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Causal Independence vs Stochastic Independence

Intuition: causal independence implies stochastic independence, but not
the other way round.

The following model from Wikipedia illustrates this. Consider the
probability space

(Ω,F ,P) = ({1, . . . , 6},Pot(Ω),UΩ)

which models a fair die and the events

A := the die gives an even number

B := the die gives a number which is divisible by 3 .

Then it is clear, that A and B are related to each other. But A and B are
at the same time stochastically independent since

P(A ∩ B) = P(the die gives an even number which is divisible by 3)

= P({6}) =
1

6
=

1

2

1

3
= P(A)P(B) .
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Causal Independence vs Stochastic Independence

Note that an event A is stochastically independent from itself iff

P(A) = P(A ∩ A) = P(A)P(A)⇐⇒ P(A) ∈ {0, 1} .

This gives another (quite trivial) example where stochastic
independence does not imply the causal independence.

Another interesting question is the following one: let us assume that
A1,A2 and A3 are pairwise stochastic independent. Does this imply
then their usual stochastic independence? (the answer is no).
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A Formula which relies on Conditional Probabilities

Let us fix three events A1,A2,A3 and assume, that we know the
probabilities P(A3|A2 ∩ A1), P(A2|A1) and P(A1). Multiplying yields then

P(A3|A2 ∩ A1)P(A2|A1)P(A1) =
P(A3 ∩ A2 ∩ A1)

P(A2 ∩ A1)

P(A2 ∩ A1)

P(A1)
P(A1)

= P(A3 ∩ A2 ∩ A1) .

This generalizes then to (can be proven by induction on n):

P(An ∩ . . . ∩ A1) =

P(An|An−1 ∩ . . . ∩ A1)P(An−1|An−2 ∩ . . . ∩ A1) · . . . · P(A1) .
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Exercise

In a server farm with 50 machines, 10 machines are much faster than
the others. Find the probability that 3 randomly chosen machines are
all the faster ones.

We define

Ai := the i-th randomly chosen machine is fast

and infer using the formula from last slide

P(A3 ∩ A2 ∩ A1) = P(A3|A2 ∩ A1)P(A2|A1)P(A1) =
8

48

9

49

10

50
.

In fact, we can also observe that

8

48

9

49

10

50
=

10 · 9 · 8
6

6

50 · 49 · 48
=

(10
3

)(50
3

) .
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Exercise

Given 100 machines, of which 20 are faulty, pick two of them without
re-insertion. What is the probability that the second machine is faulty?

Let us call A the event that first machine is faulty and B the event that
the second machine is faulty.

We infer then

P(B) = P(B|A)P(A) + P(B|Ac)P(Ac)

=
19

99

20

100
+

20

99

80

100

=
1

5
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Exercise

Under which conditions is the following a legitimate joint probability
mass function?

x = 0 x = 1 x = 2 x = 3

y = 0 a 2a 2a a
y = 1 b 2b 2b b
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Exercise

Let X be a continuous random variable with uniform distribution in
(0, 1) and Y = − ln(1− X )/λ, with λ > 0. Compute the cumulative
distribution function of Y . (Random number generators)
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Exercise

Let X1, . . . ,Xn be independent exponentially distributed random
variables. Prove then

P(Xi = min(X1, . . . ,Xn)) =
λi

λ1 + . . .+ λn
,

for all 1 ≤ i ≤ n (λj > 0 denotes the parameter of Xj).
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Exercise (the proof is not relevant for the exam)

The joint distribution of X1, . . . ,Xn is given by

P(A) =

∫
A
ρ(~x)d~x =

∫
A

( n∏
i=1

λie
−λixi

)
d(x1, . . . , xn) , A ∈ B(Rn) .

Since min(X1, . . . ,Xn) = min(X1,min(X2, . . . ,Xn)) and
min(X2, . . . ,Xn) ∼ Exp(λ2 + . . .+ λn), it is sufficient to prove the claim
for n = 2.

Let us define A := {(x1, x2) | x1 ≤ x2}. Then

P(X1 = min(X1,X2)) = P(X1 ≤ X2) =

∫
R2

ρ(~x)1A(~x)d~x

Fubini
====

∫
R

(∫
R
ρ(x1, x2)1A(x1, x2)dx2

)
dx1

=

∫ ∞
0

(∫ ∞
x1

ρ(x1, x2)dx2

)
dx1

...
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Exercise (the proof is not relevant for the exam)

...

=

∫ ∞
0

λ1e
−λ1x1

(∫ ∞
x1

λ2e
−λ2x2dx2

)
dx1

=

∫ ∞
0

λ1e
−λ1x1

[
−e−λ2x2

]∞
x1

dx1

=

∫ ∞
0

λ1e
−λ1x1

(
0− (−e−λ2x1)

)
dx1

= λ1

∫ ∞
0

e−(λ1+λ2)x1dx1

= λ1

[
− 1

λ1 + λ2
e−(λ1+λ2)x1

]∞
0

=
λ1

λ1 + λ2
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