Formal Techniques for Software Engineering: CCS: A Calculus for Communicating Systems

Rocco De Nicola

IMT Institute for Advanced Studies, Lucca rocco.denicola@imtlucca.it

June 2013

Lesson 10

0010011001010
10101sysma 010
J1001010101010
10100101010010°
${ }^{0} 2_{0100001} 10010$

What have we done

(1) Importance of formal methods for proving correctness of concurrent systems
(2) Labelled Transition Systems (LTS) as formal models
(3) Operators of Process Description Languages (PDL) for modeling systems composition and interaction.
(9) Structural Operational Semantics (SOS) for modelling operators and building transition systems corresponding to composite systems.
(0) Behavioural Equivalences to abstract from unwanted details of the modelled systems
(0) A number of PDL obtained by careful selection of Operators and equivalences
(3) Alternative approaches (Equational and Denotational) to defining the Semantics of PDL

What's next

Now we concentrate on one language (CCS), study its theory more in depth and consider a number of small examples (case studies).

CCS Basics

Sequential Fragment

- Nil (or 0) process (the only atomic process)
- action prefixing (a.P)
- names and recursive definitions (\triangleq)
- nondeterministic choice (+)

CCS Basics

Sequential Fragment

- Nil (or 0) process (the only atomic process)
- action prefixing (a.P)
- names and recursive definitions (\triangleq)
- nondeterministic choice (+)

Any finite LTS can be described (up to isomorphism) by using the operations above.

CCS Basics

Sequential Fragment

- Nil (or 0) process (the only atomic process)
- action prefixing (a.P)
- names and recursive definitions (\triangleq)
- nondeterministic choice (+)

Any finite LTS can be described (up to isomorphism) by using the operations above.

Parallelism and Renaming

- parallel composition (|) (synchronous communication between two components $=$ handshake synchronization)
- restriction $(P \backslash L)$
- relabelling ($P[f]$)

Definition of CCS (channels, actions, process names)

Let

- \mathcal{A} be a set of channel names (e.g. tea, coffee are channel names)
- $\mathcal{L}=\mathcal{A} \cup \overline{\mathcal{A}}$ be a set of labels where
- $\overline{\mathcal{A}}=\{\bar{a} \mid a \in \mathcal{A}\}$
(elements of \mathcal{A} are called names and those of $\overline{\mathcal{A}}$ are called co-names)
- by convention $\overline{\bar{a}}=a$
- Act $=\mathcal{L} \cup\{\tau\}$ is the set of actions where
- τ is the internal or silent action
(e.g. τ, tea, $\overline{\text { coffee }}$ are actions)
- \mathcal{K} is a set of process names (constants) (e.g. CM).

Definition of CCS (expressions)

$$
\begin{aligned}
P:= & K \\
& \alpha \cdot P \\
& \sum_{i \in \in} P_{i} \\
& P_{1} \mid P_{2} \\
& P \backslash L \\
& P[f]
\end{aligned}
$$

process constants $(K \in \mathcal{K})$
prefixing ($\alpha \in$ Act)
summation (I is an arbitrary index set)
parallel composition
restriction ($L \subseteq \mathcal{A}$)
relabelling ($f:$ Act \rightarrow Act) such that

- $f(\tau)=\tau$
- $f(\bar{a})=\overline{f(a)}$

The set of all terms generated by the abstract syntax is the set of CCS process expressions (and is denoted by \mathcal{P}).

Notation

$$
P_{1}+P_{2}=\sum_{i \in\{1,2\}} P_{i} \quad \text { Nil }=0=\sum_{i \in \emptyset} P_{i}
$$

Precedence

Precedence

(1) restriction and relabelling (tightest binding)
(2) action prefixing
(3) parallel composition
(c) summation

Example: $R+a . P \mid b \cdot Q \backslash L$ means $R+((a . P) \mid(b \cdot(Q \backslash L)))$.

Definition of CCS (defining equations)

CCS program

A collection of defining equations of the form

$$
K \triangleq P
$$

where $K \in \mathcal{K}$ is a process constant and $P \in \mathcal{P}$ is a CCS process expression.

- Only one defining equation per process constant.
- Recursion is allowed: e.g. $A \triangleq \bar{a} . A \mid A$.

Structural Operational Semantics for CCS

Structural Operational Semantics (SOS)—G. Plotkin 1981

Small-step operational semantics where the behaviour of a system is inferred using syntax driven rules.

Given a collection of CCS defining equations, we define the following LTS (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$):

- Proc $=\mathcal{P} \quad$ (the set of all CCS process expressions)
- Act $=\mathcal{L} \cup\{\tau\} \quad$ (the set of all CCS actions including τ)
- transition relation is given by SOS rules of the form:

$$
\text { RULE } \frac{\text { premises }}{\text { conclusion }} \text { conditions }
$$

SOS rules for $\operatorname{CCS}(\alpha \in A c t, a \in \mathcal{L})$

$$
\begin{aligned}
& \text { ACT } \\
& \overline{\alpha . P \xrightarrow{\alpha} P} \\
& \operatorname{SUM}_{j} \frac{P_{j} \xrightarrow{\alpha} P_{j}^{\prime}}{\sum_{i \in I} P_{i} \xrightarrow{\alpha} P_{j}^{\prime}} j \in I \\
& \text { COM1 } \frac{P \xrightarrow{\alpha} P^{\prime}}{P\left|Q \xrightarrow{\alpha} P^{\prime}\right| Q} \\
& \text { COM2 } \frac{Q \xrightarrow{\alpha} Q^{\prime}}{P|Q \xrightarrow{\alpha} P| Q^{\prime}} \\
& \text { COM3 } \xrightarrow[{P\left|Q \xrightarrow{P \xrightarrow{a} P^{\prime}} P^{\prime}\right| Q^{\prime}}]{\stackrel{\bar{a}}{\longrightarrow}} Q^{\prime} \\
& \operatorname{RES} \frac{P \xrightarrow{\alpha} P^{\prime}}{P \backslash L \xrightarrow{\alpha} P^{\prime} \backslash L} \alpha, \bar{\alpha} \notin L \quad \text { REL } \frac{P \xrightarrow{\alpha} P^{\prime}}{P[f] \xrightarrow{f(\alpha)} P^{\prime}[f]} \\
& \operatorname{CON} \underset{\xrightarrow{P} P^{\alpha} P^{\prime}}{ } K \triangleq P
\end{aligned}
$$

