Formal Techniques for Software Engineering: Equivalence Axiomatizations

Rocco De Nicola

IMT Institute for Advanced Studies, Lucca rocco.denicola@imtlucca.it

June 2013

Lesson 11

R. De Nicola (IMT-Lucca)

FoTSE@LMU

Equivalence Checking

Checking whether the process graphs of two basic process terms are equivalent is hard:

Equivalence Checking

- LTS have have to be computed
- Their equivalence has to be proved

Equational Characterization

- Equational axiomatisation permit avoiding the computation of process graphs and bisimulation relations altogether and can be used in automated reasoning
- Axioms permit a deeper understanding of the impact and the "meaning" of equivalences.

Properties of an Axiomatization

Soundness and Completeness

We are after an equational theory $E_{CCS} \vdash P = Q$ of CCS terms that

• is sound for strong bisimilarity:

if $E_{CCS} \vdash P = Q$ holds for CCS processes P and Q, then $P \sim Q$;

is complete for strong bisimilarity:
 if P ~ Q holds for CCS processes P and Q, then E_{CCS} ⊢ P = Q;

We have that:

- Soundness ensures that if terms are proved equal by the axioms, then they are in the same bisimulation equivalence class,
- Completeness ensures that bisimilar terms can always be equated by taking advantage of the equational reasoning.

We are after a similar result for weak bisimilarity (\approx).

R. De Nicola (IMT-Lucca)

Signatures and Terms

Signatures

- A signature Σ consists of a finite set of function symbols (or operators) F, G, ..., where each function symbol F has arity ar(F), the number of arguments.
- A function symbol a, b, c, ... of arity 0 is called a constant.

Ferms over a signature Σ

Assume the presence of a countably infinite set of variables
 X, Y, Z ... disjoint from the signature. The set of open terms s, t,
 u, ... over Σ is denoted by T(Σ) and is the least set satisfying:

) each variable is in $T(\Sigma)$;

2) if $F\in\Sigma$ and $t_1,...,t_{ar(F)}\in T(\Sigma)$, then $F(t_1,...,t_{ar(F)})\in T(\Sigma)$

 A term is closed if it does not contain variables. The set of closed terms is denoted by CT(Σ).

Signatures and Terms

Signatures

- A signature Σ consists of a finite set of function symbols (or operators) F, G, ..., where each function symbol F has arity ar(F), the number of arguments.
- A function symbol a, b, c, ... of arity 0 is called a constant.

Terms over a signature Σ

Assume the presence of a countably infinite set of variables
 X, Y, Z ... disjoint from the signature. The set of open terms s, t,
 u, ... over Σ is denoted by T(Σ) and is the least set satisfying:

(1) each variable is in $T(\Sigma)$; (2) if $F \in \Sigma$ and $t_1, ..., t_{ar(F)} \in T(\Sigma)$, then $F(t_1, ..., t_{ar(F)}) \in T(\Sigma)$

 A term is closed if it does not contain variables. The set of closed terms is denoted by CT(Σ).

Substitutions and Axioms

Substitution over a signature Σ

- A substitution is a mapping σ : Var → T(Σ) from variables to open terms.
- A substitution σ is closed if $\sigma(X) \in CT(\Sigma)$ for all variables X.
- The application of a substitution σ to a term t is written σ(t) and denotes the term obtained by the concurrent replacement of all variables X in t by σ(X).

Axioms over Σ

- An axiom is an (universally quantified) equality assertion of the form s = t, with $s, t \in T(\Sigma)$.
- An axiomatisation E is a finite set of axioms.

Substitutions and Axioms

Substitution over a signature Σ

- A substitution is a mapping σ : Var → T(Σ) from variables to open terms.
- A substitution σ is closed if $\sigma(X) \in CT(\Sigma)$ for all variables X.
- The application of a substitution σ to a term t is written σ(t) and denotes the term obtained by the concurrent replacement of all variables X in t by σ(X).

