Performance Modelling of Computer Systems Tutorial 1

Max Tschaikowski
Institut für Informatik
Ludwig-Maximilians-Universität München

10th May, 2012

Causal Independence vs Stochastic Independence

Intuition: causal independence implies stochastic independence, but not the other way round.

Causal Independence vs Stochastic Independence

Intuition: causal independence implies stochastic independence, but not the other way round.

The following model from Wikipedia illustrates this. Consider the probability space

$$
(\Omega, \mathcal{F}, \mathbb{P})=\left(\{1, \ldots, 6\}, \operatorname{Pot}(\Omega), \mathcal{U}_{\Omega}\right)
$$

which models a fair die and the events

- $A:=$ the die gives an even number

■ $B:=$ the die gives a number which is divisible by 3.

Causal Independence vs Stochastic Independence

Intuition: causal independence implies stochastic independence, but not the other way round.

The following model from Wikipedia illustrates this. Consider the probability space

$$
(\Omega, \mathcal{F}, \mathbb{P})=\left(\{1, \ldots, 6\}, \operatorname{Pot}(\Omega), \mathcal{U}_{\Omega}\right)
$$

which models a fair die and the events

- $A:=$ the die gives an even number

■ $B:=$ the die gives a number which is divisible by 3. Then it is clear, that A and B are related to each other. But A and B are at the same time stochastically independent since
$\mathbb{P}(A \cap B)=\mathbb{P}($ the die gives an even number which is divisible by 3$)$

$$
=\mathbb{P}(\{6\})=\frac{1}{6}=\frac{1}{2} \frac{1}{3}=\mathbb{P}(A) \mathbb{P}(B) .
$$

Causal Independence vs Stochastic Independence

■ Note that an event A is stochastically independent from itself iff

$$
\mathbb{P}(A)=\mathbb{P}(A \cap A)=\mathbb{P}(A) \mathbb{P}(A) \Longleftrightarrow \mathbb{P}(A) \in\{0,1\}
$$

This gives another (quite trivial) example where stochastic independence does not imply the causal independence.

- Another interesting question is the following one: let us assume that A_{1}, A_{2} and A_{3} are pairwise stochastic independent. Does this imply then their usual stochastic independence? (the answer is no).

A Formula which relies on Conditional Probabilities

Let us fix three events A_{1}, A_{2}, A_{3} and assume, that we know the probabilities $\mathbb{P}\left(A_{3} \mid A_{2} \cap A_{1}\right), \mathbb{P}\left(A_{2} \mid A_{1}\right)$ and $\mathbb{P}\left(A_{1}\right)$. Multiplying yields then

$$
\begin{aligned}
\mathbb{P}\left(A_{3} \mid A_{2} \cap A_{1}\right) \mathbb{P}\left(A_{2} \mid A_{1}\right) \mathbb{P}\left(A_{1}\right) & =\frac{\mathbb{P}\left(A_{3} \cap A_{2} \cap A_{1}\right)}{\mathbb{P}\left(A_{2} \cap A_{1}\right)} \frac{\mathbb{P}\left(A_{2} \cap A_{1}\right)}{\mathbb{P}\left(A_{1}\right)} \mathbb{P}\left(A_{1}\right) \\
& =\mathbb{P}\left(A_{3} \cap A_{2} \cap A_{1}\right) .
\end{aligned}
$$

A Formula which relies on Conditional Probabilities

Let us fix three events A_{1}, A_{2}, A_{3} and assume, that we know the probabilities $\mathbb{P}\left(A_{3} \mid A_{2} \cap A_{1}\right), \mathbb{P}\left(A_{2} \mid A_{1}\right)$ and $\mathbb{P}\left(A_{1}\right)$. Multiplying yields then

$$
\begin{aligned}
\mathbb{P}\left(A_{3} \mid A_{2} \cap A_{1}\right) \mathbb{P}\left(A_{2} \mid A_{1}\right) \mathbb{P}\left(A_{1}\right) & =\frac{\mathbb{P}\left(A_{3} \cap A_{2} \cap A_{1}\right)}{\mathbb{P}\left(A_{2} \cap A_{1}\right)} \frac{\mathbb{P}\left(A_{2} \cap A_{1}\right)}{\mathbb{P}\left(A_{1}\right)} \mathbb{P}\left(A_{1}\right) \\
& =\mathbb{P}\left(A_{3} \cap A_{2} \cap A_{1}\right) .
\end{aligned}
$$