Deriving Transitions in CCS

Let $A \triangleq a . A$. Then

$$
\begin{gathered}
((A \mid \bar{a} . N i l) \mid b . N i l)[c / a] \xrightarrow{c}((A \mid \overline{\text { a. }} \text {.Nil }) \mid b . N i l)[c / a] . \\
\text { Why? }
\end{gathered}
$$

Deriving Transitions in CCS

Let $A \triangleq a . A$. Then

$$
\begin{gathered}
((A \mid \bar{a} . N i l) \mid b . N i l)[c / a] \xrightarrow{c}((A \mid \overline{\text { a.Nil }}) \mid \text { b.Nil })[c / a] . \\
\text { Why? }
\end{gathered}
$$

REL
$\overline{((A \mid \overline{\text { a }} . \text { Nil }) \mid \text { b.Nil })[c / a] \xrightarrow{c}((A \mid \overline{\text { a }} . \mathrm{Nil}) \mid \text { b.Nil })[c / a]}$

Deriving Transitions in CCS

Let $A \triangleq a . A$. Then

$$
\begin{gathered}
((A \mid \bar{a} . N i l) \mid b . N i l)[c / a] \xrightarrow{c}((A \mid \overline{\text { a.Nil }}) \mid \text { b.Nil })[c / a] . \\
\text { Why? }
\end{gathered}
$$

$$
\frac{\text { COM1 } \overline{(A \mid \overline{\text { a. Nil }}) \mid \text { b.Nil } \xrightarrow{a}(A \mid \overline{\text { a.N.Nil }) \mid \text { b.Nil }}}}{((A \mid \overline{\text { a.Nil }}) \mid \text { b.Nil })[c / a] \xrightarrow{c}((A \mid \bar{a} . \text { Nil }) \mid \text { b.Nil })[c / a]}
$$

Deriving Transitions in CCS

Let $A \triangleq a . A$. Then

$$
\begin{gathered}
((A \mid \bar{a} . N i l) \mid b . N i l)[c / a] \xrightarrow{c}((A \mid \overline{\text { a.Nil }}) \mid \text { b.Nil })[c / a] . \\
\text { Why? }
\end{gathered}
$$

$$
\begin{aligned}
& \text { COM1 } \\
& \overline{A \mid \bar{a} . N i l} \xrightarrow{a} A \mid \bar{a} . N i l
\end{aligned}
$$

Deriving Transitions in CCS

Let $A \triangleq a . A$. Then

$$
\begin{gathered}
((A \mid \bar{a} . N i l) \mid b . N i l)[c / a] \xrightarrow{c}((A \mid \overline{\text { a.Nil }}) \mid \text { b.Nil })[c / a] . \\
\text { Why? }
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{COM1} \frac{\operatorname{CON} \underset{A \xrightarrow{a}}{A \mid \bar{a} . N i l} \xrightarrow{a} A \mid \bar{a} . \mathrm{Nil}}{} A \triangleq a . A \\
& \text { REL } \frac{(A \mid \overline{\text { a }} . \text { Nil }) \mid \text { b.Nil } \xrightarrow{a}(A \mid \overline{\text { a }} . \text { Nil }) \mid \text { b.Nil }}{((A \mid \overline{\text { a }} \text {.Nil }) \mid \text { b.Nil })[c / a] \xrightarrow{c}((A \mid \overline{\text { a.Nil }}) \mid \text { b.Nil })[c / a]}
\end{aligned}
$$

Deriving Transitions in CCS

Let $A \triangleq a . A$. Then

$$
\begin{gathered}
((A \mid \bar{a} . N i l) \mid b . N i l)[c / a] \xrightarrow{c}((A \mid \overline{\text { a.Nil }}) \mid \text { b.Nil })[c / a] . \\
\text { Why? }
\end{gathered}
$$

LTS of the Process a.Nil|ā.Nil

Puzzle Time: 50 Prisoners Problem

Solve the problem and write down the solution as a process
50 prisoners kept in separate cells got a chance are told that

- From time to time one of them would be taken to a special room (in no particular order, possibly multiple many consecutive times, but with a fair schedule to avoid infinite wait) and then back to the cell.
- The room is completely empty except for an on/off switch a lamp (the light is not visible from outside).
- At any time, if any of them says that all the prisoners have already entered the room at least once and this is true, all prisoners will be released (but if it is false, the play ends and they are life sentenced).

Before the challenge starts, the prisoners have the possibility to discuss together some "protocol" to follow. Is there a winning strategy for the prisoners?

Note that the initial state of the light in the room is not known.

