30000 9.988 0.358 0.471

To halve the error requires a fourfold increase in the number of samples!

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 24 / 35

Steady-State Simulation

The method of independent replicas is particularly suited to simulating
models when transient measures are to be estimated.

The method of batch means instead is preferred when one is interested in
steady-state simulation. With the former method, the average is obtained
across samples. With the latter the average is a time average.

The simulation consists of a single long run of length T , which tracks the
evolution of a performance index, I (t). The average across that index is
given by

µ̂ =
1

T

∫ T

0
I (t)dt

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 25 / 35

Steady-State Simulation

The method of independent replicas is particularly suited to simulating
models when transient measures are to be estimated.

The method of batch means instead is preferred when one is interested in
steady-state simulation. With the former method, the average is obtained
across samples. With the latter the average is a time average.

The simulation consists of a single long run of length T , which tracks the
evolution of a performance index, I (t). The average across that index is
given by

µ̂ =
1

T

∫ T

0
I (t)dt

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 25 / 35

Steady-State Simulation

The method of independent replicas is particularly suited to simulating
models when transient measures are to be estimated.

The method of batch means instead is preferred when one is interested in
steady-state simulation. With the former method, the average is obtained
across samples. With the latter the average is a time average.

The simulation consists of a single long run of length T , which tracks the
evolution of a performance index, I (t). The average across that index is
given by

µ̂ =
1

T

∫ T

0
I (t)dt

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 25 / 35

Time Average

0 2 4 6 8
0

2

4

6

8

Time

N
um

be
r o

f U
se

rs

µ̂ =
1

10
×
[
0× 0.88 + 1× (1.69− 0.88) + 2× (3.63− 1.69)+

3× (3.70− 3.63) + 4× (3.79− 3.70) + 5× (5.23− 3.79)+

6× (5.72− 5.23) + 7× (7.58− 5.72) + 7× (8− 7.58)
]

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 26 / 35

Accuracy of Steady-State Simulation

To compute confidence intervals, the single run is divided into b batches of
the same length T/b and the following estimates are computed

µ̂i =
b

T

∫ iT/b

(i−1)T/b
I (t)dt, for i = 1, . . . b

Then, a confidence interval is computed for the µ̂i , as usual.

Often, the model is subjected to transient removal, i.e., the statistics are
not collected over some initial period of time to exclude those samples
which are related to the stochastic process being away from stationary
conditions.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 27 / 35

Accuracy of Steady-State Simulation

To compute confidence intervals, the single run is divided into b batches of
the same length T/b and the following estimates are computed

µ̂i =
b

T

∫ iT/b

(i−1)T/b
I (t)dt, for i = 1, . . . b

Then, a confidence interval is computed for the µ̂i , as usual.

Often, the model is subjected to transient removal, i.e., the statistics are
not collected over some initial period of time to exclude those samples
which are related to the stochastic process being away from stationary
conditions.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 27 / 35

Accuracy of Steady-State Simulation

To compute confidence intervals, the single run is divided into b batches of
the same length T/b and the following estimates are computed

µ̂i =
b

T

∫ iT/b

(i−1)T/b
I (t)dt, for i = 1, . . . b

Then, a confidence interval is computed for the µ̂i , as usual.

Often, the model is subjected to transient removal, i.e., the statistics are
not collected over some initial period of time to exclude those samples
which are related to the stochastic process being away from stationary
conditions.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 27 / 35

Stochastic Simulation for Java

Stochastic Simulation for Java is a framework for discrete-event
simulation for Java

It is freely available at
http://www.iro.umontreal.ca/~simardr/ssj/indexen.html

It supports a wide array of random number generators, statistics
collectors, a graph visualisation toolkit, etc.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 28 / 35

http://www.iro.umontreal.ca/~simardr/ssj/indexen.html

A Queue with SSJ

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 29 / 35

A Queue with SSJ

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 30 / 35

A Queue with SSJ

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 31 / 35

Monte Carlo Simulation

Discrete-event simulation does not make assumptions on the
simulated system.

In particular, no assumptions are made on the probability
distributions.

Monte Carlo simulation is an algorithm for continuous-time Markov
chain, which exploits the properties of the exponential distribution.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 32 / 35

Monte Carlo Simulation

In a homogeneous CTMC,

qij = lim
∆t→0

pij(t, t + ∆t)

∆t
, for all t.

Given a state i , the holding time is exponentially distributed with rate∑
j qij = −qii . Drawing x from a uniform distribution in (0, 1) and

computing

y =
1

qii
ln(1− x)

gives a sample of the holding time in i (see early tutorial).

The probability that the transition from i to k happens is given by
qik/

∑
j qij . A sample is obtained by drawing z from a uniform distribution

in (0, 1) and choosing the smallest k such that z >
∑k−1

j=1 qij∑
j qij

.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 33 / 35

Monte Carlo Simulation

In a homogeneous CTMC,

qij = lim
∆t→0

pij(t, t + ∆t)

∆t
, for all t.

Given a state i , the holding time is exponentially distributed with rate∑
j qij = −qii . Drawing x from a uniform distribution in (0, 1) and

computing

y =
1

qii
ln(1− x)

gives a sample of the holding time in i (see early tutorial).

The probability that the transition from i to k happens is given by
qik/

∑
j qij . A sample is obtained by drawing z from a uniform distribution

in (0, 1) and choosing the smallest k such that z >
∑k−1

j=1 qij∑
j qij

.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 33 / 35

Monte Carlo Simulation

In a homogeneous CTMC,

qij = lim
∆t→0

pij(t, t + ∆t)

∆t
, for all t.

Given a state i , the holding time is exponentially distributed with rate∑
j qij = −qii . Drawing x from a uniform distribution in (0, 1) and

computing

y =
1

qii
ln(1− x)

gives a sample of the holding time in i (see early tutorial).

The probability that the transition from i to k happens is given by
qik/

∑
j qij . A sample is obtained by drawing z from a uniform distribution

in (0, 1) and choosing the smallest k such that z >
∑k−1

j=1 qij∑
j qij

.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 33 / 35

Transition Selection

qi1 / qii

qi2 / qii

qi3 / qii

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 34 / 35

Monte Carlo Simulation: Algorithm

t = 0
s = s1

while termination criteria are not satisfied do
draw x , y in U(0, 1)
∆t = 1

qss
ln(1− x)

chose smallest k such that y >
∑k−1

j=1 qsj∑
j qsj

t = t + ∆t
s = k
record transition from s to k in ∆t units

end while

Tribastone (IFI LMU) Performance Modelling of Computer Systems Stochastic Simulation 35 / 35

