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Overview

Overview of classic (untimed) process algebra

Associating exponential distributions to activities

Introduction to the stochastic process algebra PEPA
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Motivation

High-level formalisms for performance evaluation (such as queueing
networks and stochastic Petri nets) satisfy the need to abstract away
from the stochastic process which represents the system under
scrutiny.

Process algebras offer the additional advantage of being
compositional.

The system is constructed in a modular way by composing
communicating components.

The reasoning is also modular. From properties of the individual
components one can infer properties that hold in the system.
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Classic Process Algebras

The Calculus of Communicating Systems by Robin Milner and
Communicating Sequential Processes by Tony Hoare are the
pioneering works in the context of classic process algebras.

They were developed in the 80’s for qualitative reasoning about the
behaviour of distributed computation.
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Formal Definition of CCS

Syntax of CCS

Prefix
a.B after action a the agent becomes B
Constant

K
def
= P assigns the name K to agent P

Parallel composition
A | B agents A and B proceed in parallel
Choice

A + B the agent behaves as A or B depending
on which acts first

Restriction

A\M the set of labels M is hidden from outside
agents

Relabelling
A[a1/a0, ..] in this agent label a1 is renamed a0
Null agent
0 this agent cannot act (deadlock)
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Example

Recalling the consumer-producer problem examined in the previous
tutorial, one may model the system components as follows:

Producer
def
= canProduce.doProduce.Producer

Consumer
def
= canConsume.doConsume.Consumer

Buffer2
def
= canConsume.Buffer1

Buffer1
def
= canProduce.Buffer2 + canConsume.Buffer0

Buffer0
def
= canProduce.Buffer1

System
def
=
((

Producer | Buffer2
)

| Consumer
)
\ {canConsume, canProduce}

Producer and Consumer are usually called sequential agents whereas
System is called a compound agent or process
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Semantics of Process Algebra

An operational semantics allows the interpretation of process algebra
model as a labelled transition system (LTS).
For example we will be able to write transitions of kind((

Producer |Buffer2
)
|Consumer

)
τ−→((

Producer |Buffer1
)
|doConsume.Consumer

)
doConsume−−−−−−−→((

Producer |Buffer1
)
|Consumer

)
...−→ . . .

SOS

Process algebras often use a structured operational semantics, a collection
of inference rules of kind

premise

conclusion
, that is, if premise then conclusion.

(An inference rule with no premise will be an axiom of the language.)
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Structured Operational Semantics

Let A be the set of action names and A be the set of co-names, ranged
over by a and a, respectively. Let Act = A ∪A ∪ {τ}, ranged over by α.
(We also assume that a = a.)

Semantics for a sequential agent:

Browser
def
= display .(cache.Browser + get.download .rel .Browser)

α.P
α−→ P

P
α−→ P ′

P + Q
α−→ P ′

Q
α−→ Q ′

P + Q
α−→ Q ′

Browser

?
display

cache.Browser + get.downloadrel .Browser

?
get

�cache

download .rel .Browser

?
download

rel .Browser

rel

Y
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Semantics of Communication

Concurrent Actions

P
α−→ P ′

P | Q
α−→ P ′ | Q

and
Q

α−→ Q ′

P | Q
α−→ P | Q ′

Synchronised Actions

P
a−→ P ′ Q

a−→ Q ′

P | Q
τ−→ P ′ | Q ′

Hiding

P
α−→ P ′

P\M α−→ P ′\M
, α, α 6∈ M
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Example

Let us compute the LTS for the producer/consumer model:

Producer
def
= canProduce.doProduce.Producer

Consumer
def
= canConsume.doConsume.Consumer

Buffer2
def
= canConsume.Buffer1

Buffer1
def
= canProduce.Buffer2 + canConsume.Buffer0

Buffer0
def
= canProduce.Buffer1

System
def
=
((

Producer | Buffer2
)

| Consumer
)
\ {canConsume, canProduce}
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Qualitative Analysis

The labelled transition system underlying a process algebra model can
be used for functional verification e.g.: reachability analysis,
specification matching and model checking.

Will the system arrive
in a particular state?

- - -

?
��

�

-

�Does system behaviour
match its specification?

-

6

-

?