First Attempt (assume the light is initially ON)

The Light (initially ON)
Light \triangleq turnOff.turnOn.Light (can be read as recX.turnOff.turnOn.X)

First Attempt (assume the light is initially ON)

The Light (initially ON)
Light \triangleq turnOff.turnOn.Light (can be read as recX.turnOff.turnOn.X)
One Counting-Down Prisoner

$$
\begin{aligned}
\mathrm{C}_{i+1} & \triangleq \overline{\text { turnOff }} . \mathrm{C}_{i}+\tau . \mathrm{C}_{i+1} \\
\mathrm{C}_{0} & \triangleq \overline{\text { freeAll }}
\end{aligned}
$$

First Attempt (assume the light is initially ON)

The Light (initially ON)
Light \triangleq turnOff.turnOn.Light (can be read as recX.turnOff.turnOn.X)
One Counting-Down Prisoner

$$
\begin{aligned}
\mathrm{C}_{i+1} & \triangleq \overline{\text { turnOff }} . \mathrm{C}_{i}+\tau . \mathrm{C}_{i+1} \\
\mathrm{C}_{0} & \triangleq \overline{\text { freeAll }}
\end{aligned}
$$

49 Generic Prisoners
$\mathrm{P} \triangleq \overline{\text { turnOn. }} \mathrm{IP}+\tau . \mathrm{P}$
$\mathrm{IP} \triangleq \tau . \mathrm{IP} \quad$ (Idle Prisoner)

First Attempt (assume the light is initially ON)

The Light (initially ON)
Light \triangleq turnOff.turnOn.Light (can be read as recX.turnOff.turnOn.X)
One Counting-Down Prisoner

$$
\begin{aligned}
\mathrm{C}_{i+1} & \triangleq \overline{\text { turnOff }} . \mathrm{C}_{i}+\tau . \mathrm{C}_{i+1} \\
\mathrm{C}_{0} & \triangleq \overline{\text { freeAll }}
\end{aligned}
$$

49 Generic Prisoners
$\mathrm{P} \triangleq \overline{\text { turnOn. }} \mathrm{IP}+\tau . \mathrm{P}$
$\mathrm{IP} \triangleq \tau . \mathrm{IP} \quad$ (Idle Prisoner)

Prison

(Light $\left.\left|\mathrm{C}_{50}\right| \mathrm{P}|\ldots| \mathrm{P}\right) \backslash\{$ turnOn, turnOff $\}$

Problems

Prisoners can just perform $\tau \mathrm{s}$ and never interact with the light
The Light (initially ON)
Light \triangleq turnOff.turnOn.Light

Problems

Prisoners can just perform $\tau \mathrm{s}$ and never interact with the light
The Light (initially ON)
Light \triangleq turnOff.turnOn.Light
One Counting-Down Prisoner

$$
\begin{aligned}
\mathrm{C}_{i+1} & \triangleq \overline{\text { turnOff }} . \mathrm{C}_{i}+\overline{\text { turnOn}} . \overline{\text { turnOff }} . \mathrm{C}_{i+1} \\
\mathrm{C}_{0} & \triangleq \overline{\text { freeAll }}
\end{aligned}
$$

Problems

Prisoners can just perform $\tau \mathrm{s}$ and never interact with the light
The Light (initially ON)
Light \triangleq turnOff.turnOn.Light
One Counting-Down Prisoner

$$
\begin{aligned}
\mathrm{C}_{i+1} & \triangleq \overline{\text { turnOff }} . \mathrm{C}_{i}+\overline{\text { turnOn}} . \overline{\text { turnOff }} . \mathrm{C}_{i+1} \\
\mathrm{C}_{0} & \triangleq \overline{\text { freeAll }}
\end{aligned}
$$

49 Generic Prisoners

$$
\begin{array}{rll}
\mathrm{P} & \triangleq & \overline{\text { turnOn}} . \mathrm{IP}+\overline{\text { turnOff }} . \overline{t u r n O n} . \mathrm{P} \\
\mathrm{IP} & \triangleq \tau . \mathrm{IP} \quad \text { (Idle Prisoner) }
\end{array}
$$

Problems

Prisoners can just perform $\tau \mathrm{s}$ and never interact with the light
The Light (initially ON)
Light \triangleq turnOff.turnOn.Light
One Counting-Down Prisoner

$$
\begin{aligned}
\mathrm{C}_{i+1} & \triangleq \overline{\text { turnOff }} . \mathrm{C}_{i}+\overline{\text { turnOn}} . \overline{\text { turnOff }} . \mathrm{C}_{i+1} \\
\mathrm{C}_{0} & \triangleq \overline{\text { freeAll }}
\end{aligned}
$$

49 Generic Prisoners

$$
\begin{aligned}
\mathrm{P} & \triangleq \overline{\text { turnOn}} . \mathrm{IP}+\overline{\text { turnOff }} . \overline{t u r n O n} . \mathrm{P} \\
\mathrm{IP} & \triangleq \tau . \mathrm{IP} \quad \text { (Idle Prisoner) }
\end{aligned}
$$

Prison

(Light $\left.\left|\mathrm{C}_{50}\right| \mathrm{P}|\ldots| \mathrm{P}\right) \backslash\{$ turnOn, turnOff $\}$

Problems

The light must be accessed in mutual exclusion
The Room and The Light (initially ON)
Room \triangleq roomIn.roomOut.Room Light \triangleq turnOff.turnOn.Light

Problems

The light must be accessed in mutual exclusion
The Room and The Light (initially ON)
Room \triangleq roomln.roomOut.Room Light \triangleq turnOff.turnOn.Light
One Counting-Down Prisoner

$$
\begin{aligned}
& \mathrm{C}_{i+1} \triangleq \overline{\text { roomIn }} .\left(\overline{\text { turnOff } . r o o m O u t . ~} . \mathrm{C}_{i}+\overline{\text { turnOn.turnOff }} . \overline{\text { roomOut }} . \mathrm{C}_{i+1}\right) \\
& \mathrm{C}_{0} \triangleq \overline{\text { freeAll }}
\end{aligned}
$$

49 Generic Prisoners

$$
\begin{aligned}
& \mathrm{P} \triangleq \overline{\text { roomln. }}(\overline{\text { turnOn.roomOut. IP }+\overline{\text { turnOff.turnOn.roomOut. }} \text {. })} \\
& \mathrm{IP} \triangleq \overline{\text { roomIn. } . \text { roomOut.IP }}
\end{aligned}
$$

