Formal Techniques for Software Engineering: Introduction and Preliminaries

Rocco De Nicola

IMT Institute for Advanced Studies, Lucca

rocco.denicola@imtlucca.it

April 2013

Programs Semantics

Formal Definitions

Each language comes equipped with syntax \& semantics

- Syntax: defines legal programs (grammar based)
- Semantics: defines meaning, behavior, errors (formally)

Rôle of Formal Semantics

- Language design
- Language implementation
- Program/Model correctness
- Program/Model equivalence
- Program/Model refinement

Warmup Motivations

Consider a c-like language, say with x having initial value 1

- $y=x+++x++$;

What is the value of x and of y ?

- $\mathrm{z}=\mathrm{x}++$ - $\mathrm{x}++$;

What is the value of z ?

- $g(x)=g(x-1)$ with $f(x)=1$;

What is the value of $f(g(42))$?

Warmup Motivations

Consider a c-like language, say with x having initial value 1

- $y=x++\quad+x++$;

What is the value of x and of y ?

- z = x++ - x++;

What is the value of z ?

- $g(x)=g(x-1)$ with $f(x)=1$;

What is the value of $f(g(42))$?

The situation is even more critical when concurrency enters the game. Then, we need not only to worry about the choices of compiler designers but also of the internal nondeterminism triggered by the parallel evaluation of programs that may collaborate on tasks but compete for resources (cpu, memory,data, ...). Examples later.

Course structure and objectives

Course Structure
(1) Part 1 will focus on denotational and operational semantics of sequential programming languages
analyze, and prove properties of concurrent and distributed - To appreciate the inner meaning of programming languages

Course structure and objectives

Course Structure

(1) Part 1 will focus on denotational and operational semantics of sequential programming languages
(2) Part 2 will introduce formalisms to specify, design, implement, analyze, and prove properties of concurrent and distributed systems.

Objective

- To appreciate the inner meaning of programming languages
- To learn to design and analyze simple concurrent systems
- To acquire the skills necessary to verify systems correctness through software tools.

Main Contents

- A refresh of discrete mathematics and proof techniques.
- Denotational and operational semantics of simple programming languages.
- Domain theory and fixed points.

Process Algebras and their models as transition systems. Behavioral equivalences as tools for abstracting from unwarted details and for minimizing systems. Temporal and modal logics, and verification techniques of systems properties based on model checking. Quantitative (probabilistic, stochastic) variants of process calculi and their equivalences. Recent develonments on Network Aware Programming and Autonomic Computing (Klaim, SCEL,

Main Contents

- A refresh of discrete mathematics and proof techniques.
- Finite state automata and labeled transition systems.
languages.
- Domain theory and fixed points.

Process Algebras and their models as transition systems. Behavioral equivalences as tools for abstracting from unwanted details and for minimizing systems. properties based on model checking. Quantitative (probabilistic, stochastic) ver riants of process calculi and their equivalences. Recent developments on Network Aware Programming and Autonomic Computing (Klaim, SCEL,

Main Contents

- A refresh of discrete mathematics and proof techniques.
- Finite state automata and labeled transition systems.
- Denotational and operational semantics of simple programming languages.
properties based on model checking.
and their equivalences.

Main Contents

- A refresh of discrete mathematics and proof techniques.
- Finite state automata and labeled transition systems.
- Denotational and operational semantics of simple programming languages.
- Domain theory and fixed points.

Process Algebras and their models as transition systems.
Behavioral equivalences as tools for abstracting from unwanted
details and for minimizing systems. properties based on model checking. and their equivalences.

Main Contents

- A refresh of discrete mathematics and proof techniques.
- Finite state automata and labeled transition systems.
- Denotational and operational semantics of simple programming languages.
- Domain theory and fixed points.
- Process Algebras and their models as transition systems.

Main Contents

- A refresh of discrete mathematics and proof techniques.
- Finite state automata and labeled transition systems.
- Denotational and operational semantics of simple programming languages.
- Domain theory and fixed points.
- Process Algebras and their models as transition systems.
- Behavioral equivalences as tools for abstracting from unwanted details and for minimizing systems.
and their equivalences.

Main Contents

- A refresh of discrete mathematics and proof techniques.
- Finite state automata and labeled transition systems.
- Denotational and operational semantics of simple programming languages.
- Domain theory and fixed points.
- Process Algebras and their models as transition systems.
- Behavioral equivalences as tools for abstracting from unwanted details and for minimizing systems.
- Temporal and modal logics, and verification techniques of systems properties based on model checking.

Main Contents

- A refresh of discrete mathematics and proof techniques.
- Finite state automata and labeled transition systems.
- Denotational and operational semantics of simple programming languages.
- Domain theory and fixed points.
- Process Algebras and their models as transition systems.
- Behavioral equivalences as tools for abstracting from unwanted details and for minimizing systems.
- Temporal and modal logics, and verification techniques of systems properties based on model checking.
- Quantitative (probabilistic, stochastic) variants of process calculi and their equivalences.
- Recent developments on Network Aware Programming and Autonomic Computing (Klaim, SCEL, ...)

Readings

Books/notes:
(1) H.R. Nielson, F. Nielson: Semantics with Applications: an Appetizer, Springer, 2007 (old edition available online).
(2) G. Winskel: The Formal Semantics of Programming Languages, MIT Press, 1993.
(3) L. Aceto, A. Ingolfsdottir, K.G. Larsen and J. Srba: Reactive Systems: Modelling, Specification and Verification, Cambridge University Press, 2007.
(1) G. Plotkin: A Structural Approach to Operational Semantics Semantics of Programming Languages Out of print, online copy available

Readings

Books/notes:
(1) H.R. Nielson, F. Nielson: Semantics with Applications: an Appetizer, Springer, 2007 (old edition available online).
(2) G. Winskel: The Formal Semantics of Programming Languages, MIT Press, 1993.
(3) L. Aceto, A. Ingolfsdottir, K.G. Larsen and J. Srba: Reactive Systems: Modelling, Specification and Verification, Cambridge University Press, 2007.

For Part 1, see also:
(1) G. Plotkin: A Structural Approach to Operational Semantics, University of Aarhus, tech.rep. DAIMI-FN-19 Available online
(2) M. Hennessy: Semantics of Programming Languages, Wiley, 1990. Out of print, online copy available

For Part 2, see . . . later.

Course Material \& Exam

Course Material: On the web site; it will, e.g.,:
(1) latest version of the slides
(2) pdf of relevant papers
(3) \ldots

Exam: Some ideas to discuss with you

Outline of the first part

(1) Preliminaries
(2) Formal semantics of regular expressions
(3) A simple while language
(4) Operational semantics of while
(5) Denotational semantics of while
(6) A taste of Domain Theory
(T) A less simple programming language and its semantics

Outline of the second part

(1) Headaches of Concurrent Programming
(2) Operators for Concurrent Processes and Their Semantics
(3) Behavioural Equivalences
(4) Process Calculi
(5) CCS: An Exemplar Process Algebra
(6) Temporal Logics and Model Checking
(7) Extensions of Process Calculi for Quantitative Analysis
(8) Extensions of Process Calculi for Network Aware Programming and/or Autonomic Computing.

The Hard Life of Programmers (and students)

WWW.phdcomics.com

Thanks

Many of the slides that will be used for the first part of the course have been drafted by two colleagues at IMT:

Francesco Tiezzi and Valerio Senni that are currently lecturing on the same topic, by relying on old notes of mine (unfortunately in Italian).