�

≡? - - -

?
��

�

-

�Does a given property φ
hold within the system?

φ - - -

?
��

�

-

�
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Performance Evaluation Process Algebra

Models are constructed from components which engage in activities.

(α, r).P
* 6

Y

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance modelling.

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram
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PEPA

BNF Syntax

S ::= (α, r).S | S + S | A

P ::= S | P BC
L

P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competing components
(race policy)

CONSTANT: A
def
= S assigning names

COOPERATION: P BC
L

P α /∈ L concurrent activity

(individual actions)
α ∈ L cooperative activity
(shared actions)

HIDING: P/L abstraction α ∈ L⇒ α→ τ

Tribastone (IFI LMU) Performance Modelling of Computer Systems Modelling Techniques 14 / 45



Comments

PEPA is derived from the process algebra CSP.

Although some elements are common to CCS, the semantics of
synchronisation differs substantially.

In PEPA, the synchronisation set is explicit.

There are no co-names, but synchronisation occurs over shared
actions. Unlike CSP, which produces a silent action as the result of
synchronisation, in PEPA the action type is preserved.

For instance, the following transition can be proven:

(α, r1 ).P1 BC
{α}

(α, r2 ).P2
(α,r)−−−→ P1 BC

{α}
P2

In addition to the action type, the transition is labelled with a
resulting rate of execution.
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Timed Synchronisation

The issue of what it means for two timed activities to synchronise is a
vexed one. . .

P1
r1
s 1

P2
r2
s 2

s?

r?

P1
r1
s 1

P2
r2
s 2

r1
s 1

r2
s 2

s = max(s  , s  )1 2

Barrier Synchronisation

P1
r1
s 1

P2
r2
s 2

r1
s 1

r2
s 2

s = max(s  , s  )1 2

s is no longer exponentially distributed

P1
r1
s 1

P2
r2
s 2

s?

r?

algebraic considerations limit choices

P1
r1
s 1

P2
r2
s 2

r1
s 1

r2
s 2

r = r  x r1 2

TIPP: new rate is product of individual rates

P1
r  =?1

P2
r2
s 2

r2
s 2

r = r 2

r  =?1

EMPA: one participant is passive

UNF 738 S

UNLEADED
  PETROL

P1
r1
s 1

P2
r2
s 2

r1
s 1

r2
s 2

1 2r = min(r  , r  )

bounded capacity: new rate is the minimum of the rates

Tribastone (IFI LMU) Performance Modelling of Computer Systems Modelling Techniques 16 / 45



Cooperation in PEPA

In PEPA each component has a bounded capacity to carry out
activities of any particular type, determined by the apparent rate for
that type.

Synchronisation, or cooperation cannot make a component exceed its
bounded capacity.

Thus the apparent rate of a cooperation is the minimum of the
apparent rates of the co-operands.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Modelling Techniques 17 / 45



Operational Semantics of PEPA

S0 :
(α,r).P

(α,r)−−−→P
A0 : P

(α,r)−−−→P′

A
(α,r)−−−→P′

, A
def
= P

S1 : P
(α,r)−−−→P′

P+Q
(α,r)−−−→P′+Q

S2 : Q
(α,r)−−−→Q′

P+Q
(α,r)−−−→P+Q′

C0 : P
(α,r)−−−→P′

P BC
L

Q
(α,r)−−−→P′ BC

L
Q
, α 6∈ L C1 : Q

(α,r)−−−→Q′

P BC
L

Q
(α,r)−−−→P BC

L
Q′
, α 6∈ L

C2 : P
(α,r1)−−−→P′ Q

(α,r2)−−−→Q′

P BC
L

Q
(α,R)−−−→P′ BC

L
Q′
, α ∈ L R = r1

rα(P)
r2

rα(Q) min (rα(P), rα(Q))

H0 : P
(α,r)−−−→P′

P/L
(α,r)−−−→P′/L

, α 6∈ L H1 : P
(α,r)−−−→P′

P/L
(τ,r)−−−→P′/L

, α ∈ L
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Multiway Synchronisation

Fork
def
= (fork , rf ).(join, rj) . . .

W1
def
= (fork , rf1 ).(doWork1 , r1 ) . . .