This generalizes then to (can be proven by induction on n):

$$
\begin{aligned}
& \mathbb{P}\left(A_{n} \cap \ldots \cap A_{1}\right)= \\
& \quad \mathbb{P}\left(A_{n} \mid A_{n-1} \cap \ldots \cap A_{1}\right) \mathbb{P}\left(A_{n-1} \mid A_{n-2} \cap \ldots \cap A_{1}\right) \cdot \ldots \cdot \mathbb{P}\left(A_{1}\right) .
\end{aligned}
$$

Exercise

- In a server farm with 50 machines, 10 machines are much faster than the others. Find the probability that 3 randomly chosen machines are all the faster ones.

Exercise

- In a server farm with 50 machines, 10 machines are much faster than the others. Find the probability that 3 randomly chosen machines are all the faster ones.

We define

$$
A_{i}:=\text { the } i \text {-th randomly chosen machine is fast }
$$

and infer using the formula from last slide

$$
\mathbb{P}\left(A_{3} \cap A_{2} \cap A_{1}\right)=\mathbb{P}\left(A_{3} \mid A_{2} \cap A_{1}\right) \mathbb{P}\left(A_{2} \mid A_{1}\right) \mathbb{P}\left(A_{1}\right)=\frac{8}{48} \frac{9}{49} \frac{10}{50} .
$$

Exercise

- In a server farm with 50 machines, 10 machines are much faster than the others. Find the probability that 3 randomly chosen machines are all the faster ones.

We define

$$
A_{i}:=\text { the } i \text {-th randomly chosen machine is fast }
$$

and infer using the formula from last slide

$$
\mathbb{P}\left(A_{3} \cap A_{2} \cap A_{1}\right)=\mathbb{P}\left(A_{3} \mid A_{2} \cap A_{1}\right) \mathbb{P}\left(A_{2} \mid A_{1}\right) \mathbb{P}\left(A_{1}\right)=\frac{8}{48} \frac{9}{49} \frac{10}{50}
$$

In fact, we can also observe that

$$
\frac{8}{48} \frac{9}{49} \frac{10}{50}=\frac{10 \cdot 9 \cdot 8}{6} \frac{6}{50 \cdot 49 \cdot 48}=\frac{\binom{10}{3}}{\binom{50}{3}}
$$

Exercise

Given 100 machines, of which 20 are faulty, pick two of them without re-insertion. What is the probability that the second machine is faulty?

Exercise

Given 100 machines, of which 20 are faulty, pick two of them without re-insertion. What is the probability that the second machine is faulty?

Let us call A the event that first machine is faulty and B the event that the second machine is faulty.

Exercise

Given 100 machines, of which 20 are faulty, pick two of them without re-insertion. What is the probability that the second machine is faulty?

Let us call A the event that first machine is faulty and B the event that the second machine is faulty.

We infer then

$$
\begin{aligned}
\mathbb{P}(B) & =\mathbb{P}(B \mid A) \mathbb{P}(A)+\mathbb{P}\left(B \mid A^{c}\right) \mathbb{P}\left(A^{c}\right) \\
& =\frac{19}{99} \frac{20}{100}+\frac{20}{99} \frac{80}{100} \\
& =\frac{1}{5}
\end{aligned}
$$

Exercise

■ Under which conditions is the following a legitimate joint probability mass function?

	$x=0$	$x=1$	$x=2$	$x=3$
$y=0$	a	$2 a$	$2 a$	a
$y=1$	b	$2 b$	$2 b$	b

Exercise

- Let X be a continuous random variable with uniform distribution in $(0,1)$ and $Y=-\ln (1-X) / \lambda$, with $\lambda>0$. Compute the cumulative distribution function of Y. (Random number generators)

Exercise

■ Let X_{1}, \ldots, X_{n} be independent exponentially distributed random variables. Prove then

$$
\mathbb{P}\left(X_{i}=\min \left(X_{1}, \ldots, X_{n}\right)\right)=\frac{\lambda_{i}}{\lambda_{1}+\ldots+\lambda_{n}}
$$

for all $1 \leq i \leq n\left(\lambda_{j}>0\right.$ denotes the parameter of $\left.X_{j}\right)$.