Some preliminary math

Set Notation

$A \subseteq B$ every element of A is in B
$A \subset B$ if $A \subseteq B$ and there is one element of B not in A
$A \subseteq B$ and $B \subseteq A$ implies $A=B$
$A \cup B=\{x \mid x \in A$ or $x \in B\}$

Set Notation

$A \subseteq B$ every element of A is in B
$A \subset B$ if $A \subseteq B$ and there is one element of B not in A
$A \subseteq B$ and $B \subseteq A$ implies $A=B$
$A \cup B=\{x \mid x \in A$ or $x \in B\}$
$A \cap B=\{x \mid x \in A$ and $x \in B\}$
$A \backslash B=\{x \mid x \in A$ and $x \notin B\}$
$A \times B=\{(a, b) \mid a \in A$ and $b \in B\} \quad$ ordered pairs
$2^{A}=\{X \mid X \subseteq A\}$
$\left(\bigcup_{i \in I} A_{i}\right)$
$\left(\bigcap_{i \in I} A_{i}\right)$
$\left(\times_{i=1}^{n} A_{i}\right)$
powerset

Relations

$R \subseteq A \times B$ is a relation on sets A and B

$$
(a, b) \in R \equiv R(a, b) \equiv a R b \quad \text { infix notation }
$$

Relations

$R \subseteq A \times B$ is a relation on sets A and B

$$
\begin{array}{lr}
(a, b) \in R \equiv R(a, b) \equiv a R b \quad \text { infix notation } & \\
I d_{A}=\{(a, a) \mid a \in A\} & \text { (identity) } \\
R^{-1}=\{(y, x) \mid(x, y) \in R\} \subseteq B \times A & \text { (inverse) } \\
R_{1} \cdot R_{2}=\left\{(x, z) \mid \exists y \in B .(x, y) \in R_{1} \wedge(y, z) \in R_{2}\right\} \subseteq A \times C & \text { (composition) }
\end{array}
$$

Relations

$R \subseteq A \times B$ is a relation on sets A and B
$l d_{A}=\{(a, a) \mid a \in A\}$
$R^{-1}=\{(y, x) \mid(x, y) \in R\} \subseteq B \times A$
$R_{1} \cdot R_{2}=\left\{(x, z) \mid \exists y \in B .(x, y) \in R_{1} \wedge(y, z) \in R_{2}\right\} \subseteq A \times C \quad$ (composition)
Some basic constructions:

$$
\begin{array}{ll}
R^{0} & =l d_{A} \\
R^{n+1} & =R \cdot R^{n} \\
R^{*} & =\bigcup_{n \geq 0} R^{n} \\
R^{+} & =\bigcup_{n \geq 1} R^{n}
\end{array}
$$

Note that: $\quad R^{1}=R \cdot R^{0}=R, \quad R^{*}=l d_{A} \cup R^{+} \quad$ and

$$
R^{+}=\left\{(x, y) \mid \exists n, \exists x_{1}, \ldots, x_{n} \text { with } x_{i} R x_{i+1}(1 \leq i \leq n-1), x_{1}=x, x_{n}=y\right\}
$$

Properties of Relations

Binary Relations
A binary relation $R \subseteq A \times A$ is
reflexive: \quad if $\forall x \in A,(x, x) \in R$,
symmetric: \quad if $\forall x, y \in A,(x, y) \in R \Rightarrow(y, x) \in R$, antisymmetric: transitive:
if $\forall x, y \in A,(x, y) \in R \wedge(y, x) \in R \Rightarrow x=y$;
if $\forall x, y, z \in A,(x, y) \in R \wedge(y, z) \in R \Rightarrow(x, z) \in R$

Properties of Relations

Binary Relations
A binary relation $R \subseteq A \times A$ is
reflexive: \quad if $\forall x \in A,(x, x) \in R$,
symmetric: \quad if $\forall x, y \in A,(x, y) \in R \Rightarrow(y, x) \in R$, antisymmetric: transitive:
if $\forall x, y \in A,(x, y) \in R \wedge(y, x) \in R \Rightarrow x=y$;
if $\forall x, y, z \in A,(x, y) \in R \wedge(y, z) \in R \Rightarrow(x, z) \in R$

Closure of Relations

$$
\begin{aligned}
& S=R \cup I d_{A} \\
& S=R \cup R^{-1} \\
& S=R^{+} \\
& S=R^{*}
\end{aligned}
$$

the reflexive closure of R the symmetric closure of R the transitive closure of R the reflexive and transitive closure of R

Special Relations

A relation R is

- an order if it is reflexive, antisymmetric and transitive
- an equivalence if it is reflexive, symmetric and transitive
- a preorder if it is reflexive and transitive

Special Relations

A relation R is

- an order if it is reflexive, antisymmetric and transitive
- an equivalence if it is reflexive, symmetric and transitive
- a preorder if it is reflexive and transitive

Kernel relation

- Given a preorder R its kernel, defined as $K=R \cap R^{-1}$, is an equivalence relation

Equivalence Classes and Quotient Set

Examples of equivalence relations: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $R=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid(x=y) \bmod 3\}$

Equivalence Classes and Quotient Set

Examples of equivalence relations: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $R=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid(x=y) \bmod 3\}$

$$
R(7,7),
$$

(R, \quad)

Equivalence Classes and Quotient Set

Examples of equivalence relations: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $R=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid(x=y) \bmod 3\}$

$$
\begin{gathered}
R(7,7), \\
1=1
\end{gathered} \quad(R, \quad)
$$

Equivalence Classes and Quotient Set

Examples of equivalence relations: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $R=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid(x=y) \bmod 3\}$

$$
\begin{aligned}
& R(7,7), R(7,1), R(1,7), \quad \quad(\mathrm{R}, \mathrm{~S},) \\
& \quad 1=1
\end{aligned}
$$

Equivalence Classes and Quotient Set

Examples of equivalence relations: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $R=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid(x=y) \bmod 3\}$
$R(7,7), R(7,1), R(1,7)$,
(R,S,)

Equivalence Classes and Quotient Set

Examples of equivalence relations: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $R=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid(x=y) \bmod 3\}$

$$
\begin{array}{ccc}
R(7,7), & R(7,1), & R(1,7), R(7,10), R(1,10) \\
1=1 & 1 & 1
\end{array}
$$

Equivalence Classes and Quotient Set

Examples of equivalence relations: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $R=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid(x=y) \bmod 3\}$

$$
\begin{array}{ccccccc}
R(7,7), & R(7,1), & R(1,7), & R(7,10), & R(1,10) & (\mathrm{R}, \mathrm{~S}, \mathrm{~T}) \\
1=1 & 1 & 1 & 1 & 1 & 1 &
\end{array}
$$

Equivalence Classes and Quotient Set

Examples of equivalence relations: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $R=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid(x=y) \bmod 3\}$

$$
\begin{aligned}
& R(7,7), R(7,1), R(1,7), R(7,10), R(1,10) \quad(\mathrm{R}, \mathrm{~S}, \mathrm{~T}) \\
& \begin{array}{llllll}
1=1 & 1 & 1 & 1 & 1 & 1
\end{array} \\
& {[0]=\{0,3,6,9, \ldots\} \quad \text { equivalence classes: }} \\
& {[1]=\{1,4,7,10, \ldots\} \quad \text { - have a representative }} \\
& {[2]=\{2,5,8,11, \ldots\} \quad \text { - are disjoint }}
\end{aligned}
$$

Equivalence Classes and Quotient Set

Examples of equivalence relations: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $R=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid(x=y) \bmod 3\}$

$$
\left.\begin{array}{rlrlrl}
R(7,7), R(7,1), R(1,7), R(7,10), & R(1,10) & (\mathrm{R}, \mathrm{~S}, \mathrm{~T}) \\
1 & =1 & 1 & 1 & 1 & 1
\end{array}\right] \begin{array}{rlrl}
{[0]} & =\{0,3,6,9, \ldots\} & & \text { equivalence classes: } \\
{[1]} & =\{1,4,7,10, \ldots\} & & \\
{[2]} & =\{2,5,8,11, \ldots\} & & \text { - have a representative } \\
\text { - are disjoint }
\end{array}
$$