Axioms over Σ

- An axiom is an (universally quantified) equality assertion of the form s = t, with s, t ∈ T(Σ).
- An axiomatisation E is a finite set of axioms.

Equational Logic

Axiomatisations

An axiomatisation E induces a (least) equality relation $=_E$ on $T(\Sigma)$ s.t.:

- Relation $=_E$ contains all equalities in E.
- $=_E$ is closed under reflexivity, symmetry, and transitivity.
- $=_E$ is closed under contexts and substitutions.

Inference Rules $\frac{(s=t)\in E}{\sigma(s)=_E\sigma(t)}$ (AXIOMS) (REFLEXIVITY) $t =_F t$ $\frac{t_1 =_E t_2}{t_2 =_E t_1}$ $t_1 =_E t_2 \quad t_2 =_E t_3$ (TRANSITIVITY) (SYMMETRY) $t_1 =_E t_3$ $\frac{t_1 =_E t'_1 \cdots t_k =_E t'_k}{F(t_1, \ldots, t_k) =_E F(t'_1, \ldots, t'_k)}$ (SUBSTITUTIVITY) ar(F) = kR. De Nicola (IMT-Lucca) FoTSE@LMU 6 / 23

Axioms for Basic CCS (nil, prefix, sum)

Base_{AX}

(A1)
$$X + Y = Y + X$$

(A2) $X + (Y + Z) = (X + Y) + Z$
(A3) $X + nil = X$
(A4) $X + X = X$

- We shall write = instead of $=_{Base_{AX}}$
- The variables X, Y, and Z in the axioms range over the collection of CCS terms.
- The equality relation on basic process terms induced by the set *Base_{AX}* is obtained by taking the set of closed substitution instances of axioms in *Base_{AX}* and closing it under equivalence and contexts.

R. De Nicola (IMT-Lucca)

Equational Reasoning

An Equational Proof

$$a.(b.nil + nil) + (a.nil + a.b.nil) = a.b.nil + (a.nil + a.b.nil)$$
(A3)
$$= a.b.nil + (a.b.nil + a.nil)$$
(A1)
$$= (a.b.nil + a.b.nil) + a.nil$$
(A2)
$$= a.b.nil + a.nil$$
(A4)

This proof establishes that:

$$a.(b.nil + nil) + (a.nil + a.b.nil) = a.b.nil + a.nil$$

in four steps where each step represents an "application" of an axiom to a subterm to produce a new term using the inference rules seen before. Thus we can write:

$$Base_{AX} \vdash a.(b.nil + nil) + (a.nil + a.b.nil) = a.b.nil + a.nil$$

Axioms for Static Operators

Restriction - ResAX

Relabelling - Rel_{AX}

$$\begin{array}{rcl} ({\sf Rel1}) & nil[f] &=& nil \\ ({\sf Rel2}) & (\alpha.p)[f] &=& f(\alpha).(p[f]) \\ ({\sf Rel3}) & (p+q)[f] &=& p[f]+q[f] \end{array}$$

Axioms for Parallel Composition

Expansion Theorem: - Exp_{AX}

$$(Exp)\left(\sum_{i\in I}\mu_{i}.p_{i}\right)|\left(\sum_{j\in J}\mu_{j}'.q_{j}\right) = \sum_{i\in I}\mu_{i}.\left(p_{i}\mid\sum_{j\in J}\mu_{j}'.q_{j}\right) + \sum_{j\in J}\mu_{j}'.\left(\left(\sum_{i\in I}\mu_{i}.p_{i}\right)\mid q_{j}\right) + \sum_{\{(i,j)\mid\overline{\mu}_{i}=\mu_{j}'\}}\tau.(p_{i}\mid q_{j})$$

Example

$$p \triangleq \alpha. p' + \beta. p'' \qquad q \stackrel{def}{=} \overline{\alpha}. q' + \gamma. q'' \qquad r \stackrel{def}{=} (p \mid q) \setminus \alpha$$

 $Base_{AX} \cup Res_{AX} \cup Exp_{AX} \vdash r = \beta. (p'' \mid q) \setminus \alpha + \gamma. (p \mid q'') \setminus \alpha + \tau. (p' \mid q') \setminus \alpha$

If processes p', p'', q', q'' are known, we can continue till we get a term with only prefixes and sums. R. De Nicola (IMT-Lucca) FoTSE@LMU 1

Soundness and Completeness (for finite CCS)

Soundness of the Axiomatisation

 $Base_{AX} \cup Res_{AX} \cup Rel_{AX} \cup Exp_{AX} \vdash p = q$ implies $p \sim q$

Proof.

