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Important DTMC Definitions

m A state / of a DTMC is recurrent if

IP’({Xn = | for infinite many n's | Xp = ’}) =1.
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Important DTMC Definitions

m A state / of a DTMC is recurrent if

IP’({Xn = | for infinite many n's | Xp = ’}) =1.

m A state / of a DTMC is transient if it is not recurrent, i.e.,

P({X, = i for infinite many n's [Xo = i}) <1«
P({X, = i for finite many n's [Xo =i}) > 0.

A state i of a DTMC has periodicity n if pj; > 0.
A state i of a DTMC is aperiodic if gcd{n | p] > 0} = 1.
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Steady State Distributions and DTMCs

m A DTMC is irreducible if for every pair of states (i, /) there exists at
least one path that leads from 7 to j. Note that this does not
necessarily imply that all p;; are non-zero.
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Steady State Distributions and DTMCs

m A DTMC is irreducible if for every pair of states (i, /) there exists at
least one path that leads from 7 to j. Note that this does not
necessarily imply that all p;; are non-zero.

m A DTMC is aperiodic if all states i are aperiodic, i.e., if
ged{n | p} > 0} =1 for all states .
m A DTMC is ergodic if it is finite, irreducible and aperiodic.
m A DTMC which is ergodic has a unique steady state distribution.
In the situation of performance modeling a DTMC is always finite. Also, in
most cases it is irreducible (it could be reducible, if one wants to model

deadlocks). Therefore, in order to show that there is a unique steady state
distribution, we have usually to show that the DTMC is aperiodic.
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Is the DTMC below ergodic?
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Is the DTMC below ergodic?

We note first that the DTMC is finite and irreducible. Observing then
ml—>2—>33—>landl1—>4—1imply2,3€P;
m2—-3—>1—-2and2—-3—-1—-4—>1—2imply3,5€P,
m3—-1—-52—-3and3—>1—-4—-1—-2—3imply3,5€P;
m4—>1-2—>3—>1—4andd—1—4imply3,5€P,

for P; := {n | p? > 0}, implies then also the aperiodicity (and therefore
the ergodicity) of the DTMC.
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We want now to calculate the steady state distribution of this DTMC,
that is, we have to solve w(P — /) = 0 for a probability distribution 7.

Max Tschaikowski (LMU) Performance Modelling of Computer Systems 24th May, 2012 5/11



We want now to calculate the steady state distribution of this DTMC,
that is, we have to solve w(P — /) = 0 for a probability distribution 7.
Since

-1 05 0 05
0 -1 1 0
p-l= 1 0 -1 0 ’

1 0 0 -1

the system we have to solve is

-1 05 0 1
O -1 1 1

(m1, T2, T3, 4) 1 o0 -111° (0,0,0,1) .
1 0 0 1
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We want now to calculate the steady state distribution of this DTMC,
that is, we have to solve w(P — /) = 0 for a probability distribution 7.
Since

-1 05 0 05
0 -1 1 0
p-l= 1 0 -1 0 ’

1 0 0 -1

the system we have to solve is

-1 05 0 1
O -1 1 1

(m1, T2, T3, 4) 1 o0 -111° (0,0,0,1) .
1 0 0 1

This yields then the (unique) solution m = (0.4,0.2,0.2,0.2).
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Exercise

Given a DTMC {X,, n € N}, prove that

P(Xnt2 = k, Xoy1 = j | Xo = i) = pjj(n)pj(n + 1).
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Exercise

Given a DTMC {X,, n € N}, prove that
P(Xni2 =k, X1 =J | Xo = i) = pjj(n)pj(n +1).