An equivalence class is a subset C of A such that

$$
\begin{array}{rlll}
x, y \in C & \Rightarrow & (x, y) \in R & \text { consistent and } \\
x \in C \wedge(x, y) \in R & \Rightarrow y \in C & \text { saturated }
\end{array}
$$

Equivalence Classes and Quotient Set

Examples of equivalence relations: $R \subseteq A \times A$ (reflexive, symmetric, transitive)

Example: $R=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid(x=y) \bmod 3\}$

$$
\begin{aligned}
& R(7,7), R(7,1), R(1,7), R(7,10), R(1,10) \quad(\mathrm{R}, \mathrm{~S}, \mathrm{~T}) \\
& \begin{array}{llllll}
1=1 & 1 & 1 & 1 & 1 & 1
\end{array} \\
& {[0]=\{0,3,6,9, \ldots\} \quad \text { equivalence classes: }} \\
& {[1]=\{1,4,7,10, \ldots\} \quad \text { - have a representative }} \\
& {[2]=\{2,5,8,11, \ldots\} \quad \text { - are disjoint }}
\end{aligned}
$$

The quotient set Q_{A}^{R} of A modulo R
is a partition of A is the set of equivalence classes induced by R on A

Example: $\quad R=\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid(x=y) \bmod 3\}$

$$
Q_{\mathbb{N}}^{R}=\{[0],[1],[2]\}
$$

Functions

Partial Functions

A partial function is a relation $f \subseteq A \times B$ such that

$$
\forall x, y, z .(x, y) \in f \wedge(x, z) \in f \Rightarrow y=z
$$

We denote partial function by $\quad f: A \rightharpoondown B$

We denote total function by $\quad f: A \rightarrow B$

Functions (total or partial) can be monotone, continuous, injective, surjective, bijective, invertible.

Functions

Partial Functions

A partial function is a relation $f \subseteq A \times B$ such that

$$
\forall x, y, z .(x, y) \in f \wedge(x, z) \in f \Rightarrow y=z
$$

We denote partial function by $\quad f: A \rightharpoondown B$
Total Functions
A (total) function is a partial function $f: A \rightharpoondown B$ such that

$$
\forall x \exists y . \quad(x, y) \in f
$$

We denote total function by $\quad f: A \rightarrow B$
 surjective, bijective, invertible.

Functions

Partial Functions

A partial function is a relation $f \subseteq A \times B$ such that

$$
\forall x, y, z .(x, y) \in f \wedge(x, z) \in f \Rightarrow y=z
$$

We denote partial function by $\quad f: A \rightharpoondown B$
Total Functions
A (total) function is a partial function $f: A \rightharpoondown B$ such that

$$
\forall x \exists y . \quad(x, y) \in f
$$

We denote total function by $\quad f: A \rightarrow B$

Functions (total or partial) can be monotone, continuous, injective, surjective, bijective, invertible...

Induction Principle

Mathematical Induction

To prove that $P(n)$ holds for every natural number $n \in \mathbb{N}$, prove
(1) $P(0)$
(2) for any $k \in \mathbb{N}, P(k)$ implies $P(k+1)$

Induction Principle

Mathematical Induction

To prove that $P(n)$ holds for every natural number $n \in \mathbb{N}$, prove
(1) $P(0)$
(2) for any $k \in \mathbb{N}, P(k)$ implies $P(k+1)$

Example: Show that $\operatorname{sum}(n)=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ for every $n \in \mathbb{N}$

Induction Principle

Mathematical Induction

To prove that $P(n)$ holds for every natural number $n \in \mathbb{N}$, prove
(1) $P(0)$
(2) for any $k \in \mathbb{N}, P(k)$ implies $P(k+1)$

Example: Show that $\operatorname{sum}(n)=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ for every $n \in \mathbb{N}$
(1) $\operatorname{sum}(0)=\frac{0(0+1)}{2}=0$

Induction Principle

Mathematical Induction

To prove that $P(n)$ holds for every natural number $n \in \mathbb{N}$, prove
(1) $P(0)$
(2) for any $k \in \mathbb{N}, P(k)$ implies $P(k+1)$

Example: Show that $\operatorname{sum}(n)=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ for every $n \in \mathbb{N}$
(1) $\operatorname{sum}(0)=\frac{0(0+1)}{2}=0$
(2) to show: $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ implies $\sum_{i=1}^{n+1} i=\frac{(n+1)(n+2)}{2}$
assume $\operatorname{sum}(n)=\frac{n(n+1)}{2}$, for a generic n

$$
\begin{aligned}
& \operatorname{sum}(n+1)=\operatorname{sum}(n)+(n+1)= \\
& =\quad \frac{n(n+1)}{2}+(n+1) \\
& =\quad \frac{(n+1)(n+2)}{2}
\end{aligned}
$$

properties of summation inductive hypothesis

Inductively Defined Sets

basis: the set / of initial elements of S
induction: rules R for constructing elements in S from elements in S closure: $\quad S$ is the least set containing / and closed w.r.t. R

Inductively Defined Sets

basis: the set I of initial elements of S

induction: rules R for constructing elements in S from elements in S closure: $\quad S$ is the least set containing / and closed w.r.t. R

$$
\begin{aligned}
& \text { Natural numbers } \\
& \qquad I=\{0\}, \quad R_{1}: \text { if } X \in S \text { then } s(X) \in S \\
& S=\{0, s(0), s(s(0)), \ldots\}
\end{aligned}
$$

Inductively Defined Sets

basis: the set $/$ of initial elements of S

induction: rules R for constructing elements in S from elements in S closure: $\quad S$ is the least set containing $/$ and closed w.r.t. R

$$
\begin{aligned}
& \text { Natural numbers } \\
& \qquad \begin{array}{l}
I=\{0\}, \quad R_{1}: \text { if } X \in S \text { then } s(X) \in S \\
S=\{0, s(0), s(s(0)), \ldots\}
\end{array}
\end{aligned}
$$

$S=\operatorname{Lists}(\mathbb{N})$, lists of numbers in \mathbb{N}

$$
\begin{aligned}
& I=\{[]\}, \quad R_{1}: \text { if } X \in S \text { and } n \in \mathbb{N} \text { then }[n \mid X] \in S \\
& S=\{[],[0],[1],[2], \ldots,[0,0],[0,1],[0,2], \ldots,[1,0],[1,1],[1,2], \ldots\}
\end{aligned}
$$

Inductively Defined Sets

basis: the set I of initial elements of S

induction: rules R for constructing elements in S from elements in S closure: $\quad S$ is the least set containing $/$ and closed w.r.t. R

$$
\begin{aligned}
& \text { Natural numbers } \\
& \qquad I=\{0\}, \quad R_{1}: \text { if } X \in S \text { then } s(X) \in S \\
& S=\{0, s(0), s(s(0)), \ldots\}
\end{aligned}
$$

$S=\operatorname{Lists}(\mathbb{N})$, lists of numbers in \mathbb{N}
$I=\{[]\}, \quad R_{1}:$ if $X \in S$ and $n \in \mathbb{N}$ then $[n \mid X] \in S$
$S=\{[],[0],[1],[2], \ldots,[0,0],[0,1],[0,2], \ldots,[1,0],[1,1],[1,2], \ldots\}$

n -ary trees

$$
\begin{aligned}
& I=\{\varepsilon\}, \quad R_{1}: \text { if } X_{1}, \ldots, X_{n} \in S \text { then } t\left(X_{1}, \ldots, X_{n}\right) \in S \\
& S=\{\varepsilon, t(\varepsilon), t(\varepsilon, \varepsilon), \ldots, t(t(\varepsilon)), \ldots, t(\varepsilon, t(t(\varepsilon), \varepsilon), t(\varepsilon, \varepsilon, \varepsilon)), \ldots\}
\end{aligned}
$$