W2
def
= (fork , rf2 ).(doWork2 , r2 ) . . .

System
def
=
(
Fork BC

{fork}
W1

)
BC
{fork}

W2

P
(α,r)−−−→ P ′

A
(α,r)−−−→ P ′

, A
def
= P =⇒

1
(fork, rf ).(join, rj) . . .

(fork,rf )−−−−→ (join, rj) . . .

Fork
(fork,rf )−−−−→ (join, rj) . . .

2
(fork, rf1 ).(doWork1 , r1 ) . . .

(fork,rf1 )−−−−−→ (doWork1 , r1 ) . . .

W1

(fork,rf1 )−−−−−→ (doWork1 , r1 ) . . .

3
(fork, rf2 ).(doWork2 , r2 ) . . .

(fork,rf2 )−−−−−→ (doWork2 , r2 ) . . .

W2

(fork,rf2 )−−−−−→ (doWork2 , r2 ) . . .
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Multiway Synchronisation

Fork
def
= (fork , rf ).(join, rj) . . .

W1
def
= (fork , rf1 ).(doWork1 , r1 ) . . .

W2
def
= (fork , rf2 ).(doWork2 , r2 ) . . .

System
def
=
(
Fork BC

{fork}
W1

)
BC
{fork}

W2

Fork
(fork,rf )−−−−→ (join, rj) . . . W1

(fork,rf1 )−−−−−→ (doWork1 , r1 ) . . .

Fork BC
{fork}

W1
(fork,r′)−−−−→ (join, rj) . . . BC{fork}

(doWork1 , r1 ) . . . ≡ LHS

LHS W2

(fork,rf2 )−−−−−→ (doWork2 , r2 ) . . .

Fork BC
{fork}

W1 BC
{fork}

W2
(fork,r′′)−−−−−→ (join, rj) . . . BC{fork}

(doWork1 , r1 ) . . . BC{fork}
(doWork2 , r2 ) . . .
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Performance Evaluation
Process Algebra
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Other Communication Patterns

Premium
def
= (dwn, rp).Premium′

Basic
def
= (dwn, rb).Basic ′

S
def
= (dwn, rs).S ′

. . .

System
def
= (Premium ‖ Basic) BC

L
S ,

L = {dwn}

P
(α,r)−−−→ P ′

P BC
L

Q
(α,r)−−−→ P ′ BC

L
Q
, α 6∈ L

Q
(α,r)−−−→ Q ′

P BC
L

Q
(α,r)−−−→ P BC

L
Q ′
, α 6∈ L

P
(α,r1)−−−→ P ′ Q

(α,r2)−−−→ Q ′

P BC
L

Q
(α,R)−−−→ P ′ BC

L
Q ′

, α ∈ L

R =
r1

rα(P)

r2
rα(Q)

min (rα(P), rα(Q))

Premium
(dwn,rp)−−−−−→ Premium′

Premium ‖ Basic
(dwn,rp)−−−−−→ Premium′ ‖ Basic S

(dwn,rs )−−−−−→ S ′

Premium ‖ Basic BC
L

S
(dwn,rps )−−−−−→ Premium′ ‖ Basic BC

L
S ′

System
(dwn,rps )−−−−−→ Premium′ ‖ Basic BC

L
S ′

Basic
(dwn,rb)−−−−−→ Basic ′

Premium ‖ Basic
(dwn,rb)−−−−−→ Premium ‖ Basic ′ S

(dwn,rs )−−−−−→ S ′

Premium ‖ Basic BC
L

S
(dwn,rbs )−−−−−→ Premium ‖ Basic ′ BC

L
S ′

System
(dwn,rbs )−−−−−→ Premium ‖ Basic ′ BC

L
S ′

System

Premium′ ‖ Basic BC
L

S ′ Premium ‖ Basic ′ BC
L

S ′

(dwn, rps) (dwn, rbs)
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Rates in PEPA

PEPA supports the notion of infinite capacity:

(α, r).P , with r ∈ R>0 ∪ {n>, n ∈ N}.

A positive real denotes the rate of the exponential distribution
associated with the activity.

The top symbol > denotes an unspecified (or passive) rate. The rate
will be assigned by other cooperating components in the system.