P(ANB)

Using P(A | B) = F(B)

and the strong Markov property we infer
P(Xny2 =k Xpp1=Jj | Xn=1)=

_ P(Xnt2 = k | Xot1 =4, Xn = )P(Xns1 =Jj, Xn = 1)

P(X, =)
_ P(Xnt2 = k | Xpr1 = )P(Xny1 =J | Xo = )P(Xn = i)
P(X, =)
=P(Xnt2 = k | Xnt1 =J)P(Xn+1=J | Xo =)
= pij(n)pj(n+1)
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Exercise

A server operates in two different conditions Slow (1) and Fast (2)

according to the following non-homogeneous DTMC (the time step is
given by n)

(n—1)/n
1/n 1/n

(n—1)/n

Find the probability that the server is slow at time step 4 given that it is
fast at time step 1.
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Exercise

Using the Chapman-Kolmogorov equations we derive

P(Xy =11X; =2) = Z P2.i) (1) P(ir,iz) (2) P(is,1)(3)
(i2,i3)€{1,2}2

= p2,1)(1)P1,1)(2)P,1)(3) + P2,1)(1)P(1,2)(2)P(2,1)(3)
+ P2,2)(1)p2,1)(2)Pa,1)(3) + P2,2)(1)P2,2)(2) P2,1)(3)

11 12
= 1224122
0+0+ 23+ 53
1
2
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Memorylessness and the Geometric Distribution
Recall that R is distributed w.r.t. the geometric distribution if
P(R = n) = p" (1 - p)

for all n > 1 and some fixed probability p.
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Memorylessness and the Geometric Distribution
Recall that R is distributed w.r.t. the geometric distribution if

P(R=n)=p" (1 - p)

for all n > 1 and some fixed probability p.
This is equivalent to

n n—1
P(R<n) =Y p'(1—-p)=(1-p)) P
k=1 k=0
pr—1 n n
=(1—p)p_1 =—(p"-1)=1-(1-P(R=1))
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Memorylessness and the Geometric Distribution
Recall that R is distributed w.r.t. the geometric distribution if

P(R=n)=p" (1 - p)

for all n > 1 and some fixed probability p.
This is equivalent to

n n—1
P(R<n) =) p"t1-p)=(1-p)> p
k=1 k=0
—(1-p) =" D= 1- (- PR =)

Our goal it to prove that the memorylessness property
P(R> m+ n|R > m)=P(R > n) forall m>0,n>0,

implies this equality, i.e., the geometric distribution is the only discrete
distribution which satisfies the memorylessness property.
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Memorylessness and the Geometric Distribution

Using the definition G(/) := P(R > /) we infer

P(R>m+nNR>m)
P(R > m)
P(R> m+n) =P(R > m)P(R > n) &
G(m+ n) = G(m)G(n)

P(R>n)=P(R>m+nR>m)=
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Memorylessness and the Geometric Distribution

Using the definition G(/) := P(R > /) we infer

R>m+nNR>m)

P(R>n) = B(R> m+n|R > m) = ¢

P(R > m)
P(R> m+n) =P(R > m)P(R > n) &
G(m+ n) = G(m)G(n)
and observe next
G(n)=G(n—1)G(1) = G(n—2)G(1)2: = G(1)"
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Memorylessness and the Geometric Distribution

Using the definition G(/) := P(R > /) we infer

P(R R
P(R>n)=P(R>m+nR>m)=k>mEtn0R>m)

P(R > m)
P(R> m+n) =P(R > m)P(R > n) &
G(m+ n) = G(m)G(n)
and observe next
G(n)=G(n—1)G(1) = G(n—2)G(1)2: = G(1)"

This yields then

P(R<n)=1-P(R>n)=1-P(R>1)"=1—(1-P(R=1))".
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Steady State Distributions and CTMCs

m A CTMC which is finite and irreducible has a unique steady state
distribution.
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Steady State Distributions and CTMCs

m A CTMC which is finite and irreducible has a unique steady state
distribution.

m A CTMC is irreducible if for every pair of states (i, /) there exists at
least one path that leads from i to j. Note that this does not
necessarily imply that all g;; are non-zero.

m There is no notion of periodicity for CTMCs.

In the situation of performance modeling a CTMC is always finite. Also, in
most cases it is irreducible (it could be reducible, if one wants to model
deadlocks). That is, usually there exists a steady state distribution.
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