Structural Induction

Let us consider a set S inductively defined by a set $C=\left\{c_{1}, \ldots, c_{n}\right\}$ of constructors of arity $\left\{a_{1}, \ldots, a_{n}\right\}$ with

- $I=\left\{c_{i}() \mid a_{i}=0\right\}$
- R_{i} : if $X_{1}, \ldots, X_{a_{i}} \in S$ then $c_{i}\left(X_{1}, \ldots, X_{a_{i}}\right) \in S$

To prove that $P(x)$ holds for every $x \in S$, it is sufficient to prove that

$$
P\left(s_{1}\right), \ldots, P\left(s_{k}\right) \Longrightarrow P\left(c_{k}\left(s_{1}, \ldots, s_{k}\right)\right)
$$

- for every constructor $c_{k} \in C$ and
- for every $s_{1}, \ldots, s_{k} \in S$, where k is the arity of c_{k}

Notice that the base case is the one dealing with constructors of arity 0 i.e. with constants.

Structural Induction - exercise

Prove that $\operatorname{sum}(\ell) \leq \max (\ell) * \operatorname{len}(\ell), \quad$ for every $\ell \in \operatorname{Lists}(\mathbb{N})$ where

- $\operatorname{sum}(\ell)$ is the sum of the elements in the list
- $\ell, \max (\ell)$ is the greatest element in $\ell($ with $\max ([])=0)$
- len (ℓ) is the number of elements in ℓ.

Structural Induction - exercise

Exercise: prove $\operatorname{sum}(\ell) \leq \max (\ell) * \operatorname{len}(\ell), \quad$ for every $\ell \in \operatorname{Lists}(\mathbb{N})$

$$
\begin{array}{ll}
\operatorname{sum}([])=0 & \operatorname{len}([])=0 \\
\operatorname{sum}([n \mid X])=n+\operatorname{sum}(X) & \operatorname{len}([n \mid X])=1+\operatorname{len}(X) \\
\max ([])=0 & \\
\max ([n \mid X])=n & \text { if } \max (X) \leq n \\
\max ([n \mid X])=\max (X) & \text { if } n<\max (X)
\end{array}
$$

Structural Induction - exercise

Exercise: prove $\operatorname{sum}(\ell) \leq \max (\ell) * \operatorname{len}(\ell), \quad$ for every $\ell \in \operatorname{Lists}(\mathbb{N})$

$$
\begin{array}{ll}
\operatorname{sum}([])=0 & \operatorname{len}([])=0 \\
\operatorname{sum}([n \mid X])=n+\operatorname{sum}(X) & \operatorname{len}([n \mid X])=1+\operatorname{len}(X) \\
\max ([])=0 & \\
\max ([n \mid X])=n & \text { if } \max (X) \leq n \\
\max ([n \mid X])=\max (X) & \text { if } n<\max (X) \\
& \\
\text { (1) } \operatorname{sum}([]) \leq \max ([]) * \operatorname{len}([]) \\
0 \leq 0 * 0 &
\end{array}
$$

Structural Induction - exercise

Exercise: prove $\operatorname{sum}(\ell) \leq \max (\ell) * \operatorname{len}(\ell), \quad$ for every $\ell \in \operatorname{Lists}(\mathbb{N})$

$$
\begin{array}{ll}
\operatorname{sum}([])=0 & \operatorname{len}([])=0 \\
\operatorname{sum}([n \mid X])=n+\operatorname{sum}(X) & \operatorname{len}([n \mid X])=1+\operatorname{len}(X) \\
\max ([])=0 & \\
\max ([n \mid X])=n & \text { if } \max (X) \leq n \\
\max ([n \mid X])=\max (X) & \text { if } n<\max (X) \\
& \\
\text { (1) } \operatorname{sum}([]) \leq \max ([]) * \operatorname{len}([]) \\
0 \leq 0 * 0 &
\end{array}
$$

(2) assume

$$
\operatorname{sum}(\ell) \leq \max (\ell) * \operatorname{len}(\ell)
$$

Structural Induction - exercise

Exercise: prove $\operatorname{sum}(\ell) \leq \max (\ell) * \operatorname{len}(\ell), \quad$ for every $\ell \in \operatorname{Lists}(\mathbb{N})$

$$
\begin{array}{ll}
\operatorname{sum}([])=0 & \operatorname{len}([])=0 \\
\operatorname{sum}([n \mid X])=n+\operatorname{sum}(X) & \operatorname{len}([n \mid X])=1+\operatorname{len}(X) \\
\max ([])=0 & \\
\max ([n \mid X])=n & \text { if } \max (X) \leq n \tag{a}\\
\max ([n \mid X])=\max (X) & \text { if } n<\max (X)
\end{array}
$$

(1) $\operatorname{sum}([]) \leq \max ([]) * \operatorname{len}([])$

$$
0 \leq 0 * 0
$$

(2) assume $\operatorname{sum}(\ell) \leq \max (\ell) * \operatorname{len}(\ell)$
prove $\quad \operatorname{sum}([n \mid \ell]) \leq \max ([n \mid \ell]) * \operatorname{len}([n \mid \ell])$ for any $n \in \mathbb{N}$
(a) $n+\operatorname{sum}(\ell) \leq n *(1+\operatorname{len}(\ell))$
if $\max (\ell) \leq n$
$\operatorname{sum}(\ell) \leq_{\text {hyp }} \max (\ell) * \operatorname{len}(\ell) \leq_{(a)} \quad n * \operatorname{len}(\ell)$

Structural Induction - exercise

Exercise: prove $\operatorname{sum}(\ell) \leq \max (\ell) * \operatorname{len}(\ell), \quad$ for every $\ell \in \operatorname{Lists}(\mathbb{N})$

$$
\begin{array}{ll}
\operatorname{sum}([])=0 & \operatorname{len}([])=0 \\
\operatorname{sum}([n \mid X])=n+\operatorname{sum}(X) & \operatorname{len}([n \mid X])=1+\operatorname{len}(X) \\
\max ([])=0 & \\
\max ([n \mid X])=n & \text { if } \max (X) \leq n \\
\max ([n \mid X])=\max (X) & \text { if } n<\max (X) \tag{b}
\end{array}
$$

(1) $\operatorname{sum}([]) \leq \max ([]) * \operatorname{len}([])$

$$
0 \leq 0 * 0
$$

(2) assume $\operatorname{sum}(\ell) \leq \max (\ell) * \operatorname{len}(\ell)$

inductive hyp.

prove $\quad \operatorname{sum}([n \mid \ell]) \leq \max ([n \mid \ell]) * \operatorname{len}([n \mid \ell])$ for any $n \in \mathbb{N}$
(a) $n+\operatorname{sum}(\ell) \leq n *(1+\operatorname{len}(\ell)) \quad$ if $\max (\ell) \leq n$

$$
\operatorname{sum}(\ell) \leq_{\text {hyp }} \max (\ell) * \operatorname{len}(\ell) \leq_{(a)} n * \operatorname{len}(\ell)
$$

(b) $n+\operatorname{sum}(\ell) \leq \max (\ell)+\max (\ell) * \operatorname{len}(\ell))$ if $n<\max (\ell)$

$$
\begin{equation*}
A \leq B \text { and } C \leq D \text { imply } A+C \leq B+D \tag{QED}
\end{equation*}
$$