Problems

The light must be accessed in mutual exclusion
The Room and The Light (initially ON)
Room \triangleq roomln.roomOut.Room Light \triangleq turnOff.turnOn.Light
One Counting-Down Prisoner

$$
\begin{aligned}
& \mathrm{C}_{i+1} \triangleq \overline{\text { roomIn }} .\left(\overline{\text { turnOff } . r o o m O u t . ~} . \mathrm{C}_{i}+\overline{\text { turnOn.turnOff }} . \overline{\text { roomOut }} . \mathrm{C}_{i+1}\right) \\
& \mathrm{C}_{0} \triangleq \overline{\text { freeAll }}
\end{aligned}
$$

49 Generic Prisoners

$$
\begin{aligned}
& \mathrm{P} \triangleq \overline{\text { roomln. }}(\overline{\text { turnOn.roomOut. IP }+\overline{\text { turnOff.turnOn.roomOut. }} \text {. })} \\
& \mathrm{IP} \triangleq \overline{\text { roomIn. } . \text { roomOut.IP }}
\end{aligned}
$$

Problems

The light must be accessed in mutual exclusion
The Room and The Light (initially ON)
Room \triangleq roomln.roomOut.Room Light \triangleq turnOff.turnOn.Light
One Counting-Down Prisoner

$$
\begin{aligned}
& \mathrm{C}_{i+1} \triangleq \overline{\text { roomIn }} .\left(\overline{\text { turnOff }} . \overline{\text { roomOut. }} . \mathrm{C}_{i}+\overline{\text { turnOn.turnOff }} . \overline{\text { roomOut }} . \mathrm{C}_{i+1}\right) \\
& \mathrm{C}_{0} \triangleq \overline{\text { freeAll }}
\end{aligned}
$$

49 Generic Prisoners

$$
\begin{aligned}
& \mathrm{P} \triangleq \overline{\text { roomIn. }} \text { (turnOn.roomOut.IP }+\overline{\text { turnOff. }} . \overline{\text { turnOn.roomOut. }} \text {. }) \\
& \mathrm{IP} \triangleq \overline{\text { roomIn. }} \text {. } . \text { roomOut.IP }
\end{aligned}
$$

Prison

(Room \mid Light $\left.\left|\mathrm{C}_{50}\right| \mathrm{P}|\ldots| \mathrm{P}\right) \backslash\{$ turnOn, turnOff, roomIn, roomOut $\}$

Problems

Initial state is not known
The Light
Light $\triangleq \tau$. LightOn $+\tau$.LightOff
LightOn \triangleq turnOff.LightOff
LightOff \triangleq turnOn.LightOn

Problems

Initial state is not known
The Light
Light $\triangleq \tau$. LightOn $+\tau$.LightOff
LightOn \triangleq turnOff.LightOff
LightOff \triangleq turnOn.LightOn
If the light is initially ON and the counting prisoner enters the room first then it must count 50 switching, otherwise only $49 \ldots$ but he cannot know!

Problems

Initial state is not known
The Light
Light $\triangleq \tau$. LightOn $+\tau$.LightOff
LightOn \triangleq turnOff.LightOff
LightOff \triangleq turnOn.LightOn
If the light is initially ON and the counting prisoner enters the room first then it must count 50 switching, otherwise only $49 \ldots$ but he cannot know!

```
Prison
(Room | Light | C 50or49? | P | .. | P)\{turnOn, turnOff,roomIn, roomOut}
```


Solution

What about counting twice?

$$
\begin{aligned}
& 50+49=99 \\
& 49+49=98
\end{aligned}
$$

If he can count 98 switchings then all other prisoners must have entered the room at least once (well... most of them twice). If not:
$49+48=97$
$48+48=96$
Generic Prisoners \& Re-playing Prisoners \& Idle Prisoners

$$
\begin{aligned}
& \mathrm{P} \triangleq \overline{\text { roomln }} \text {.(} \overline{\text { turnOn }} \text {.roomOut. } \mathrm{RP}+\overline{\text { turnOff }} \text {.turnOn.roomOut. } \mathrm{P} \text {) } \\
& \mathrm{RP} \triangleq \overline{\text { roomln }} \text {. (turnOn.roomOut.IP }+\overline{\text { turnOff.turnOn.roomOut. }} \mathrm{RP} \text {) } \\
& \mathrm{IP} \triangleq \overline{\text { roomIn. }} \text {. } \cdot \text { roomOut.IP }
\end{aligned}
$$

Solution

What about counting twice?

$$
\begin{aligned}
& 50+49=99 \\
& 49+49=98
\end{aligned}
$$

If he can count 98 switchings then all other prisoners must have entered the room at least once (well... most of them twice). If not:
$49+48=97$
$48+48=96$
Generic Prisoners \& Re-playing Prisoners \& Idle Prisoners
$\mathrm{P} \triangleq \overline{\text { roomln }}$. (turnOn.roomOut. $\mathrm{RP}+\overline{\text { turnOff. }}$ turnOn. $\overline{\text { roomOut }} . \mathrm{P})$
$\mathrm{RP} \triangleq \overline{\text { roomln }}$. (turnOn.roomOut.IP $+\overline{\text { turnOff.turnOn }}$.roomOut.RP)
IP $\triangleq \overline{\text { roomln. } \tau . r o o m O u t . I P ~}$

Prison

(Room \mid Light $\left.\left|\mathrm{C}_{98}\right| \mathrm{P}|\ldots| \mathrm{P}\right) \backslash\{$ turnOn, turnOff, roomIn, roomOut $\}$

Value Passing CCS

Main Idea

Handshake synchronization is extended with the possibility to exchange data (e.g., integers).