Exercise (the proof is not relevant for the exam)

The joint distribution of X_{1}, \ldots, X_{n} is given by

$$
\mathbb{P}(A)=\int_{A} \rho(\vec{x}) d \vec{x}=\int_{A}\left(\prod_{i=1}^{n} \lambda_{i} e^{-\lambda_{i} x_{i}}\right) d\left(x_{1}, \ldots, x_{n}\right), \quad A \in \mathcal{B}\left(\mathbb{R}^{n}\right)
$$

Exercise (the proof is not relevant for the exam)

The joint distribution of X_{1}, \ldots, X_{n} is given by

$$
\mathbb{P}(A)=\int_{A} \rho(\vec{x}) d \vec{x}=\int_{A}\left(\prod_{i=1}^{n} \lambda_{i} e^{-\lambda_{i} x_{i}}\right) d\left(x_{1}, \ldots, x_{n}\right), \quad A \in \mathcal{B}\left(\mathbb{R}^{n}\right)
$$

Since $\min \left(X_{1}, \ldots, X_{n}\right)=\min \left(X_{1}, \min \left(X_{2}, \ldots, X_{n}\right)\right)$ and $\min \left(X_{2}, \ldots, X_{n}\right) \sim \operatorname{Exp}\left(\lambda_{2}+\ldots+\lambda_{n}\right)$, it is sufficient to prove the claim for $n=2$.

Exercise (the proof is not relevant for the exam)

The joint distribution of X_{1}, \ldots, X_{n} is given by

$$
\mathbb{P}(A)=\int_{A} \rho(\vec{x}) d \vec{x}=\int_{A}\left(\prod_{i=1}^{n} \lambda_{i} e^{-\lambda_{i} x_{i}}\right) d\left(x_{1}, \ldots, x_{n}\right), \quad A \in \mathcal{B}\left(\mathbb{R}^{n}\right)
$$

Since $\min \left(X_{1}, \ldots, X_{n}\right)=\min \left(X_{1}, \min \left(X_{2}, \ldots, X_{n}\right)\right)$ and $\min \left(X_{2}, \ldots, X_{n}\right) \sim \operatorname{Exp}\left(\lambda_{2}+\ldots+\lambda_{n}\right)$, it is sufficient to prove the claim for $n=2$.

Let us define $A:=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \leq x_{2}\right\}$. Then

$$
\begin{aligned}
& \mathbb{P}\left(X_{1}=\min \left(X_{1}, X_{2}\right)\right)=\mathbb{P}\left(X_{1} \leq X_{2}\right)=\int_{\mathbb{R}^{2}} \rho(\vec{x}) \mathbb{1}_{A}(\vec{x}) d \vec{x} \\
& \xlongequal{\text { Fubini }} \int_{\mathbb{R}}\left(\int_{\mathbb{R}} \rho\left(x_{1}, x_{2}\right) \mathbb{1}_{A}\left(x_{1}, x_{2}\right) d x_{2}\right) d x_{1} \\
& =\int_{0}^{\infty}\left(\int_{x_{1}}^{\infty} \rho\left(x_{1}, x_{2}\right) d x_{2}\right) d x_{1}
\end{aligned}
$$

Exercise (the proof is not relevant for the exam)

$$
\begin{aligned}
& =\int_{0}^{\infty} \lambda_{1} e^{-\lambda_{1} x_{1}}\left(\int_{x_{1}}^{\infty} \lambda_{2} e^{-\lambda_{2} x_{2}} d x_{2}\right) d x_{1} \\
& =\int_{0}^{\infty} \lambda_{1} e^{-\lambda_{1} x_{1}}\left[-e^{-\lambda_{2} x_{2}}\right]_{x_{1}}^{\infty} d x_{1} \\
& =\int_{0}^{\infty} \lambda_{1} e^{-\lambda_{1} x_{1}}\left(0-\left(-e^{-\lambda_{2} x_{1}}\right)\right) d x_{1} \\
& =\lambda_{1} \int_{0}^{\infty} e^{-\left(\lambda_{1}+\lambda_{2}\right) x_{1}} d x_{1} \\
& =\lambda_{1}\left[-\frac{1}{\lambda_{1}+\lambda_{2}} e^{-\left(\lambda_{1}+\lambda_{2}\right) x_{1}}\right]_{0}^{\infty} \\
& =\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}
\end{aligned}
$$