Passive rates are given weights (naturals) which are useful to
determine the relative probabilities of distinct passive activities to
occur. (1> is usually written > for short.)
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Arithmetic for Passive Rates

m>+ n> = (m + n)>, for any m, n ∈ N

m>
n>

=
m

n
, for any m, n ∈ N

min(r , n>) = r , for any r ∈ R>0 and n ∈ N

min(m>, n>) = min(m, n)>, for any m, n ∈ N

Summation and division between active and passive rates are not
allowed.
For expression of the following kind:

r

s
× m>

n>
, r , s ∈ R>0,m, n ∈ N

we assume that the two divisions have precedence over the
multiplication.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Modelling Techniques 24 / 45



Apparent Rate Calculation

P
(α,r1)−−−→ P ′ Q

(α,r2)−−−→ Q ′

P BC
L

Q
(α,R)−−−→ P ′ BC

L
Q ′

, α ∈ L, R =
r1

rα(P)

r2
rα(Q)

min (rα(P), rα(Q))

rα
(

(β, r) .P
)

=

{
r if β = α
0 if β 6= α

rα(P + Q) = rα(P) + rα(Q)

rα(P BC
L

Q) =

{
min

(
rα(P), rα(Q)

)
if α ∈ L

rα(P) + rα(Q) if α 6∈ L

rα(P/L) =

{
rα(P) if α 6∈ L
0 if α ∈ L

Components which are both active and passive with respect to some
action type are not allowed, e.g. (α, 1.0).P + (α,>).P.
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Examples

For r1, r2 positive reals,

(α, r1).P1
(α,r1)−−−→ P1 (α, r2).P2

(α,r2)−−−→ P2

(α, r1).P1 BC
{α}

(α, r2).P2
(α,R)−−−→ P1 BC

{α}
P2

,

where

R =
r1

rα
(
(α, r1).P1

) r2

rα
(
(α, r2).P2

) min
(

rα
(
(α, r1).P1

)
, rα
(
(α, r2).P2

))
=

r1
r1

r2
r2

min(r1, r2) = min(r1, r2).

We recover the intuitive definition of the minimum between the two rates.
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Examples

For r a positive real,

(α, r).P1
(α,r)−−−→ P1 (α,>).P2

(α,>)−−−→ P2

(α, r).P1 BC
{α}

(α,>).P2
(α,R)−−−→ P1 BC

{α}
P2

,

where

R =
r

rα
(
(α, r).P1

) >
rα
(
(α,>).P2

) min
(

rα
(
(α, r).P1

)
, rα
(
(α,>).P2

))
=

r

r

>
>

min(r ,>) = r .

We recover the intuitive definition of infinite capacity — the rate of
synchronisation is determined by the active component.
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Examples

For r a positive real and any natural n,

(α, r).P1
(α,r)−−−→ P1 (α, n>).P2

(α,n>)−−−−→ P2

(α, r).P1 BC
{α}

(α, n>).P2
(α,R)−−−→ P1 BC

{α}
P2

,

where

R =
r

rα
(
(α, r).P1

) n>
rα
(
(α, n>).P2

) min
(

rα
(
(α, r).P1

)
, rα
(
(α, n>).P2

))
=

r

r

n>
n>

min(r , n>) = r .

Passive weights may not affect the overall rate if only one passive
component is present.

Tribastone (IFI LMU) Performance Modelling of Computer Systems Modelling Techniques 28 / 45



(Slightly More Complicated) Examples

Act
def
= (α, r).Act ′

Pas
def
= (α, 1>).Pas ′ + (α, 2>).Pas ′′

Sys
def
= Act BC

{α}
Pas

(α, r).Act ′
(α,r)−−−→ Act ′

Act
(α,r)−−−→ Act ′

(α, 1>).Pas ′
(α,1>)−−−−→ Pas ′

(α, 1>).Pas ′ + (α, 2>).Pas ′′
(α,1>)−−−−→ Pas ′

Pas
(α,1>)−−−−→ Pas ′

Act BC
{α}

Pas
(α,R′)−−−−→ Act ′ BC

{α}
Pas ′

Sys
(α,R′)−−−−→ Act ′ BC

{α}
Pas ′

,

R ′ =
r

rα(Act)

1>
rα(Pas)

min
(
rα(Act), rα(Pas)