Inference Systems

(1) I can be written as

$$
\begin{aligned}
& {\left[\begin{array}{l}
t \\
t \\
p_{1} \cdots p_{n} \\
q
\end{array}\right.}
\end{aligned}
$$

(2) R_{i} can be written as

Meaning: $\vdash t$ and if $\vdash p_{1}, \ldots, \vdash p_{n}$ then $\vdash q$

Inference Systems

(1) I can be written as \quad (for any $t \in I$)
(2) R_{i} can be written as $p_{1} \cdots p_{n}$
q
Meaning: $\vdash t$ and if $\vdash p_{1}, \ldots, \vdash p_{n}$ then $\vdash q$
Example: rational numbers \mathbb{Q}

$$
\overline{0 \in N} \quad \overline{1 \in D} \quad \frac{k \in N}{k+1 \in N} \quad \frac{k \in D}{k+1 \in D} \quad \frac{k \in N, h \in D}{k / h \in \mathbb{Q}}
$$

Inference Systems

(1) I can be written as

$$
\begin{aligned}
& \bar{t}(\text { for any } t \in I) \\
& p_{1} \cdots p_{n}
\end{aligned}
$$

(2) R_{i} can be written as

$$
q
$$

Meaning: $\vdash t$ and if $\vdash p_{1}, \ldots, \vdash p_{n}$ then $\vdash q$
Example: rational numbers \mathbb{Q}

$$
\overline{0 \in N} \quad \overline{1 \in D} \quad \frac{k \in N}{k+1 \in N} \quad \frac{k \in D}{k+1 \in D} \quad \frac{k \in N, h \in D}{k / h \in \mathbb{Q}}
$$

A derivation: \begin{tabular}{lll}
$\overline{0 \in N} \overline{1 \in D}$

$\frac{1 \in N}{2 \in D}$

$1 / 2 \in \mathbb{Q}$

\quad

Question:

why do we

need the rules

in Red?
\end{tabular}

More on Inductively Defined Sets

- $S_{l, R}=\{x \mid \vdash x\}$
the set of all finitely derivable elements
- $R(X)=\left\{y \left\lvert\, \frac{x_{1} \cdots x_{n}}{y}\right.\right.$ and $\left.x_{1}, \ldots x_{n} \in X\right\}$ one step derivation
X is closed under R if $R(X) \subseteq X$
called a (pre-)fixed point
R is monotonic if $A \subseteq B \Rightarrow R(A) \subseteq R(B)$

More on Inductively Defined Sets

- $S_{l, R}=\{x \mid \vdash x\}$
the set of all finitely derivable elements
- $R(X)=\left\{y \left\lvert\, \frac{x_{1} \cdots x_{n}}{y}\right.\right.$ and $\left.x_{1}, \ldots x_{n} \in X\right\}$
X is closed under R if $R(X) \subseteq X$
called a (pre-)fixed point
R is monotonic if $A \subseteq B \Rightarrow R(A) \subseteq R(B)$

$$
\begin{array}{lll}
S^{0}=R^{0}(\emptyset) & =\emptyset & \\
S^{1}=R^{1}(\emptyset) & =R(\emptyset) & S^{0} \subseteq S^{1} \subseteq S^{2} \subseteq \ldots \\
S^{2}=R^{2}(\emptyset) & =R(R(\emptyset)) &
\end{array}
$$

$$
S \triangleq \bigcup_{i \in \mathbb{N}} S^{i} \quad \text { S closed under } R \quad R(S)=S \quad S \text { least } R \text {-closed set }
$$

more on fixpoints to come...

Constructing Inductively Defined Sets - an example

$$
\begin{aligned}
& f i b(0)=0 \\
& f_{i b}(1)=1 \\
& \\
& f i b(n+2)=f i b(n+1)+f i b(n)
\end{aligned} \quad \text { fib }: \mathbb{N} \rightarrow \mathbb{N}
$$

Constructing Inductively Defined Sets - an example

$$
\begin{aligned}
& f i b(0)=0 \\
& f_{i b}(1)=1 \\
& f i b(n+2)=f i b(n+1)+f i b(n)
\end{aligned} \quad \text { fib }: \mathbb{N} \rightarrow \mathbb{N}
$$

$$
\overline{(0,0) \in \text { Fib }} \frac{}{(1,1) \in \text { Fib }} \frac{(n+1, a) \in \text { Fib }(n, b) \in \text { Fib }}{(n+2, a+\text { b) } \in \text { Fib }}
$$

Constructing Inductively Defined Sets - an example

$$
\begin{aligned}
& f i b(0)=0 \\
& \text { fib(1) }=1 \\
& \text { fib }(n+2)=f i b(n+1)+f i b(n)
\end{aligned} \quad \text { fib }: \mathbb{N} \rightarrow \mathbb{N}
$$

$\overline{(0,0) \in \text { Fib }} \quad \overline{(1,1) \in \text { Fib }} \quad \frac{(n+1, a) \in \operatorname{Fib}(n, b) \in \text { Fib }}{(n+2, a+b) \in \text { Fib }}$

$$
R(X)=\left\{y \left\lvert\, \frac{x_{1} \cdots x_{n}}{y}\right. \text { and } x_{1}, \ldots x_{n} \in X\right\}
$$

Constructing Inductively Defined Sets - an example

```
fib(0) \(=0\)
fib \((1)=1 \quad\) fib \(: \mathbb{N} \rightarrow \mathbb{N}\)
\(f i b(n+2)=f i b(n+1)+f i b(n)\)
```

 \((n+1, a) \in \operatorname{Fib} \quad(n, b) \in \operatorname{Fib}\)
 \((0,0) \in\) Fib \(\quad(1,1) \in\) Fib
 \((n+2, a+b) \in F i b\)
 $R(X)=\left\{y \left\lvert\, \frac{x_{1} \cdots x_{n}}{y}\right.\right.$ and $\left.x_{1}, \ldots x_{n} \in X\right\}$

```
\(S^{0}=R(\emptyset)=\emptyset\)
\(S^{1}=R\left(S^{0}\right)=\{(0,0),(1,1)\}\)
\(S^{2}=R\left(S^{1}\right)=\{(0,0),(1,1),(2,1)\}\)
\(S^{3}=R\left(S^{2}\right)=\{(0,0),(1,1),(2,1),(3,2)\}\)
\(S^{4}=R\left(S^{3}\right)=\{(0,0),(1,1),(2,1),(3,2),(4,3)\}\)
\(S^{5}=R\left(S^{4}\right)=\{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5)\}\)
\(S^{6}=R\left(S^{5}\right)=\{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8)\}\)
\(S^{7}=R\left(S^{6}\right)=\{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8),(7,13)\}\)
```

a sequence of partial functions (under-) approximating fib

Constructing Inductively Defined Sets - an example

```
fib(0) \(=0\)
fib(1) \(=1\)
\(f i b(n+2)=f i b(n+1)+f i b(n)\)
```

 fib : \(\mathbb{N} \rightarrow \mathbb{N}\)
 \((n+1, a) \in \operatorname{Fib} \quad(n, b) \in \operatorname{Fib}\)
 \((0,0) \in \operatorname{Fib} \quad(1,1) \in F i b\)
 \((n+2, a+b) \in F i b\)
 $R(X)=\left\{y \left\lvert\, \frac{x_{1} \cdots x_{n}}{y}\right.\right.$ and $\left.x_{1}, \ldots x_{n} \in X\right\}$
$S^{0}=R(\emptyset)=\emptyset$
$S^{1}=R\left(S^{0}\right)=\{(0,0),(1,1)\}$
$s^{2}=R\left(S^{1}\right)=\{(0,0),(1,1),(2,1)\}$
$S^{3}=R\left(S^{2}\right)=\{(0,0),(1,1),(2,1),(3,2)\}$
$S^{4}=R\left(S^{3}\right)=\{(0,0),(1,1),(2,1),(3,2),(4,3)\}$
$S^{5}=R\left(S^{4}\right)=\{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5)\}$
$S^{6}=R\left(S^{5}\right)=\{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8)\}$
$s^{0} \subseteq s^{1} \subseteq s^{2} \subseteq \ldots$
$s^{7}=R\left(S^{6}\right)=\{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8),(7,13)\}$
a sequence of partial functions (under-) approximating fib

