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Equivalence Checking

Checking whether the process graphs of two basic process terms are
equivalent is hard:

Equivalence Checking

LTS have have to be computed

Their equivalence has to be proved

Equational Characterization

Equational axiomatisation permit avoiding the computation of process
graphs and bisimulation relations altogether and can be used in
automated reasoning

Axioms permit a deeper understanding of the impact and the
“meaning” of equivalences.
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Properties of an Axiomatization

Soundness and Completeness

We are after an equational theory ECCS ` P = Q of CCS terms that

is sound for strong bisimilarity:
if ECCS ` P = Q holds for CCS processes P and Q, then P ∼ Q;

is complete for strong bisimilarity:
if P ∼ Q holds for CCS processes P and Q, then ECCS ` P = Q;

We have that:

Soundness ensures that if terms are proved equal by the axioms, then
they are in the same bisimulation equivalence class,

Completeness ensures that bisimilar terms can always be equated by
taking advantage of the equational reasoning.

We are after a similar result for weak bisimilarity (≈).
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Signatures and Terms

Signatures

A signature Σ consists of a finite set of function symbols (or
operators) F , G , . . . , where each function symbol F has arity ar(F ),
the number of arguments.

A function symbol a, b, c , . . . of arity 0 is called a constant.

Terms over a signature Σ

Assume the presence of a countably infinite set of variables
X , Y , Z . . . disjoint from the signature. The set of open terms s, t,
u, ... over Σ is denoted by T (Σ) and is the least set satisfying:

1 each variable is in T (Σ);
2 if F ∈ Σ and t1, ..., tar(F ) ∈ T (Σ), then F (t1, ..., tar(F )) ∈ T (Σ)

A term is closed if it does not contain variables. The set of closed
terms is denoted by CT (Σ).
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Substitutions and Axioms

Substitution over a signature Σ

A substitution is a mapping σ : Var → T (Σ) from variables to open
terms.

A substitution σ is closed if σ(X ) ∈ CT (Σ) for all variables X .

The application of a substitution σ to a term t is written σ(t) and
denotes the term obtained by the concurrent replacement of all
variables X in t by σ(X ).

Axioms over Σ

An axiom is an (universally quantified) equality assertion of the form
s = t, with s, t ∈ T (Σ).

An axiomatisation E is a finite set of axioms.
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Equational Logic

Axiomatisations

An axiomatisation E induces a (least) equality relation =E on T (Σ) s.t.:

Relation =E contains all equalities in E .

=E is closed under reflexivity, symmetry, and transitivity.

=E is closed under contexts and substitutions.

Inference Rules

(Axioms)
(s = t) ∈ E

σ(s) =E σ(t)
(Reflexivity)

t =E t

(Transitivity)
t1 =E t2 t2 =E t3

t1 =E t3
(Symmetry)

t1 =E t2

t2 =E t1

(Substitutivity)
t1 =E t ′1 · · · tk =E t ′k

F (t1, . . . , tk) =E F (t ′1, . . . , t
′
k)

ar(F ) = k
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Axioms for Basic CCS (nil, prefix, sum)

BaseAX

(A1) X + Y = Y + X

(A2) X + (Y + Z ) = (X + Y ) + Z

(A3) X + nil = X

(A4) X + X = X

We shall write = instead of =BaseAX

The variables X, Y, and Z in the axioms range over the collection of
CCS terms.

The equality relation on basic process terms induced by the set
BaseAX is obtained by taking the set of closed substitution instances
of axioms in BaseAX and closing it under equivalence and contexts.
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Equational Reasoning

An Equational Proof

a.(b.nil + nil) + (a.nil + a.b.nil) = a.b.nil + (a.nil + a.b.nil) (A3)

= a.b.nil + (a.b.nil + a.nil) (A1)

= (a.b.nil + a.b.nil) + a.nil (A2)

= a.b.nil + a.nil (A4)

This proof establishes that:

a.(b.nil + nil) + (a.nil + a.b.nil) = a.b.nil + a.nil

in four steps where each step represents an “application” of an axiom to a
subterm to produce a new term using the inference rules seen before.
Thus we can write:

BaseAX ` a.(b.nil + nil) + (a.nil + a.b.nil) = a.b.nil + a.nil
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Axioms for Static Operators

Restriction - ResAX

(Res1) nil\L = nil

(Res2) (α.p)\L =

{
nil if α, α ∈ L
α.(p\L) otherwise

(Res3) (p + q)\L = p\L + q\L

Relabelling - RelAX

(Rel1) nil [f ] = nil
(Rel2) (α.p)[f ] = f (α).(p[f ])
(Rel3) (p + q)[f ] = p[f ] + q[f ]
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Axioms for Parallel Composition

Expansion Theorem: - ExpAX

(Exp)
(∑

i∈I µi .pi

)
|
(∑

j∈J µ
′
j .qj

)
=

∑
i∈I µi .