)
=

r

r

1>
1>+ 2>

min(r , 1>+2>) =
1

3
r .
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(Slightly More Complicated) Examples

Act
def
= (α, r).Act ′

Pas
def
= (α, 1>).Pas ′ + (α, 2>).Pas ′′

Sys
def
= Act BC

{α}
Pas

It is also possible to prove the following derivation tree:

(α, r).Act ′
(α,r)−−−→ Act ′

Act
(α,r)−−−→ Act ′

(α, 2>).Pas ′′
(α,2>)−−−−→ Pas ′′

(α, 1>).Pas ′ + (α, 2>).Pas ′′
(α,2>)−−−−→ Pas ′′

Pas
(α,2>)−−−−→ Pas ′′

Act BC
{α}

Pas
(α,R′′)−−−−→ Act ′ BC

{α}
Pas ′′

Sys
(α,R′′)−−−−→ Act ′ BC

{α}
Pas ′′

,

R ′′ =
r

rα(Act)

2>
rα(Pas)

min
(
rα(Act), rα(Pas)

)
=

r

r

2>
1>+ 2>

min(r , 1>+2>) =
2

3
r .
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(Slightly More Complicated) Examples

Act
def
= (α, r).Act ′

Pas
def
= (α, 1>).Pas ′ + (α, 2>).Pas ′′

Sys
def
= Act BC

{α}
Pas

Sys

Act ′ BC
{α}

Pas ′ Act ′ BC
{α}

Pas ′′

(α, 1/3r) (α, 2/3r)
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Apparent Rates in Active Cooperation

Cli
def
= (α, rd).Cli ′

Ser
def
= (α, ru).Ser ′

Sys
def
= (Cli ‖ Cli) BC

{α}
Ser

(α, rd).Cli ′
(α,rd )−−−→ Cli ′

Cli
(α,rd )−−−→ Cli ′

Cli ‖ Cli
(α,rd )−−−→ Cli ′ ‖ Cli

(α, ru).Ser ′
(α,ru)−−−→ Ser ′

Ser
(α,ru)−−−→ Ser ′

Cli ‖ Cli BC
{α}

Ser
(α,R′)−−−−→ Cli ′ ‖ Cli BC

{α}
Ser ′

,

R ′ =
rd

rd + rd

ru
ru

min(rd + rd , ru) =
1

2
min(rd + rd , ru)
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Apparent Rates in Active Cooperation

Cli
def
= (α, rd).Cli ′

Ser
def
= (α, ru).Ser ′

Sys
def
= (Cli ‖ Cli) BC

{α}
Ser

The following derivation tree can also be proven:

(α, rd).Cli ′
(α,rd )−−−→ Cli ′

Cli
(α,rd )−−−→ Cli ′

Cli ‖ Cli
(α,rd )−−−→ Cli ‖ Cli ′

(α, ru).Ser ′
(α,ru)−−−→ Ser ′

Ser
(α,ru)−−−→ Ser ′

Cli ‖ Cli BC
{α}

Ser
(α,R′′)−−−−→ Cli ‖ Cli ′ BC

{α}
Ser ′

,

R ′′ =
rd

rd + rd

ru
ru

min(rd + rd , ru) =
1

2
min(rd + rd , ru) = R ′
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Apparent Rates in Active Cooperation

Cli
def
= (α, rd).Cli ′

Ser
def
= (α, ru).Ser ′

Sys
def
= (Cli ‖ Cli) BC

{α}
Ser

Cli ‖ Cli BC
{α}

Ser

Cli ′ ‖ Cli BC
{α}

Ser ′ Cli ‖ Cli ′ BC
{α}

Ser ′

(
α, 1/2 min(2 rd , ru)

) (
α, 1/2 min(2 rd , ru)

)
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Labelled Transition System: Details

Derivative Set

Given a PEPA component P, the derivative set of P, denoted by ds(P) is defined
as the smallest set of components such that

P ∈ ds(P);

if P
(α,r)−−−→ P ′ then P ′ ∈ ds(P).