We need to prove:

- Soundness of the axioms, i.e. we need to prove that A1-A4, Res1-Res3, Rel1-Rel3 and Exp are sound (= can be replaced by \sim)
- Inference rules are sound; this amounts to saying that
 - $\bullet~\sim$ is an equivalence relation
 - $\bullet~\sim$ is a congruence for all CCS operators

Soundness and Completeness (for finite CCS)

Completeness of the Axiomatization		
$p \sim q$	implies	$Base_{AX} \cup Res_{AX} \cup Rel_{AX} \cup Exp_{AX} \vdash p = q.$

Standard form

A process $p \in \mathcal{P}_{CCS}$ is in standard form (s.f.) if p has the form

$$\sum_{i=1}^{m} \mu_i.p_i$$

where each p_i is itself in standard form.

Lemma

Given any finite CCS process p there exists a process p' in s.f. such that

$$\mathsf{Base}_{\mathsf{AX}} \cup \mathsf{Res}_{\mathsf{AX}} \cup \mathsf{Rel}_{\mathsf{AX}} \cup \mathsf{Exp}_{\mathsf{AX}} \vdash p = p'$$

R. De Nicola (IMT-Lucca)

Completeness Proof

Theorem $p \sim q$

implies $Base_{AX} \cup Res_{AX} \cup Rel_{AX} \cup Exp_{AX} \vdash p = q.$

Proof

We can assume that $p \sim q$ and that $p \in q$ are in s.f.:

 $p \equiv \sum_{i=1}^{m} \mu_i . p_i$ and $q \equiv \sum_{j=1}^{n} \mu_j . q_j$ d proceed by induction on the max depth (k) of p and q.

- k = 0, then both p and q are nil and by (REFLEXIVITY) nil = nil.
- If k > 0, then at least one of p and q is different from nil. Assume that p ≠ nil and that μ.p' is a summand of p, then we have p → p' and since p ~ q, we have ∃q' : q → q' with p' ~ q'. Being q in s.f. we have that μ.q' is a summand of q. Now, p' e q' are in s.f. and their max depth is less than k, thus by induction we know that p' = q'. Thus, each summand of p is a summand of q; similarly we can prove the converse. The thesis follows then by relying on (A4) to eliminate duplicated summands.

Completeness Proof

Theorem

$$p \sim q$$
 implies $Base_{AX} \cup Res_{AX} \cup Rel_{AX} \cup Exp_{AX} \vdash p = q$.

Proof

We can assume that $p \sim q$ and that $p \in q$ are in s.f.:

 $p \equiv \sum_{i=1}^{m} \mu_i . p_i$ and $q \equiv \sum_{j=1}^{n} \mu_j . q_j$ and proceed by induction on the max depth (k) of p and q.

- k = 0, then both p and q are nil and by (REFLEXIVITY) nil = nil.
- If k > 0, then at least one of p and q is different from nil. Assume that p ≠ nil and that μ.p' is a summand of p, then we have p → p' and since p ~ q, we have ∃q' : q → q' with p' ~ q'. Being q in s.f. we have that μ.q' is a summand of q. Now, p' e q' are in s.f. and their max depth is less than k, thus by induction we know that p' = q'. Thus, each summand of p is a summand of q; similarly we can prove the converse. The thesis follows then by relying on (A4) to eliminate duplicated summands.