Constructing Inductively Defined Sets - an example

```
fib(0) \(=0\)
fib(1) \(=1\)
\(f i b(n+2)=f i b(n+1)+f i b(n)\)
```

fib : $\mathbb{N} \rightarrow \mathbb{N}$

$$
(n+1, a) \in F i b \quad(n, b) \in F i b
$$

$$
(0,0) \in F i b \quad(1,1) \in F i b
$$

$$
(n+2, a+b) \in F i b
$$

$$
R(X)=\left\{y \left\lvert\, \frac{x_{1} \cdots x_{n}}{y}\right. \text { and } x_{1}, \ldots x_{n} \in X\right\}
$$

$S^{0}=R(\emptyset)=\emptyset$
$S^{1}=R\left(S^{0}\right)=\{(0,0),(1,1)\}$
$S^{2}=R\left(S^{1}\right)=\{(0,0),(1,1),(2,1)\}$
$S^{3}=R\left(S^{2}\right)=\{(0,0),(1,1),(2,1),(3,2)\}$
$S^{4}=R\left(S^{3}\right)=\{(0,0),(1,1),(2,1),(3,2),(4,3)\}$
$S^{5}=R\left(S^{4}\right)=\{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5)\}$
$S^{6}=R\left(S^{5}\right)=\{(0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8)\}$
$S^{7}=R\left(S^{6}\right)=\{(0,0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8),(7,13)\}$ a sequence of partial functions (under-) approximating fib
$S \triangleq \bigcup_{i \in \mathbb{N}} S^{i} \quad$ this limit is exactly the (total) function fib

Languages

Strings over an alphabet

Let Γ be an alphabet (a finite nonempty set of symbols). The set Strings (Γ) is inductively defined as follows:

- $I=\Gamma \cup\{\varepsilon\}$,
- R_{1} : if $x, y \in \operatorname{Strings}(\Gamma)$ then $x y \in \operatorname{Strings}(\Gamma)$
- $x y$ is the concatenation of the strings x and $y \quad(\varepsilon x=x \varepsilon=x)$
- Notation: $\Gamma^{*}=\operatorname{Strings}(\Gamma)$ star closure of an alphabet

Languages

Strings over an alphabet

Let Γ be an alphabet (a finite nonempty set of symbols). The set Strings (Γ) is inductively defined as follows:

- $I=\Gamma \cup\{\varepsilon\}$,
- R_{1} : if $x, y \in \operatorname{Strings}(\Gamma)$ then $x y \in \operatorname{Strings}(\Gamma)$
- $x y$ is the concatenation of the strings x and $y \quad(\varepsilon x=x \varepsilon=x)$
- Notation: $\Gamma^{*}=\operatorname{Strings}(\Gamma)$ star closure of an alphabet

An example
$\Gamma=\{a, b\}, \quad \operatorname{Strings}(\Gamma)=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, \ldots\}$

Languages

Strings over an alphabet

Let Γ be an alphabet (a finite nonempty set of symbols). The set Strings (Γ) is inductively defined as follows:

- $I=\Gamma \cup\{\varepsilon\}$,
- R_{1} : if $x, y \in \operatorname{Strings}(\Gamma)$ then $x y \in \operatorname{Strings}(\Gamma)$
- $x y$ is the concatenation of the strings x and $y \quad(\varepsilon x=x \varepsilon=x)$
- Notation: $\Gamma^{*}=\operatorname{Strings}(\Gamma)$ star closure of an alphabet

An example
$\Gamma=\{a, b\}, \quad$ Strings $(\Gamma)=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, \ldots\}$

Languages

- A language on Γ is any subset $L \subseteq \Gamma^{*}$
- Languages can be defined inductively through formal grammars

Grammars

A grammar is a 4-tuple $G=\langle T, N T, S, P\rangle$ where
(1) terminals T
(2) nonterminals $N T \quad(T \cap N T=\emptyset)$
(3) start symbol $S \in N T$
(4) productions $P \subseteq(T \cup N T)^{*} \times(T \cup N T)^{*}$
if $(u, v) \in P$ then u has at least a nonterminal symbol

Grammars

A grammar is a 4-tuple $G=\langle T, N T, S, P\rangle$ where
(1) terminals
(2) nonterminals $N T$
$(T \cap N T=\emptyset)$
(3) start symbol $\quad S \in N T$
(9) productions $P \subseteq(T \cup N T)^{*} \times(T \cup N T)^{*}$
if $(u, v) \in P$ then u has at least a nonterminal symbol
(u, v) is also written as $u \rightarrow v$

Grammars

A grammar is a 4-tuple $G=\langle T, N T, S, P\rangle$ where
(1) terminals
(2) nonterminals $N T$
$(T \cap N T=\emptyset)$
(3) start symbol $\quad S \in N T$
(1) productions $P \subseteq(T \cup N T)^{*} \times(T \cup N T)^{*}$
if $(u, v) \in P$ then u has at least a nonterminal symbol
(u, v) is also written as $u \rightarrow v$
$\left(u, v_{1}\right),\left(u, v_{2}\right), \ldots,\left(u, v_{n}\right) \in P$ also written as

$$
u \rightarrow v_{1}\left|v_{2}\right| \ldots \mid v_{n}
$$

or

$$
u::=v_{1}\left|v_{2}\right| \ldots \mid v_{n}
$$

Backus-Naur Normal Form (BNF)

Grammars - derivation relation

$$
G=\langle T, N, S, P\rangle
$$

$$
\begin{array}{rl}
s=I u r & t=I v r \quad u \rightarrow v \\
& s \Rightarrow t
\end{array}
$$

for any production $u \rightarrow v$ in P
\Rightarrow * is the reflexive and transitive closure of \Rightarrow

Grammars and Languages

The language generated by G is the following set of string of terminal symbols

$$
L(G)=\left\{w \in T^{*} \mid S \Rightarrow^{*} w\right\}
$$

Grammars - example

$$
T=\{a, b, c\} \quad N=\{S, B\} \quad \text { start symbol: } S
$$

$S \rightarrow a B S c \mid a b c \quad B a \rightarrow a B \quad B b \rightarrow b b$

Grammars - example

$T=\{a, b, c\} \quad N=\{S, B\} \quad$ start symbol: S
$S \rightarrow a B S c \mid a b c \quad B a \rightarrow a B \quad B b \rightarrow b b$

A derivation:
\underline{S}

Grammars - example

$T=\{a, b, c\} \quad N=\{S, B\} \quad$ start symbol: S
$S \rightarrow a B S c \mid a b c \quad B a \rightarrow a B \quad B b \rightarrow b b$

A derivation:
$\underline{S} \Rightarrow a B \underline{S} c$

Grammars - example

$T=\{a, b, c\} \quad N=\{S, B\} \quad$ start symbol: S
$S \rightarrow a B S c \mid a b c \quad B a \rightarrow a B \quad B b \rightarrow b b$

A derivation:
$\underline{S} \Rightarrow a B \underline{S} c \Rightarrow a B a B \underline{S} c c$