(
pi |

∑
j∈J µ

′
j .qj

)
+∑

j∈J µ
′
j .
(

(
∑

i∈I µi .pi ) | qj

)
+∑

{(i ,j) |µi=µ′j} τ.(pi | qj)

Example

p , α. p′ + β. p′′ q
def
= α. q′ + γ. q′′ r

def
= (p | q)\α

BaseAX∪ResAX∪ExpAX ` r = β. (p′′ | q) \α+ γ. (p | q′′) \α+ τ. (p′ | q′) \α

If processes p′, p′′, q′, q′′ are known, we can continue till we get a term
with only prefixes and sums.
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Soundness and Completeness (for finite CCS)

Soundness of the Axiomatisation

BaseAX ∪ ResAX ∪ RelAX ∪ ExpAX ` p = q implies p ∼ q

Proof.

We need to prove:

1 Soundness of the axioms, i.e. we need to prove that A1-A4,
Res1-Res3, Rel1-Rel3 and Exp are sound (= can be replaced by ∼)

2 Inference rules are sound; this amounts to saying that

∼ is an equivalence relation
∼ is a congruence for all CCS operators
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Soundness and Completeness (for finite CCS)

Completeness of the Axiomatization

p ∼ q implies BaseAX ∪ ResAX ∪ RelAX ∪ ExpAX ` p = q.

Standard form

A process p ∈ PCCS is in standard form (s.f.) if p has the form

m∑
i=1

µi .pi

where each pi is itself in standard form.

Lemma

Given any finite CCS process p there exists a process p′ in s.f. such that

BaseAX ∪ ResAX ∪ RelAX ∪ ExpAX ` p = p′
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Completeness Proof

Theorem

p ∼ q implies BaseAX ∪ ResAX ∪ RelAX ∪ ExpAX ` p = q.

Proof

We can assume that p ∼ q and that p e q are in s.f.:
p ≡

∑m
i=1 µi .pi and q ≡

∑n
j=1 µj .qj

and proceed by induction on the max depth (k) of p and q.

k = 0, then both p and q are nil and by (Reflexivity) nil = nil .

If k > 0, then at least one of p and q is different from nil . Assume
that p 6= nil and that µ.p′ is a summand of p, then we have p

µ−→ p′

and since p ∼ q, we have ∃q′ : q
µ−→ q′ with p′ ∼ q′. Being q in s.f.

we have that µ.q′ is a summand of q. Now, p′ e q′ are in s.f. and
their max depth is less than k , thus by induction we know that
p′ = q′. Thus, each summand of p is a summand of q; similarly we
can prove the converse. The thesis follows then by relying on (A4) to
eliminate duplicated summands.
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Dealing with Weak Bisimilarity

Weak bisimilarity is not a congruence!

Equational reasoning is closed under contexts and substitutions, but ≈ is
not! Indeed, ≈ is not a congruence for summation.

Main idea

We can still take the largest congruence ≈c contained in ≈:

≈c must be a congruence

≈c must be a weak bisimulation (i.e., ≈c ⊆≈)

Any other congruence R that enjoys the same properties must be
included in ≈c .

Notice that the identity relation (Id) and strong bisimilarity (∼) are
congruences and they are included in ≈, but they are too strong to satisfy
our needs.
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(Weak) Observational Congruence

Observational Congruence

Two CCS processes p and q are observationally congruent, written p ∼= q
if for any µ ∈ Act:

if p
µ−→ p′ then q

µ
=⇒ q′ for some q′ such that p′ ≈ q′;

if q
µ−→ q′ then p

µ
=⇒ p′ for some p′ such that p′ ≈ q′.

Notice that:
∼= is not defined recursively
µ

=⇒ is used instead of
µ̂

=⇒ (for the first bisimulation step)

∼ ⊆ ∼= ⊆≈
∼= is an equivalence (because ≈ is)

It can be proved that ∼= is preserved by all contexts

Hennessy’ Lemma: p ≈ q iff p ∼= q or τ.p ∼= q or p ∼= τ.q
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Axioms for Weak Bisimilarity

All the axioms for ∼ continue to hold for ∼=

τ -Laws

(τ1) µ.τ.p = µ.p

(τ2) p + τ.p = τ.p

(τ3) µ.(p + τ.q) = µ.(p + τ.q) + µ.q

τ1 can absorb τ actions that immediately follow a prefix

τ2 can eliminate redundant alternatives

τ3 can be used to saturate the normal form
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Soundness and Completeness