R. De Nicola (IMT-Lucca)

FoTSE@LMU

Dealing with Weak Bisimilarity

Weak bisimilarity is not a congruence!

Equational reasoning is closed under contexts and substitutions, but \approx is not! Indeed, \approx is not a congruence for summation.

Main idea

We can still take the largest congruence \approx^{c} contained in \approx :

- \approx^{c} must be a congruence
- \approx^{c} must be a weak bisimulation (i.e., $\approx^{c}\,\subseteq\,\approx)$
- Any other congruence *R* that enjoys the same properties must be included in ≈^c.

Notice that the identity relation (Id) and strong bisimilarity (\sim) are congruences and they are included in \approx , but they are too strong to satisfy our needs.

Dealing with Weak Bisimilarity

Weak bisimilarity is not a congruence!

Equational reasoning is closed under contexts and substitutions, but \approx is not! Indeed, \approx is not a congruence for summation.

Main idea

We can still take the largest congruence \approx^{c} contained in \approx :

- \approx^{c} must be a congruence
- \approx^{c} must be a weak bisimulation (i.e., $\approx^{c} \subseteq \approx$)
- Any other congruence *R* that enjoys the same properties must be included in ≈^c.

Notice that the identity relation (*Id*) and strong bisimilarity (\sim) are congruences and they are included in \approx , but they are too strong to satisfy our needs.

Observational Congruence

Two CCS processes p and q are observationally congruent, written $p \cong q$ if for any $\mu \in Act$:

- if $p \stackrel{\mu}{\longrightarrow} p'$ then $q \stackrel{\mu}{\Longrightarrow} q'$ for some q' such that $p' \approx q'$;
- if $q \stackrel{\mu}{\longrightarrow} q'$ then $p \stackrel{\mu}{\Longrightarrow} p'$ for some p' such that $p' \approx q'$.

Notice that:

- \cong is not defined recursively
- $\stackrel{\mu}{\Longrightarrow}$ is used instead of $\stackrel{\mu}{\Longrightarrow}$ (for the first bisimulation step)
- $\bullet \ \sim \subseteq \cong \subseteq \approx$
- \cong is an equivalence (because pprox is)
- ullet It can be proved that \cong is preserved by all contexts

Hennessy' Lemma: $p \approx q$ iff $p \cong q$ or $\tau.p \cong q$ or $p \cong \tau.q$

R. De Nicola (IMT-Lucca)

FoTSE@LMU

Observational Congruence

Two CCS processes p and q are observationally congruent, written $p \cong q$ if for any $\mu \in Act$:

- if $p \stackrel{\mu}{\longrightarrow} p'$ then $q \stackrel{\mu}{\Longrightarrow} q'$ for some q' such that $p' \approx q'$;
- if $q \stackrel{\mu}{\longrightarrow} q'$ then $p \stackrel{\mu}{\Longrightarrow} p'$ for some p' such that $p' \approx q'$.

Notice that:

- ullet \cong is not defined recursively
- $ullet \stackrel{\mu}{\Longrightarrow}$ is used instead of $\stackrel{\hat{\mu}}{\Longrightarrow}$ (for the first bisimulation step)

 $\bullet \sim \subseteq \cong \subseteq \approx$

- ullet \cong is an equivalence (because pprox is)
- It can be proved that \cong is preserved by all contexts

Hennessy' Lemma: $p \approx q$ iff $p \cong q$ or $\tau.p \cong q$ or $p \cong \tau.q$

Observational Congruence

Two CCS processes p and q are observationally congruent, written $p \cong q$ if for any $\mu \in Act$:

- if $p \stackrel{\mu}{\longrightarrow} p'$ then $q \stackrel{\mu}{\Longrightarrow} q'$ for some q' such that $p' \approx q'$;
- if $q \stackrel{\mu}{\longrightarrow} q'$ then $p \stackrel{\mu}{\Longrightarrow} p'$ for some p' such that $p' \approx q'$.