Grammars - example

$T=\{a, b, c\} \quad N=\{S, B\} \quad$ start symbol: S
$S \rightarrow a B S c \mid a b c \quad B a \rightarrow a B \quad B b \rightarrow b b$

A derivation:
$\underline{S} \Rightarrow a B \underline{S} c \Rightarrow a B a B \underline{S} c c \Rightarrow a \underline{B a B a b c c c}$

Grammars - example

$T=\{a, b, c\} \quad N=\{S, B\} \quad$ start symbol: S
$S \rightarrow a B S c \mid a b c \quad B a \rightarrow a B \quad B b \rightarrow b b$

A derivation:
$\underline{S} \Rightarrow a B \underline{S} c \Rightarrow a B a B \underline{S} c c \Rightarrow a \underline{B a B a b c c c} \Rightarrow$
$\Rightarrow a a B B a b c c c$

Grammars - example

$T=\{a, b, c\} \quad N=\{S, B\} \quad$ start symbol: S
$S \rightarrow a B S c \mid a b c \quad B a \rightarrow a B \quad B b \rightarrow b b$

A derivation:
$\underline{S} \Rightarrow a B \underline{S} c \Rightarrow a B a B \underline{S} c c \Rightarrow a \underline{B a B a b c c c} \Rightarrow$
$\Rightarrow a a B \underline{B a b c c c} \Rightarrow a a \underline{B a B b c c c}$

Grammars - example

$T=\{a, b, c\} \quad N=\{S, B\} \quad$ start symbol: S
$S \rightarrow a B S c \mid a b c \quad B a \rightarrow a B \quad B b \rightarrow b b$

A derivation:
$\underline{S} \Rightarrow a B \underline{S} c \Rightarrow a B a B \underline{S} c c \Rightarrow a \underline{B a B a b c c c} \Rightarrow$
$\Rightarrow a a B \underline{B a b c c c} \Rightarrow a a \underline{B a B b c c c} \Rightarrow a a a B \underline{B b} c c c$

Grammars - example

$T=\{a, b, c\} \quad N=\{S, B\} \quad$ start symbol: S
$S \rightarrow a B S c \mid a b c \quad B a \rightarrow a B \quad B b \rightarrow b b$

A derivation:
$\underline{S} \Rightarrow a B \underline{S} c \Rightarrow a B a B \underline{S} c c \Rightarrow a \underline{B a B a b c c c} \Rightarrow$
$\Rightarrow a a B \underline{B a} b c c c \Rightarrow a a \underline{B a} B b c c c \Rightarrow a a B \underline{B b} c c c \Rightarrow$
\Rightarrow aaaBbbccc

Grammars - example

$T=\{a, b, c\} \quad N=\{S, B\} \quad$ start symbol: S
$S \rightarrow a B S c \mid a b c \quad B a \rightarrow a B \quad B b \rightarrow b b$

A derivation:
$\underline{S} \Rightarrow a B \underline{S} c \Rightarrow a B a B \underline{S} c c \Rightarrow a \underline{B a B a b c c c} \Rightarrow$
$\Rightarrow a a B \underline{B a} b c c c \Rightarrow a a \underline{B a} B b c c c \Rightarrow a a B B \underline{B b} c c c \Rightarrow$
$\Rightarrow a a a \underline{B b} b c c c \Rightarrow a a a b b b c c c \in\{a, b, c\}^{*}$

Grammars - example

$T=\{a, b, c\} \quad N=\{S, B\} \quad$ start symbol: S
$S \rightarrow a B S c \mid a b c \quad B a \rightarrow a B \quad B b \rightarrow b b$
A derivation:
$\underline{S} \Rightarrow a B \underline{S} c \Rightarrow a B a B \underline{S} c c \Rightarrow a B a B a b c c c \Rightarrow$
$\Rightarrow a a B \underline{B a b c c c} \Rightarrow a a \underline{B a B b} c c c \Rightarrow a a a B \underline{B b} c c c \Rightarrow$
$\Rightarrow a a a \underline{B b} b c c c \Rightarrow a a a b b b c c c \in\{a, b, c\}^{*}$

$$
L(G)=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}
$$

Abstract and Concrete Syntax

When providing the syntax of programming languages we need to worry about precedence of operators or grouping of statements to distinguish, e.g., between:

$$
(3+4) * 5 \quad \text { and } \quad 3+(4 * 5)
$$

while p do $\left(c_{1} ; c_{2}\right)$ and (while p do $\left.c_{1}\right) ; c_{2}$

Thus, e.g., for arithmetic expressions we have grammars with parenthesis:

$$
E::=n|(E)| E+E|E-E| E * E \mid E / E
$$

or more elaborate grammars specifying the precedence of operators (like the next one ...).

Abstract and Concrete Syntax

$$
\begin{array}{lll}
E::=E+T|E-T| T & \text { (expres } \\
T & ::=T * P|T / P| P & \text { (terms) } \\
P::=N \mid(E) & \text { (atomic } \\
N & ::=D N \mid D & \text { (numbe } \\
D & :=0|1| 2|3| 4|5| 6|7| 8 \mid 9 & \text { (digits) }
\end{array}
$$

- When defining the semantics of programming languages, we are only concerned with the meaning of their constructs, not with the theory of how to write programs.
- We thus resort to abstract syntax that leaves us the task of adding enough parentheses to programs to ensure they can be built-up in a unique way.

Abstract and Concrete Syntax

$$
\begin{array}{l:ll}
E & :=E+T|E-T| T & \text { (expressions) } \\
T & :=T * P|T / P| P & \text { (terms) } \\
P & :=N \mid(E) & \text { (atomic expres } \\
N & ::=D N \mid D & \text { (numbers) } \\
D::=0|1| 2|3| 4|5| 6|7| 8 \mid 9 & \text { (digits) }
\end{array}
$$

- When defining the semantics of programming languages, we are only concerned with the meaning of their constructs, not with the theory of how to write programs.
- We thus resort to abstract syntax that leaves us the task of adding enough parentheses to programs to ensure they can be built-up in a unique way.

Abstract syntax specifies the parse trees of a language; it is the job of concrete syntax to provide enough information through parentheses or precedence rules for a string to parse uniquely.

From Parsing to Execution

Concrete Syntax $\xrightarrow{\text { defines }} \quad$ Statements $\quad 2+(3 * 4)$

From Parsing to Execution

From Parsing to Execution

Concrete Syntax	$\xrightarrow{\text { defines }}$	Statements	$2+(3 * 4)$
		\downarrow Parse	\downarrow
Abstract Syntax	$\xrightarrow{\text { defines }}$	Syntax Trees	
		\downarrow Execute	\downarrow
Semantics	$\xrightarrow{\text { defines }}$	Meaning of Syntax Trees	14

Labelled Transition Systems

A labelled transition system is a 4-tuple $S=\left\langle Q, A, \rightarrow, q_{0}\right\rangle$ such that
(1) states Q
(2) actions A
(3) transitions $\rightarrow \subseteq Q \times A \times Q$

$$
q \xrightarrow{a} q^{\prime} \text { denotes }\left(q, a, q^{\prime}\right) \in \rightarrow
$$

(4) initial state $q_{0} \in Q$

Labelled Transition Systems

A labelled transition system is a 4-tuple $S=\left\langle Q, A, \rightarrow, q_{0}\right\rangle$ such that
(1) states Q
(2) actions A
(3) transitions $\rightarrow \subseteq Q \times A \times Q$

$$
q \xrightarrow{a} q^{\prime} \text { denotes }\left(q, a, q^{\prime}\right) \in \rightarrow
$$

(4) initial state $q_{0} \in Q$

Vending machine:

Labelled Transition Systems

A labelled transition system is a 4-tuple $S=\left\langle Q, A, \rightarrow, q_{0}\right\rangle$ such that
(1) states
Q
(2) actions A