Full standard form

A process p ∈ PCCS is in full standard form (f.s.f.) if p has the form

m∑
i=1

µi .pi

where each pi is itself in full standard form and if

p
µ

=⇒ p′ implies p
µ−→ p′

Lemma

Given any finite CCS process p there exists a process p′ in f.s.f. such that
BaseAX ∪ ResAX ∪ RelAX ∪ ExpAX ∪ τ − Laws ` p = p′

Soundness and Completeness of the Axiomatization

BaseAX ∪ ResAX ∪ RelAX ∪ ExpAX ∪ τ − Laws ` p = q iff p ∼= q
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Saturation Lemma

Let EQτ = BaseAX ∪ ResAX ∪ RelAX ∪ ExpAX ∪ τ − Laws, then
if p is in standard form and p

µ
=⇒ p′, we have EQ ` p = p + µ.p′.

Proof:

The proof goes by induction on depth(p).

Since p is in s.f., if p
µ

=⇒ p′, it might be due to:

1. µ.p′ is a sumand of p. The claim follows from (A4).

2. µ.q is a summand of p and
q

τ
=⇒ p′. By induction we have that EQτ ` q = q+τ.p′, hence

EQτ ` p = p + µ.q (A4)
= p + µ.(q + τ.p′) EQτ ` q = q + τ.p′

= p + µ.(q + τ.p′) + µ.p′ (τ3)
= p + µ.q + µ.p′ EQτ ` q = q + τ.p′

= p + µ.p′ (A4)

%
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Saturation Lemma

Proof continued:

3. τ.q is a summand of p and q
µ

=⇒ p′. By induction we have
that EQτ ` q = q + µ.p′,
E4 ` p = p + τ.q (A4)

= p + τ.q + q (τ2)
= p + τ.q + q + µ.p′ EQτ ` q = q + µ.p′

= p + τ.q + µ.p′ (τ2)
= p + µ.p′ (A4)
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Reduction to full standard form

For each p in s.f. there exists p′ in f.s.f. of equal depth s.t. EQτ ` p = p′.

Proof.

By induction on depth(p). If depth(p) = 0 then p ≡ nil and p is already in
f.s.f.. Otherwise, for each summand µ.q of p, we can assume that q has
been reduced, by means of EQτ , to a f.s.f., without increasing its depth.
Let us now consider all pairs

(µi , pi ), 1 ≤ i ≤ k , s.t. p
µi=⇒ pi and p 6 µi−−→ pi

Each pi has to be in f.s.f. because it is a subterm µ.q of p. By exploiting
the saturation lemma, we have have:

EQτ ` p = p + µ1.p1 + · · ·+ µk .pk

and the r.h.s. of the equality is a f.s.f. that has the same depth of p.
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Completeness Theorem

p ∼= q implica Eτ ` p = q.

Proof.

The proof goes by induction on depth(p) + depth(q).
We can assume that p and q are in f.s.f. and distinguish the two cases

depth(p) + depth(q) = 0

depth(p) + depth(q) 6= 0

In the former case we have p ≡ nil ≡ q and the claim follows trivially.
Otherwise, w.l.o.g., assume p 6= nil and that p ∼= q and µ.p′ is a summand
of p. We have to show that q has a summand provably equal to µ.p′.
Since p

µ−→ p′ and p ∼= q, we have that there exists q′ s.t. q
µ

=⇒ q′ e
p′ ≈ q′, moreover since q is in f.s.f. we have q

µ−→ q′, and µ.q′ is a
summand of q. Unfortunately, we cannot use induction because we only
have p′ ≈ q′, and not p′ ∼= q′.
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Reduction to full standard form

Proof continued

But we can exploit the fact that
p′ ≈ q′ iff 1. p′ = q′ or 2. p′ = τ.q′ or 3. τ.p′ = q′.

Case 1.: Since p′ e q′ are in f.s.f. and their depth is smaller than that of p and q
respectively, by induction it follws that EQτ ` p′ = q′, hence that
EQτ ` µ.p′ = µ.q′.

Case 2.: We need to reduce τ.q′ to a f.s.f. to apply induction. We have that
there exists q′′ in f.s.f. with the same depth as τ.q′, hence as q, s.t.
EQτ ` τ.q′ = q′′. Since depth(p′) + depth(q′′) ≤ depth(p) + depth(q) by
induction we have EQτ ` p′ = q′′ and thus EQτ ` p′ = τ.q′ and by (τ1) it
follows EEQτ ` µ.p′ = µ.q′.

Case 3.: Is similar to Case 2..
We have thus shown that via EQτ each summand µ.p′ di p can be reduced to a
summand of q. Similarly, each summand µ′.q′ ofi q an be reduced to a summand
of p. Since we can use (A4) to get rid of duplicated summands we can , we can
conclude that EQτ ` p = q.
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