Notice that:

- ullet \cong is not defined recursively
- $\stackrel{\mu}{\Longrightarrow}$ is used instead of $\stackrel{\hat{\mu}}{\Longrightarrow}$ (for the first bisimulation step)

• $\sim \subseteq \cong \subseteq \approx$

- ullet \cong is an equivalence (because pprox is)
- It can be proved that \cong is preserved by all contexts

Hennessy' Lemma: $p \approx q$ iff $p \cong q$ or $\tau.p \cong q$ or $p \cong \tau.q$

Observational Congruence

Two CCS processes p and q are observationally congruent, written $p \cong q$ if for any $\mu \in Act$:

- if $p \stackrel{\mu}{\longrightarrow} p'$ then $q \stackrel{\mu}{\Longrightarrow} q'$ for some q' such that $p' \approx q'$;
- if $q \stackrel{\mu}{\longrightarrow} q'$ then $p \stackrel{\mu}{\Longrightarrow} p'$ for some p' such that $p' \approx q'$.

Notice that:

- ullet \cong is not defined recursively
- $\stackrel{\mu}{\Longrightarrow}$ is used instead of $\stackrel{\hat{\mu}}{\Longrightarrow}$ (for the first bisimulation step)

 $\bullet \ \sim \subseteq \cong \subseteq \approx$

- $ullet\,\cong\,$ is an equivalence (because pprox is)
- It can be proved that \cong is preserved by all contexts

Hennessy' Lemma: $p \approx q$ iff $p \cong q$ or $\tau.p \cong q$ or $p \cong \tau.q$

Observational Congruence

Two CCS processes p and q are observationally congruent, written $p \cong q$ if for any $\mu \in Act$:

- if $p \stackrel{\mu}{\longrightarrow} p'$ then $q \stackrel{\mu}{\Longrightarrow} q'$ for some q' such that $p' \approx q'$;
- if $q \stackrel{\mu}{\longrightarrow} q'$ then $p \stackrel{\mu}{\Longrightarrow} p'$ for some p' such that $p' \approx q'$.

Notice that:

- ullet \cong is not defined recursively
- $\stackrel{\mu}{\Longrightarrow}$ is used instead of $\stackrel{\hat{\mu}}{\Longrightarrow}$ (for the first bisimulation step)
- $\bullet \ \sim \subseteq \cong \subseteq \approx$
- \cong is an equivalence (because \approx is)
- It can be proved that \cong is preserved by all contexts

Hennessy' Lemma: $p \approx q$ iff $p \cong q$ or $\tau . p \cong q$ or $p \cong \tau . q$

Observational Congruence

Two CCS processes p and q are observationally congruent, written $p \cong q$ if for any $\mu \in Act$:

- if $p \stackrel{\mu}{\longrightarrow} p'$ then $q \stackrel{\mu}{\Longrightarrow} q'$ for some q' such that $p' \approx q'$;
- if $q \stackrel{\mu}{\longrightarrow} q'$ then $p \stackrel{\mu}{\Longrightarrow} p'$ for some p' such that $p' \approx q'$.

Notice that:

- ullet \cong is not defined recursively
- $\stackrel{\mu}{\Longrightarrow}$ is used instead of $\stackrel{\hat{\mu}}{\Longrightarrow}$ (for the first bisimulation step)
- $\sim \subseteq \cong \subseteq \approx$
- \cong is an equivalence (because \approx is)
- \bullet It can be proved that \cong is preserved by all contexts

Hennessy' Lemma: $p \approx q$ iff $p \cong q$ or $\tau . p \cong q$ or $p \cong \tau . q$

Observational Congruence

Two CCS processes p and q are observationally congruent, written $p \cong q$ if for any $\mu \in Act$:

- if $p \stackrel{\mu}{\longrightarrow} p'$ then $q \stackrel{\mu}{\Longrightarrow} q'$ for some q' such that $p' \approx q'$;
- if $q \stackrel{\mu}{\longrightarrow} q'$ then $p \stackrel{\mu}{\Longrightarrow} p'$ for some p' such that $p' \approx q'$.