Vending machine:
(3) transitions $\rightarrow \subseteq Q \times A \times Q$

$$
q \xrightarrow{a} q^{\prime} \text { denotes }\left(q, a, q^{\prime}\right) \in \rightarrow
$$

(4) initial state $q_{0} \in Q$

Semantics: traces

$\tau: a_{0} a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots$
τ : coin_in cancel return coin_in coin_in choose release

LTS-based Semantics of Arithmetic Expressions

$$
\begin{equation*}
\frac{m \circ n=k}{m \circ n \xrightarrow{\circ} k} \text { (op) } \frac{E_{1} \xrightarrow{\circ^{\prime}} E_{1}^{\prime}}{E_{1} \circ E_{2} \xrightarrow{\circ^{\prime}} E_{1}^{\prime} \circ E_{2}} \text { (rl) } \frac{E_{2} \xrightarrow{\circ^{\prime}} E_{2}^{\prime}}{E_{1} \circ E_{2} \stackrel{\circ^{\prime}}{\longrightarrow} E_{1} \circ E_{2}^{\prime}} \tag{rr}
\end{equation*}
$$

LTS-based Semantics of Arithmetic Expressions

$$
\frac{m \circ n=k}{m \circ n \xrightarrow{\circ} k} \text { (op) } \frac{E_{1} \xrightarrow{\circ^{\prime}} E_{1}^{\prime}}{E_{1} \circ E_{2} \xrightarrow{\circ^{\prime}} E_{1}^{\prime} \circ E_{2}} \text { (rl) } \frac{E_{2} \xrightarrow{\circ^{\prime}} E_{2}^{\prime}}{E_{1} \circ E_{2} \xrightarrow{\circ^{\prime}} E_{1} \circ E_{2}^{\prime}} \text { (rr) }
$$

$$
(4+(7 * 3)) /(6-1) \quad \xrightarrow{*}(4+21) /(6-1) \quad \xrightarrow{+} 25 /(6-1) \quad \xrightarrow{-} 25 / 5 \xrightarrow{/} 5
$$

LTS-based Semantics of Arithmetic Expressions

$$
\begin{align*}
& \underset{m \circ n \xrightarrow{m} k}{m \circ n=k}(\mathrm{op}) \quad \frac{E_{1} \stackrel{\circ^{\prime}}{\longrightarrow} E_{1}^{\prime}}{E_{1} \circ E_{2} \xrightarrow{\circ^{\prime}} E_{1}^{\prime} \circ E_{2}} \quad \text { (rl) } \quad \frac{E_{2} \stackrel{\circ^{\prime}}{\longrightarrow} E_{2}^{\prime}}{E_{1} \circ E_{2} \xrightarrow{\circ^{\prime}} E_{1} \circ E_{2}^{\prime}} \tag{rr}\\
& (4+(7 * 3)) /(6-1) \quad \xrightarrow{*}(4+21) /(6-1) \quad+25 /(6-1) \quad \xrightarrow{-} 25 / 5 \quad / \quad 5
\end{align*}
$$

Finite State Automata - as language recognizers

A finite state automaton M is a 5 -tuple $M=\left\langle Q, \Gamma, \rightarrow, q_{0}, F\right\rangle$ s.t.
(1) states
$Q \quad$ finite!
(2) alphabet Γ
(3) transitions $\quad \rightarrow \subseteq Q \times \Gamma \times Q$
$q \xrightarrow{a} q^{\prime}$ denotes $\left(q, a, q^{\prime}\right) \in \rightarrow$
(4) initial state $\quad q_{0} \in Q$
(5) accepting states $F \subseteq Q$

Finite State Automata - as language recognizers

A finite state automaton M is a 5 -tuple $M=\left\langle Q, \Gamma, \rightarrow, q_{0}, F\right\rangle$ s.t.
(1) states
$Q \quad$ finite!
(2) alphabet
Γ
(3) transitions $\quad \rightarrow \subseteq Q \times \Gamma \times Q$
$q \xrightarrow{a} q^{\prime}$ denotes $\left(q, a, q^{\prime}\right) \in \rightarrow$
(4) initial state $\quad q_{0} \in Q$
(5) accepting states $F \subseteq Q$
$p \stackrel{w}{\longrightarrow} q \quad$ iff $\quad p \xrightarrow{a_{1}} p_{1} \xrightarrow{a_{2}} \ldots \xrightarrow{a_{n}} p_{n}=q$
$w=a_{1} \cdots a_{n}$

Finite State Automata - as language recognizers

A finite state automaton M is a 5 -tuple $M=\left\langle Q, \Gamma, \rightarrow, q_{0}, F\right\rangle$ s.t.
(1) states
Q finite!
(2) alphabet「
(3) transitions $\quad \rightarrow \subseteq Q \times \Gamma \times Q$
$q \xrightarrow{a} q^{\prime}$ denotes $\left(q, a, q^{\prime}\right) \in \rightarrow$
(9) initial state $\quad q_{0} \in Q$
(accepting states $F \subseteq Q$
$p \xrightarrow{w} q \quad$ iff $\quad p \xrightarrow{a_{1}} p_{1} \xrightarrow{a_{2}} \ldots \xrightarrow{a_{n}} p_{n}=q \quad w=a_{1} \cdots a_{n}$

Semantics of Finite State Automata

The language accepted by a Finite State Automata is the set:

$$
L(M)=\left\{w \in \Gamma^{*} \mid q_{0} \xlongequal{w} q \text { and } q \in F\right\}
$$

Some Regular Bit-Strings $-\Gamma=\{0,1\}$

$L\left(A_{1}\right)=\{w \mid$ even number of 1 's $\}$

$L\left(A_{2}\right)=\{w \mid$ odd number of 0's $\}$

Some Regular Bit-Strings $-\Gamma=\{0,1\}$

$L\left(A_{1}\right)=\{w \mid$ even number of 1 's $\}$

$L\left(A_{2}\right)=\{w \mid$ odd number of 0's $\}$

$L\left(A_{1}\right) \cup L\left(A_{2}\right)$

Some Regular Bit-Strings $-\Gamma=\{0,1\}$

$L\left(A_{1}\right)=\{w \mid$ even number of 1 's $\}$

$L\left(A_{2}\right)=\{w \mid$ odd number of 0 's $\}$

$L\left(A_{1}\right) \cap L\left(A_{2}\right)$

Some Regular Bit-Strings $-\Gamma=\{0,1\}$

$L\left(A_{1}\right)=\{w \mid$ even number of 1 's $\}$

$L\left(A_{2}\right)=\{w \mid$ odd number of 0's $\}$

Some Regular Bit-Strings $-\Gamma=\{0,1\}$

$L\left(A_{1}\right)=\{w \mid$ even number of 1 's $\}$

$L\left(A_{2}\right)=\{w \mid$ odd number of 0's $\}$

$L\left(A_{2}\right) \backslash L\left(A_{1}\right)$

Some Regular Bit-Strings $-\Gamma=\{0,1\}$

$L\left(A_{1}\right)=\{w \mid$ even number of 1's $\}$

$L\left(A_{2}\right)=\{w \mid$ odd number of 0's $\}$
regular languages are closed w.r.t. the operations of \cap, \cup, \backslash, complement, reversal, concatenation, star closure, ...

Regular Languages

Chomsky Hierarchy	Grammar Restriction	Language	Abstract Machine
Type 0	unrestricted	recursively enumerable	Turing machines
Type 1	$\alpha A \beta \rightarrow \alpha \gamma \beta$	context sensitive	linear bounded automata
Type 2	$A \rightarrow \gamma$	context free	nondeterministic
pushdown automata			