$$
\overline{\operatorname{pay}(6)} . \text { Nil | pay }(x) . \overline{\operatorname{save}(x / 2)} \text {.Nil }
$$

Value Passing CCS

Main Idea

Handshake synchronization is extended with the possibility to exchange data (e.g., integers).

$$
\begin{aligned}
& \overline{\operatorname{pay}(6)} \text {. Nil | pay (x). } \overline{\text { save }(x / 2)} \text {. Nil } \\
& \downarrow \tau \\
& \text { Nil | } \overline{\text { save(3). }} \text {. Nil }
\end{aligned}
$$

Value Passing CCS

Main Idea

Handshake synchronization is extended with the possibility to exchange data (e.g., integers).

$$
\begin{aligned}
& \overline{\operatorname{pay}(6)} \text {.Nil | pay (x). } \overline{\operatorname{save}(x / 2)} \text {.Nil } \\
& \downarrow \tau \\
& \text { Nil | } \overline{\text { save(3). }} \text {. Nil }
\end{aligned}
$$

Parametrized Process Constants

For example: $\operatorname{Bank}($ total $) \triangleq \operatorname{save}(x) \cdot \operatorname{Bank}($ total $+x)$.

Value Passing CCS

Main Idea

Handshake synchronization is extended with the possibility to exchange data (e.g., integers).

$$
\begin{gathered}
\overline{\text { pay (6). Nil } \mid \text { pay }(x) . \overline{s a v e}(x / 2) . N i l \mid \operatorname{Bank}(100)} \begin{array}{c}
\downarrow \tau \\
\text { Nil | } \overline{\operatorname{save}(3)} . \operatorname{Nil} \mid \operatorname{Bank}(100)
\end{array}
\end{gathered}
$$

Parametrized Process Constants

For example: $\operatorname{Bank}($ total $) \triangleq \operatorname{save}(x) \cdot \operatorname{Bank}($ total $+x)$.

Value Passing CCS

Main Idea

Handshake synchronization is extended with the possibility to exchange data (e.g., integers).

$$
\begin{gathered}
\overline{\text { pay(6). Nil }|\operatorname{pay}(x) . \overline{\operatorname{save}(x / 2)} . \operatorname{Nil}| \operatorname{Bank}(100)} \begin{array}{c}
\downarrow \tau \\
\text { Nil }|\overline{\operatorname{save}(3)} . \operatorname{Nil}| \operatorname{Bank}(100) \\
\downarrow \tau \\
\text { Nil } \mid \text { Nil } \mid \operatorname{Bank}(103)
\end{array}
\end{gathered}
$$

Parametrized Process Constants

For example: $\operatorname{Bank}($ total $) \triangleq \operatorname{save}(x) \cdot \operatorname{Bank}($ total $+x)$.

Translation of Value Passing CCS to Standard CCS

Value Passing CCS

$$
\begin{gathered}
C \triangleq \operatorname{in}(x) \cdot C^{\prime}(x) \\
C^{\prime}(x) \triangleq \overline{\text { out }(x)} \cdot C
\end{gathered}
$$

symbolic LTS

Standard CCS

$$
\begin{aligned}
& C \triangleq \sum_{i \in \mathbb{N}} i n_{i} \cdot C_{i}^{\prime} \\
& C_{i}^{\prime} \triangleq \overline{\text { out }_{i}} \cdot C
\end{aligned}
$$

infinite LTS

CCS Has Full Turing Power

Fact

CCS can simulate a computation of any Turing machine.

Remark

Hence CCS is as expressive as any other programming language but its use is to rather describe the behaviour of reactive systems than to perform specific calculations.

Strong Bisimilarity

Let (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$) be an LTS.

Strong Bisimulation

A binary relation $R \subseteq$ Proc \times Proc is a strong bisimulation iff whenever $(s, t) \in R$ then for each $a \in A c t:$

- if $s \xrightarrow{a} s^{\prime}$ then $t \xrightarrow{a} t^{\prime}$ for some t^{\prime} such that $\left(s^{\prime}, t^{\prime}\right) \in R$
- if $t \xrightarrow{a} t^{\prime}$ then $s \xrightarrow{a} s^{\prime}$ for some s^{\prime} such that $\left(s^{\prime}, t^{\prime}\right) \in R$.

Strong Bisimilarity

Two processes $p_{1}, p_{2} \in \operatorname{Proc}$ are strongly bisimilar $\left(p_{1} \sim p_{2}\right)$ if and only if there exists a strong bisimulation R such that $\left(p_{1}, p_{2}\right) \in R$.

$$
\sim=\bigcup\{R \mid R \text { is a strong bisimulation }\}
$$

Example - Buffer

Buffer of Capacity 1

$B_{0}^{1} \triangleq$ in. B_{1}^{1}
$B_{1}^{1} \triangleq \frac{o u t}{} . B_{0}^{1}$

Example - Buffer

Buffer of Capacity 1 Buffer of Capacity n

$B_{0}^{1} \triangleq \operatorname{in} . B_{1}^{1}$
$B_{1}^{1} \triangleq \overline{o u t} . B_{0}^{1}$

$$
\begin{aligned}
& B_{0}^{n} \triangleq \text { in. } B_{1}^{n} B_{i}^{n} \triangleq \text { in. } B_{i+1}^{n}+\overline{o u t} . B_{i-1}^{n} \quad \text { for } 0<i<n \\
& B_{n}^{n} \triangleq \overline{o u t} . B_{n-1}^{n}
\end{aligned}
$$

Example - Buffer

Buffer of Capacity 1 Buffer of Capacity n

$B_{0}^{n} \triangleq i n . B_{1}^{n} B_{i}^{n} \triangleq i n . B_{i+1}^{n}+\overline{o u t} . B_{i-1}^{n} \quad$ for $0<i<n$ $B_{1}^{1} \triangleq \overline{o u t} . B_{0}^{1}$ $B_{n}^{n} \triangleq \overline{o u t} . B_{n-1}^{n}$

Example: $B_{0}^{2} \sim B_{0}^{1} \mid B_{0}^{1}$

Example - Buffer

Theorem
For all natural numbers $n: \quad B_{0}^{n} \sim \underbrace{B_{0}^{1}\left|B_{0}^{1}\right| \cdots \mid B_{0}^{1}}_{n \text { times }}$

Example - Buffer

Theorem
For all natural numbers $n: \quad B_{0}^{n} \sim \underbrace{B_{0}^{1}\left|B_{0}^{1}\right| \cdots \mid B_{0}^{1}}_{n \text { times }}$

Proof.