Notice that:

- $\bullet \ \cong is not defined recursively$
- $\stackrel{\mu}{\Longrightarrow}$ is used instead of $\stackrel{\hat{\mu}}{\Longrightarrow}$ (for the first bisimulation step)
- $\sim \subseteq \cong \subseteq \approx$
- \cong is an equivalence (because \approx is)
- \bullet It can be proved that \cong is preserved by all contexts

Hennessy' Lemma: $p \approx q$ iff $p \cong q$ or $\tau . p \cong q$ or $p \cong \tau . q$

Axioms for Weak Bisimilarity

All the axioms for \sim continue to hold for \cong

τ -Laws

- au 1 can absorb au actions that immediately follow a prefix
- $\tau 2$ can eliminate redundant alternatives
- au3 can be used to saturate the normal form

Soundness and Completeness

Full standard form

A process $p \in \mathcal{P}_{CCS}$ is in full standard form (f.s.f.) if p has the form

$$\sum_{i=1}^{m} \mu_i.p_i$$

where each p_i is itself in full standard form and if

$$p \stackrel{\mu}{\Longrightarrow} p'$$
 implies $p \stackrel{\mu}{\longrightarrow} p'$

Lemma

Given any finite CCS process p there exists a process p' in f.s.f. such that $Base_{AX} \cup Res_{AX} \cup Rel_{AX} \cup Exp_{AX} \cup \tau - Laws \vdash p = p'$

Soundness and Completeness of the Axiomatization

 $\mathit{Base}_{AX} \cup \mathit{Res}_{AX} \cup \mathit{Rel}_{AX} \cup \mathit{Exp}_{AX} \cup \tau - \mathit{Laws} \vdash p = q \qquad \textit{iff} \qquad p \cong q$

R. De Nicola (IMT-Lucca)

Soundness and Completeness (for finite CCS)

Full standard form

A process $p \in \mathcal{P}_{CCS}$ is in full standard form (f.s.f.) if p has the form

$$\sum_{i=1}^{m} \mu_i.p_i$$

where each p_i is itself in full standard form and if

$$p \stackrel{\mu}{\Longrightarrow} p'$$
 implies $p \stackrel{\mu}{\longrightarrow} p'$

Lemma

Given any finite CCS process p there exists a process p' in f.s.f. such that $Base_{AX} \cup Res_{AX} \cup Rel_{AX} \cup Exp_{AX} \cup \tau - Laws \vdash p = p'$

Completeness of the Axiomatization

 $p \cong q$ implies $Base_{AX} \cup Res_{AX} \cup Rel_{AX} \cup Exp_{AX} \cup \tau - Laws \vdash p = q$.

R. De Nicola (IMT-Lucca)

Saturation Lemma

Let $EQ_{\tau} = Base_{AX} \cup Res_{AX} \cup Rel_{AX} \cup Exp_{AX} \cup \tau - Laws$, then if p is in standard form and $p \stackrel{\mu}{\Rightarrow} p'$, we have $EQ \vdash p = p + \mu . p'$.

Proof:

The proof goes by induction on depth(p). Since p is in s.f., if $p \stackrel{\mu}{\Rightarrow} p'$, it might be due to:

1.
$$\mu.p'$$
 is a sumand of p . The claim follows from (A4).

2.
$$\mu.q$$
 is a summand of p and
 $q \stackrel{\tau}{\Rightarrow} p'$. By induction we have that $EQ_{\tau} \vdash q = q + \tau.p'$, hence
 $EQ_{\tau} \vdash p = p + \mu.q$ (A4)
 $= p + \mu.(q + \tau.p')$ $EQ_{\tau} \vdash q = q + \tau.p'$
 $= p + \mu.(q + \tau.p') + \mu.p'$ (τ 3)
 $= p + \mu.q + \mu.p'$ $EQ_{\tau} \vdash q = q + \tau.p'$
 $= p + \mu.q + \mu.p'$ (A4)

19 / 23

Saturation Lemma

Proof continued:

3. $\tau.q$ is a summand of p and $q \stackrel{\mu}{\Rightarrow} p'$. By induction we have that $EQ_{\tau} \vdash q = q + \mu.p'$, $E_4 \vdash p = p + \tau.q$ (A4) $= p + \tau.q + q$ (τ 2) $= p + \tau.q + q + \mu.p'$ $EQ_{\tau} \vdash q = q + \mu.p'$ $= p + \tau.q + \mu.p'$ (τ 2) $= p + \mu.p'$ (A4)

Reduction to full standard form

For each p in s.f. there exists p' in f.s.f. of equal depth s.t. $EQ_{\tau} \vdash p = p'$.

Proof.

By induction on depth(p). If depth(p) = 0 then $p \equiv nil$ and p is already in f.s.f.. Otherwise, for each summand $\mu.q$ of p, we can assume that q has been reduced, by means of EQ_{τ} , to a f.s.f., without increasing its depth. Let us now consider all pairs

$$(\mu_i, p_i), 1 \leq i \leq k, \text{ s.t. } p \stackrel{\mu_i}{\Longrightarrow} p_i \text{ and } p \stackrel{\mu_i}{\not\longrightarrow} p_i$$

Each p_i has to be in f.s.f. because it is a subterm $\mu.q$ of p. By exploiting the saturation lemma, we have have:

$$EQ_{\tau} \vdash p = p + \mu_1.p_1 + \dots + \mu_k.p_k$$

and the r.h.s. of the equality is a f.s.f. that has the same depth of p.

Completeness Theorem

 $p \cong q$ implica $E_{\tau} \vdash p = q$.

Proof.

The proof goes by induction on depth(p) + depth(q). We can assume that p and q are in f.s.f. and distinguish the two cases

- *depth*(*p*) + *depth*(*q*) = 0
- $depth(p) + depth(q) \neq 0$

In the former case we have $p \equiv nil \equiv q$ and the claim follows trivially. Otherwise, w.l.o.g., assume $p \neq nil$ and that $p \cong q$ and $\mu.p'$ is a summand of p. We have to show that q has a summand provably equal to $\mu.p'$. Since $p \xrightarrow{\mu} p'$ and $p \cong q$, we have that there exists q' s.t. $q \xrightarrow{\mu} q'$ e $p' \approx q'$, moreover since q is in f.s.f. we have $q \xrightarrow{\mu} q'$, and $\mu.q'$ is a summand of q. Unfortunately, we cannot use induction because we only have $p' \approx q'$, and not $p' \cong q'$.

Reduction to full standard form

Proof continued

But we can exploit the fact that

$$p' \approx q'$$
 iff 1. $p' = q'$ or 2. $p' = \tau . q'$ or 3. $\tau . p' = q'$.

Case 1.: Since $p' \in q'$ are in f.s.f. and their depth is smaller than that of p and q respectively, by induction it follows that $EQ_{\tau} \vdash p' = q'$, hence that $EQ_{\tau} \vdash \mu.p' = \mu.q'$.

Case 2.: We need to reduce $\tau.q'$ to a f.s.f. to apply induction. We have that there exists q'' in f.s.f. with the same depth as $\tau.q'$, hence as q, s.t. $EQ_{\tau} \vdash \tau.q' = q''$. Since $depth(p') + depth(q'') \leq depth(p) + depth(q)$ by induction we have $EQ_{\tau} \vdash p' = q''$ and thus $EQ_{\tau} \vdash p' = \tau.q'$ and by $(\tau 1)$ it follows $EEQ_{\tau} \vdash \mu.p' = \mu.q'$.

Case 3.: Is similar to Case 2..

We have thus shown that via EQ_{τ} each summand $\mu.p'$ di p can be reduced to a summand of q. Similarly, each summand $\mu'.q'$ of q an be reduced to a summand of p. Since we can use (A4) to get rid of duplicated summands we can , we can conclude that $EQ_{\tau} \vdash p = q$.