Derivation Graph

Let A be a set of action labels and Act = {| (α, r) : α ∈ A, r ∈ R>0|}. The
derivation graph of a component P has ds(P) as the set of nodes.
The multiset of arcs A ∈ ds(P)× ds(P)×Act is such that

P
(α,r)−−−→ P ′ =⇒

(
P,P ′, (α, r)

)
∈ A,

with multiplicity equal to the number of distinct derivations P
(α,r)−−−→ P ′.
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Why Multisets

P
def
= (α, r).P ′ P

def
= (α, r).P ′ + (α, r).P ′ . . . P

def
=
∑

n(α, r).P ′

If distinct inference trees were not taken into account, then the

derivation graph would have only one transition P
(α,r)−−−→ P ′.

With a multiset, we have one, two, . . . , n such transitions,
respectively.

Intuitively, this capture the fact that process P has different apparent
rates in these cases.
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An Algorithm for State-Space Derivation

ds(P0)⇐ {P0}
push P0 onto Stack
while Stack is not empty do

pop P off Stack
infer multiset

(
P,P ′, (α, r)

)
from P

for all
(
P,P ′, (α, r)

)
do

if P ′ 6∈ ds(P0) then
push P ′ onto Stack
add P ′ to ds(P0)

end if
end for

end while
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The Underlying Markov Process

Let P0 be the initial state of the system.

Assign a state to each process in ds(P0).

For each triple
(
P,P ′, (α, r)

)
with multiplicity m,

assign rate m r to the transition between P and P ′.

Well-Formedness

Note that all leaves of the derivation trees must have rates in the
(strictly) positive reals.

This means that passive actions must eventually synchronise with an
active ones.

Models that do not satisfy this condition are rejected.

For example,
(α,>).P BC

{α}
(α,>).Q

will be rejected for any P and Q.
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Consumer/Producer in PEPA

Cons1
def
= (get, rg ).Cons2

Cons2
def
= (cons, rc).Cons1

Prod1
def
= (make, rm).Prod2

Prod2
def
= (put, rp).Prod1

Buf2
def
= (get,>).Buf1

Buf1
def
= (get,>).Buf0

+ (put,>).Buf2

Buf0
def
= (put,>).Buf1

Sys
def
= Cons1 BC

{get}
Buf2 BC

{put}
Prod1

Possible variants:

A buffer with n places:

Bufn
def
= (get,>).Bufn−1

Bufi
def
= (get,>).Bufi−1

+ (put,>).Bufi+1 ,

for 1 ≤ i ≤ n − 1

Buf0
def
= (put,>).Buf1

and k consumers:

k︷ ︸︸ ︷
Cons1 ‖ Cons1 ‖ . . . ‖ Cons1

BC
{get}

Bufn BC
{put}

Prod1
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Consumer/Producer in PEPA

Cons1
def
= (get, rg ).Cons2 Prod1

def
= (make, rm).Prod2

Cons2
def
= (cons, rc).Cons1 Prod2

def
= (put, rp).Prod1

Buf2
def
= (get,>).Buf1 Buf1

def
= (get,>).Buf0 + (put,>).Buf2

Buf0
def
= (put,>).Buf1 Sys

def
= Cons1 BC

{get}
Buf2 BC

{put}
Prod1

Cons1
(get,rg )−−−−→ Cons2 Buf2

(get,>)−−−−→ Buf1

Cons1 BC
{get}

Buf2
(get,rg )−−−−→ Cons2 BC

{get}
Buf1

Cons1 BC
{get}

Buf2 BC
{put}

Prod1
(get,rg )−−−−→ Cons2 BC

{get}
Buf1 BC

{put}
Prod1

Sys
(get,rg )−−−−→ Cons2 BC

{get}
Buf1 BC

{put}
Prod1

Can we prove anything else for Sys?
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Consumer/Producer in PEPA

Cons1
def
= (get, rg ).Cons2 Prod1

def
= (make, rm).Prod2

Cons2
def
= (cons, rc).Cons1 Prod2

def
= (put, rp).Prod1

Buf2
def
= (get,>).Buf1 Buf1

def
= (get,>).Buf0 + (put,>).Buf2

Buf0
def
= (put,>).Buf1 Sys

def
= Cons1 BC

{get}
Buf2 BC

{put}
Prod1

Prod1
(make,rm)−−−−−−→ Prod2

Cons1 BC
{get}

Buf2 BC
{get}

Prod1
(make,rm)−−−−−−→ Cons1 BC

{get}
Buf2 BC

{put}
Prod2

Sys
(make,rm)−−−−−−→ Cons1 BC

{get}
Buf2 BC

{put}
Prod2

Summarising, the following transitions were found:

Sys
(get,rg )−−−−→Cons2 BC

{get}
Buf1 BC

{put}
Prod1

Sys
(make,rm)−−−−−−→Cons1 BC

{get}
Buf2 BC

{put}
Prod2
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Consumer/Producer in PEPA

Cons1
def
= (get, rg ).Cons2 Prod1

def
= (make, rm).Prod2

Cons2
def
= (cons, rc).Cons1 Prod2

def
= (put, rp).Prod1

Buf2
def
= (get,>).Buf1 Buf1

def
= (get,>).Buf0 + (put,>).Buf2

Buf0
def
= (put,>).Buf1 Sys

def
= Cons1 BC

{get}
Buf2 BC

{put}
Prod1

Popping Cons2 BC
{get}

Buf1 BC
{put}

Prod1 off the stack,

Cons2
(cons,rc )−−−−−→ Cons1

Cons2 BC
{get}

Buf1 BC
{put}

Prod1
(cons,rc )−−−−−→ Cons1 BC

{get}
Buf1 BC

{put}
Prod1

,

Prod1
(make,rm)−−−−−−→ Prod2

Cons2 BC
{get}

Buf1 BC
{put}

Prod1
(make,rm)−−−−−−→ Cons2 BC

{get}
Buf1 BC

{put}
Prod2

.
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Consumer/Producer in PEPA

Cons1
def
= (get, rg ).Cons2 Prod1

def
= (make, rm).Prod2

Cons2
def
= (cons, rc).Cons1 Prod2

def
= (put, rp).Prod1

Buf2
def
= (get,>).Buf1 Buf1

def
= (get,>).Buf0 + (put,>).Buf2

Buf0
def
= (put,>).Buf1 Sys

def
= Cons1 BC

{get}
Buf2 BC

{put}
Prod1

Therefore, we still need to infer transitions for the following processes. . .

Cons1 BC
{get}

Buf2 BC
{put}

Prod2

Cons1 BC
{get}

Buf1 BC
{put}

Prod1

Cons2 BC
{get}

Buf1 BC
{put}

Prod2

. . . and all those that are found along the way.
Notice that the cooperation structure is fixed across all processes. Thus,
we may denote a state by 〈i , j , k〉 to indicate Consi BC{get} Bufj BC

{put}
Prodk .
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Consumer/Producer in PEPA: Complete Derivation Graph

〈1, 2, 1〉

〈2, 1, 1〉 〈1, 2, 2〉

〈1, 1, 1〉 〈2, 1, 2〉

〈2, 0, 1〉 〈1, 1, 2〉

〈2, 2, 1〉

〈2, 2, 2〉

〈1, 0, 1〉

〈1, 0, 2〉

〈2, 0, 2〉

〈2, 0, 2〉 〈1, 2, 1〉

(get, rg )

(make, rm)

(cons, rc)

(make, rm)

(get, rg )

(get, rg )
(make, rm)

(cons, rc)

(put, rp)

(cons, rc)

(make, rm)

(cons, rc)

(cons, rc)

(make, rm)

(make, rm)

(put, rp)

(cons, rc)

(put, rp)

(get, rg )

(put, rp)
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Consumer/Producer in PEPA: State-Transition Diagram

〈1, 2, 1〉

〈2, 1, 1〉 〈1, 2, 2〉

〈1, 1, 1〉 〈2, 1, 2〉

〈2, 0, 1〉 〈1, 1, 2〉

〈2, 2, 1〉

〈2, 2, 2〉

〈1, 0, 1〉

〈1, 0, 2〉

〈2, 0, 2〉

〈2, 0, 2〉 〈1, 2, 1〉

rg

rm

rc
rm

rg

rg
rm

rc

rp

rc

rm

rc

rc

rm

rm

rp

rc

rp

rg

rp

Tribastone (IFI LMU) Performance Modelling of Computer Systems Modelling Techniques 45 / 45