Construct the following binary relation where $i_{1}, i_{2}, \ldots, i_{n} \in\{0,1\}$.

$$
R=\left\{\left(B_{i}^{n}, B_{i_{1}}^{1}\left|B_{i_{2}}^{1}\right| \cdots \mid B_{i_{n}}^{1}\right) \mid \sum_{j=1}^{n} i_{j}=i\right\}
$$

- $\left(B_{0}^{n}, B_{0}^{1}\left|B_{0}^{1}\right| \cdots \mid B_{0}^{1}\right) \in R$
- R is strong bisimulation

Question Time

Prove the following (or give counterexamples)

- ~ is reflexive
- ~ is symmetric
- ~ is transitive
- \sim is an equivalence relation
- If \mathcal{R} is a strong bisimulation then $\mathcal{R} \subseteq \sim$
- For all natural numbers $n, k: \quad B_{0}^{n+k} \sim B_{0}^{n} \mid B_{0}^{k}$

Playful digression

Some advanced proof methods
(1) Proof by obviousness: So evident it need not to be mentioned
(2) Proof by general agreement: All in favor?
(3) Proof by majority: When general agreement fails
(9) Proof by plausibility: It sounds good

Playful digression

Some advanced proof methods
(1) Proof by obviousness: So evident it need not to be mentioned
(2) Proof by general agreement: All in favor?
(3) Proof by majority: When general agreement fails
(9) Proof by plausibility: It sounds good
(5) Proof by intuition: I have this feeling...
(0) Proof by lost reference: I saw it somewhere
(1) Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
(8) Proof by logic: It is on the textbook, hence it must be true

Playful digression

Some advanced proof methods
(1) Proof by obviousness: So evident it need not to be mentioned
(2) Proof by general agreement: All in favor?
(3) Proof by majority: When general agreement fails
(9) Proof by plausibility: It sounds good
(5) Proof by intuition: I have this feeling...
(0) Proof by lost reference: I saw it somewhere
(1) Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
(8) Proof by logic: It is on the textbook, hence it must be true
(2) Proof by intimidation: Who is saying that it is false!?
(10) Proof by authority: Don Knuth said it was true
(1) Proof by deception: Everybody please turn their backs...

Playful digression

Some advanced proof methods
(1) Proof by obviousness: So evident it need not to be mentioned
(2) Proof by general agreement: All in favor?
(3) Proof by majority: When general agreement fails
(9) Proof by plausibility: It sounds good
(3) Proof by intuition: I have this feeling...
(0) Proof by lost reference: I saw it somewhere
(1) Proof by obscure reference: It appeared in the Annals of Polish Math. Soc. (1854, in polish)
(8) Proof by logic: It is on the textbook, hence it must be true
(9) Proof by intimidation: Who is saying that it is false!?
(10) Proof by authority: Don Knuth said it was true
(1) Proof by deception: Everybody please turn their backs...
(12) Proof by divine word: Lord said let it be true

Strong Bisimilarity is a Congruence for CCS Operations

Theorem

Let P and Q be CCS processes such that $P \sim Q$. Then

- $\alpha . P \sim \alpha . Q$ for each action $\alpha \in A c t$
- $P+R \sim Q+R$ for each CCS process R
- $R+P \sim R+Q$ for each CCS process R
- $P|R \sim Q| R$ for each CCS process R
- $R|P \sim R| Q$ for each CCS process R
- $P[f] \sim Q[f]$ for each relabelling function f
- $P \backslash L \sim Q \backslash L$ for each set of labels L.
(proof sketch for ${ }_{-}+R$) Let $\mathcal{R}=\{(P+R, Q+R) \mid R \in$ Proc $\} \cup \sim \cup I d$. It suffices to show that \mathcal{R} is a bisimulation. Suppose $P+R \xrightarrow{\mu} S$. If it is because $P \xrightarrow{\mu} S$, then $Q \xrightarrow{\mu} T$ with $(S, T) \in \sim$ because $P \sim Q$ and hence $Q+R \xrightarrow{\mu} T$ with $(S, T) \in \sim \subseteq \mathcal{R}$. Otherwise, it is because $R \xrightarrow{\mu} S$, but then $Q+R \xrightarrow{\mu} S$ with $(S, S) \in I d \subseteq \mathcal{R}$. The case where $Q+R$ moves is symmetric.

Other Properties of Strong Bisimilarity

The Following Properties Hold for all CCS Processes P, Q, R

- $P+$ Nil $\sim P \quad$ (Neutral element for +)
- $P \mid$ Nil $\sim P \quad$ (Neutral element for $\mid)$
- $P+Q \sim Q+P \quad$ (Commutativity of +)
- $P|Q \sim Q| P \quad$ (Commutativity of \mid)
- $(P+Q)+R \sim P+(Q+R) \quad$ (associativity of +)
- $(P \mid Q)|R \sim P|(Q \mid R) \quad$ (associativity of $\mid)$
- $P+P \sim P \quad$ (Idempotency of +)
(proof sketch for commutativity of +)
Let $\mathcal{R}=\{(P+Q, Q+P) \mid P, Q \in$ Proc $\} \cup I d$.
It suffices to show that \mathcal{R} is a bisimulation.
Suppose $P+Q \xrightarrow{\mu} S$ using SUM1 (resp. SUM2), then $Q+P \xrightarrow{\mu} S$ using SUM2 (resp. SUM1) and $(S, S) \in I d \subseteq \mathcal{R}$.
The case where $Q+P$ moves is analogous.

Strong Bisimilarity - Summary

Properties of \sim

- an equivalence relation
- the largest strong bisimulation
- a congruence
- enough to prove some natural rules like
- $P|Q \sim Q| P$
- $P \mid$ Nil $\sim P$
- $(P \mid Q)|R \sim Q|(P \mid R)$
- ...

Strong Bisimilarity - Summary

Properties of \sim

- an equivalence relation
- the largest strong bisimulation
- a congruence
- enough to prove some natural rules like
- $P|Q \sim Q| P$
- $P \mid$ Nil $\sim P$
- $(P \mid Q)|R \sim Q|(P \mid R)$
- ...

Question

Should we look any further???

Behavioural Equivalence: Cells

Cell1 $=$ One-position cell
Cell2 $=$ Two-positions cell

SeqCell $=$ Cell $1 \frown$ Cell 1

(p restricted)

Are Cell2, ParCell and SeqCell equivalent?

Behavioural Equivalence: FIFO buffers

FIFO1 $=$ One-pos. FIFO buffer

ParFIFO = FIFO1 \mid FIFO1

FIFO2 $=$ Two-pos. FIFO buffer

SeqFIFO = FIFO1 \frown FIFO1

($p 0, p 1$ restricted)

Are FIFO2, ParFIFO and SeqFIFO equivalent?

Weak Transition Relation

Let (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$) be an LTS such that $\tau \in A c t$.
Definition of the Weak Transition Relations
Let a be an action or ε :

$$
\xrightarrow{a}=\left\{\begin{array}{cc}
(\xrightarrow{\tau})^{*} \circ \stackrel{a}{\longrightarrow} \circ(\stackrel{\tau}{\longrightarrow})^{*} & \text { if } a \neq \varepsilon \\
(\xrightarrow{\tau})^{*} & \text { if } a=\varepsilon
\end{array}\right.
$$

Definition

If a is an observable action, then $\hat{a}=a$. On the other hand, $\hat{\tau}=\varepsilon$.

Weak Bisimilarity

Let (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$) be an LTS such that $\tau \in A c t$.

Weak Bisimulation

A binary relation $R \subseteq$ Proc $\times \operatorname{Proc}$ is a weak bisimulation iff whenever $(s, t) \in R$ then for each $a \in$ Act (including τ):

- if $s \xrightarrow{a} s^{\prime}$ then $t \xrightarrow{\hat{a}} t^{\prime}$ for some t^{\prime} such that $\left(s^{\prime}, t^{\prime}\right) \in R$
- if $t \xrightarrow{a} t^{\prime}$ then $s \xrightarrow{\hat{a}} s^{\prime}$ for some s^{\prime} such that $\left(s^{\prime}, t^{\prime}\right) \in R$.

Weak Bisimilarity

Two processes $p_{1}, p_{2} \in \operatorname{Proc}$ are weakly bisimilar $\left(p_{1} \approx p_{2}\right)$ if and only if there exists a weak bisimulation R such that $\left(p_{1}, p_{2}\right) \in R$.

$$
\approx=\bigcup\{R \mid R \text { is a weak bisimulation }\}
$$

Weak Bisimilarity - Properties

Properties of \approx

- an equivalence relation
- the largest weak bisimulation
- strong bisimilarity is included in weak bisimilarity ($\sim \subseteq \approx$)
- validates lots of natural laws, e.g.
- a. $\tau . P \approx$ a. P
- $P+\tau . P \approx \tau . P$
- a. $(P+\tau \cdot Q) \approx a .(P+\tau \cdot Q)+a . Q$
- $P+Q \approx Q+P \quad P|Q \approx Q| P \quad P+$ Nil $\approx P$
- abstracts from τ loops

Is Weak Bisimilarity a Congruence for CCS?

Theorem

Let P and Q be CCS processes such that $P \approx Q$. Then

- $\alpha . P \approx \alpha . Q$ for each action $\alpha \in A c t$
- $P|R \approx Q| R$ for each CCS process R
- $R|P \approx R| Q$ for each CCS process R
- $P[f] \approx Q[f]$ for each relabelling function f
- $P \backslash L \approx Q \backslash L$ for each set of labels L.

Is Weak Bisimilarity a Congruence for CCS?

```
Theorem
Let P and Q be CCS processes such that P}\approxQ\mathrm{ . Then
    - \alpha.P \approx \alpha.Q for each action }\alpha\inAc
    - P|R\approxQ|R for each CCS process R
    - R|P\approxR|Q for each CCS process R
    - P[f]\approxQ[f] for each relabelling function f
- P\L\approxQ\L for each set of labels L.
```

What about choice?

Is Weak Bisimilarity a Congruence for CCS?

Theorem

Let P and Q be CCS processes such that $P \approx Q$. Then

- $\alpha . P \approx \alpha . Q$ for each action $\alpha \in$ Act
- $P|R \approx Q| R$ for each CCS process R
- $R|P \approx R| Q$ for each CCS process R
- $P[f] \approx Q[f]$ for each relabelling function f
- $P \backslash L \approx Q \backslash L$ for each set of labels L.
(proof attempt for ${ }_{-}+R$) Let $\mathcal{R}=\{(P+R, Q+R) \mid R \in$ Proc $\} \cup \approx \cup I d$. It suffices to show that \mathcal{R} is a weak bisimulation. Suppose $P+R \xrightarrow{\mu} S$. If it is because $R \xrightarrow{\mu} S$, then $Q+R \xrightarrow{\mu} S$ with $(S, S) \in I d \subseteq \mathcal{R}$. Otherwise, it is because $P \xrightarrow{\mu} S$, then $Q \xrightarrow{\hat{\mu}} T$ with $(S, T) \in \approx$ because $P \approx Q$ (is this true???) and hence $Q+R \xlongequal{\hat{\mu}} T$ with $(S, T) \in \approx \subseteq \mathcal{R}$.

Is Weak Bisimilarity a Congruence for CCS?

Theorem

Let P and Q be CCS processes such that $P \approx Q$. Then

- $\alpha . P \approx \alpha . Q$ for each action $\alpha \in$ Act
- $P|R \approx Q| R$ for each CCS process R
- $R|P \approx R| Q$ for each CCS process R
- $P[f] \approx Q[f]$ for each relabelling function f
- $P \backslash L \approx Q \backslash L$ for each set of labels L.
(proof attempt for ${ }_{-}+R$) Let $\mathcal{R}=\{(P+R, Q+R) \mid R \in$ Proc $\} \cup \approx \cup I d$. It suffices to show that \mathcal{R} is a weak bisimulation. Suppose $P+R \xrightarrow{\mu} S$. If it is because $R \xrightarrow{\mu} S$, then $Q+R \xrightarrow{\mu} S$ with $(S, S) \in I d \subseteq \mathcal{R}$. Otherwise, it is because $P \xrightarrow{\mu} S$, then $Q \xrightarrow{\hat{\mu}} T$ with $(S, T) \in \approx$ because $P \approx Q$ (is this true???) and hence $Q+R \xlongequal{\hat{\mu}} T$ with $(S, T) \in \approx \subseteq \mathcal{R}$.
(counterexample) τ.a.Nil \approx a.Nil but τ.a.Nil + b.Nil $\not \approx$ a.Nil + b.Nil

Is Weak Bisimilarity a Congruence for CCS?

Theorem

Let P and Q be CCS processes such that $P \approx Q$. Then

- $\alpha . P \approx \alpha . Q$ for each action $\alpha \in$ Act
- $P|R \approx Q| R$ for each CCS process R
- $R|P \approx R| Q$ for each CCS process R
- $P[f] \approx Q[f]$ for each relabelling function f
- $P \backslash L \approx Q \backslash L$ for each set of labels L.
(proof attempt for ${ }_{-}+R$) Let $\mathcal{R}=\{(P+R, Q+R) \mid R \in$ Proc $\} \cup \approx \cup I d$. It suffices to show that \mathcal{R} is a weak bisimulation. Suppose $P+R \xrightarrow{\mu} S$. If it is because $R \xrightarrow{\mu} S$, then $Q+R \xrightarrow{\mu} S$ with $(S, S) \in I d \subseteq \mathcal{R}$. Otherwise, it is because $P \xrightarrow{\mu} S$, then $Q \xrightarrow{\hat{\mu}} T$ with $(S, T) \in \approx$ because $P \approx Q$ (is this true???) and hence $Q+R \xlongequal{\hat{\mu}} T$ with $(S, T) \in \approx \subseteq \mathcal{R}$.
(counterexample) τ. a.Nil \approx a.Nil but $\tau . a . N i l+b . N i l \not \approx$ a.Nil + b.Nil
What is wrong and which one is it the right alternative?

Is Weak Bisimilarity a Congruence for CCS?

Theorem
Let P and Q be CCS processes such that $P \approx Q$. Then

- $\alpha . P \approx \alpha . Q$ for each action $\alpha \in$ Act
- $P|R \approx Q| R$ for each CCS process R
- $R|P \approx R| Q$ for each CCS process R
- $P[f] \approx Q[f]$ for each relabelling function f
- $P \backslash L \approx Q \backslash L$ for each set of labels L.

Conclusion

Weak bisimilarity is not a congruence for CCS.

Case Study: Communication Protocol

A message delivery system, accept a message transfer request, deliver the message and then it becomes ready again to serve a new request.

The implementation must take into account that errors can arise during the message transfer, in which case the message must be resent.

Case Study: Communication Protocol

Spec \triangleq acc.del.Spec

$|m p| \triangleq($ Send \mid Med \mid Rec $)$
 send, trans, ack, error\}

Case Study: Communication Protocol

Spec \triangleq acc. $\overline{\text { del }} . S p e c$

Impl $\triangleq($ Send \mid Med \mid Rec $) \backslash\{$ send, trans, ack, error $\}$

Case Study: Communication Protocol

Spec \triangleq acc. $\overline{\text { del }} . S p e c$

Impl $\triangleq($ Send \mid Med \mid Rec $) \backslash\{$ send, trans, ack, error $\}$

$$
\text { Impl } \stackrel{?}{\approx} \text { Spec }
$$

Case Study: Communication Protocol

Send
Sending
Wait \triangleq ack.Send + error.Sending

$$
\begin{aligned}
\text { Med } & \triangleq \text { send.Med } \\
\text { Med }^{\prime} & \triangleq \tau . \text { Err }+\overline{\text { transs.Med }} \\
\text { Err } & \triangleq \text { error.Med }
\end{aligned}
$$

A visual execution

Question Time

Spec \triangleq acc. $\overline{\text { del. }}$. Spec

$$
\text { Impl } \triangleq(\text { Send } \mid \text { Med } \mid \text { Rec }) \backslash\{\text { send, trans, ack, error }\}
$$

Question

$$
\text { Impl } \stackrel{?}{\approx} \text { Spec }
$$

(1) Draw the LTS of Spec (by hand)
(2) Draw the LTS of Impl (by hand)
(3) Prove (by hand) their equivalence
(9) Use TAPAS!

