Formal Techniques for Software Engineering: Modal Logics

Rocco De Nicola

IMT Institute for Advanced Studies, Lucca
rocco.denicola@imtlucca.it

June 2013

Lesson 12

0010011001010
10101sysma 010
$J 1001010101010$
10100101010010°
${ }^{0} 2_{010000} 120010$

Verifying Correctness of Reactive Systems

Let $I m p /$ be an implementation of a system (e.g. in CCS syntax).
Equivalence Checking Approach

$$
|m p| \equiv S p e c
$$

- \equiv is an abstract equivalence, e.g. \sim or \approx
- Spec is often expressed in the same language as Impl
- Spec provides the full specification of the intended behaviour

Verifying Correctness of Reactive Systems

Let $I m p /$ be an implementation of a system (e.g. in CCS syntax).
Equivalence Checking Approach

$$
|m p| \equiv S p e c
$$

- \equiv is an abstract equivalence, e.g. \sim or \approx
- Spec is often expressed in the same language as Impl
- Spec provides the full specification of the intended behaviour

Model Checking Approach

$$
\text { Impl } \models \text { Property }
$$

- \vDash is the satisfaction relation
- Property is a particular feature, often expressed via a logic
- Property is a partial specification of the intended behaviour

Model Checking of Reactive Systems

Our Aim

Develop a logic in which we can express interesting properties of reactive systems.

Logical Properties of Reactive Systems

Modal Properties - what can happen now (possibility, necessity)

- drink a coffee (can drink a coffee now)
- does not drink tea
- drinks both tea and coffee
- drinks tea after coffee

Logical Properties of Reactive Systems

Modal Properties - what can happen now (possibility, necessity)

- drink a coffee (can drink a coffee now)
- does not drink tea
- drinks both tea and coffee
- drinks tea after coffee

Temporal Properties - behaviour in time

- never drinks any alcohol
(safety property: nothing bad can happen)
- eventually will have a glass of wine (liveness property: something good will happen)

Logical Properties of Reactive Systems

Modal Properties - what can happen now (possibility, necessity)

- drink a coffee (can drink a coffee now)
- does not drink tea
- drinks both tea and coffee
- drinks tea after coffee

Temporal Properties - behaviour in time

- never drinks any alcohol
(safety property: nothing bad can happen)
- eventually will have a glass of wine (liveness property: something good will happen)

Can these properties be expressed using equivalence checking?

Hennessy-Milner Logic - Syntax

Syntax of the Formulae ($a \in A c t$)

$$
F, G::=t t|f f| F \wedge G|F \vee G|\langle a\rangle F \mid[a] F
$$

Hennessy-Milner Logic - Syntax

Syntax of the Formulae ($a \in A c t$)

$$
F, G::=t|f| F \wedge G|F \vee G|\langle a\rangle F \mid[a] F
$$

tt all processes satisfy this property
ff no process satisfies this property \wedge, \vee usual logical AND and OR

Hennessy-Milner Logic - Syntax

Syntax of the Formulae ($a \in A c t$)

$$
F, G::=t|f| F \wedge G|F \vee G|\langle a\rangle F \mid[a] F
$$

tt all processes satisfy this property
ff no process satisfies this property
\wedge, \vee usual logical AND and OR
$\langle a\rangle F$ (possibility) asserts (of a given P): It is possible for P to perform an action a and evolve into a Q that satisfies F - there is at least one a-successor that satisfies F

Hennessy-Milner Logic - Syntax

Syntax of the Formulae ($a \in A c t$)

$$
F, G::=t|f| F \wedge G|F \vee G|\langle a\rangle F \mid[a] F
$$

tt all processes satisfy this property
ff no process satisfies this property
\wedge, \vee usual logical AND and OR
$\langle a\rangle F$ (possibility) asserts (of a given P): It is possible for P to perform an action a and evolve into a Q that satisfies F - there is at least one a-successor that satisfies F
[a] F (necessity) asserts (of a given P): If P can perform an action a then it must evolve into a Q that satisfies F - all a-successors have to satisfy F

Hennessy-Milner Logic - Syntax

Syntax of the Formulae $(a \in A c t)$

$$
F, G::=t|f| F \wedge G|F \vee G|\langle a\rangle F \mid[a] F
$$

tt all processes satisfy this property
ff no process satisfies this property
\wedge, \vee usual logical AND and OR
$\langle a\rangle F$ (possibility) asserts (of a given P): It is possible for P to perform an action a and evolve into a Q that satisfies F - there is at least one a-successor that satisfies F
[a] F (necessity) asserts (of a given P): If P can perform an action a then it must evolve into a Q that satisfies F - all a-successors have to satisfy F

- 〈a〉tt expresses the capability of performing action a.
- [a]ff expresses the inability to perform an action a.

Hennessy-Milner Logic - Semantics

Let (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$) be an LTS.
Validity of the logical triple $p \models F(p \in \operatorname{Proc}, F$ a HM formula $)$

$$
\begin{aligned}
& p \models t \text { for each } p \in \text { Proc } \\
& p \models f \text { for no } p \text { (we also write } p \not \models \boldsymbol{f} \text {) } \\
& p \models F \wedge G \text { iff } p \models F \text { and } p \models G \\
& p \models F \vee G \text { iff } p \models F \text { or } p \models G \\
& p \models\langle a\rangle F \text { iff } p \xrightarrow{a} p^{\prime} \text { for some } p^{\prime} \in \text { Proc such that } p^{\prime} \models F \\
& p \models[a] F \text { iff } p^{\prime} \models F \text {, for all } p^{\prime} \in \text { Proc such that } p \xrightarrow{a} p^{\prime}
\end{aligned}
$$

Hennessy-Milner Logic - Semantics

Let (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$) be an LTS.
Validity of the logical triple $p \models F(p \in \operatorname{Proc}, F$ a HM formula $)$

$$
\begin{aligned}
& p \models t \text { for each } p \in \text { Proc } \\
& p \models f \text { for no } p \text { (we also write } p \not \models \text { f) } \\
& p \models F \wedge G \text { iff } p \models F \text { and } p \models G \\
& p \models F \vee G \text { iff } p \models F \text { or } p \models G \\
& p \models\langle a\rangle F \text { iff } p \xrightarrow{a} p^{\prime} \text { for some } p^{\prime} \in \operatorname{Proc} \text { such that } p^{\prime} \models F \\
& p \models[a] F \text { iff } p^{\prime} \models F, \text { for all } p^{\prime} \in \text { Proc such that } p \xrightarrow{a} p^{\prime}
\end{aligned}
$$

We write:

- $p \not \models F$ if p does not satisfy F

Hennessy-Milner Logic - Semantics

Let (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$) be an LTS.
Validity of the logical triple $p \models F(p \in \operatorname{Proc}, F$ a HM formula $)$

$$
\begin{aligned}
& p \models t \text { for each } p \in \text { Proc } \\
& p \models f \text { for no } p \text { (we also write } p \not \models \text { f) } \\
& p \models F \wedge G \text { iff } p \models F \text { and } p \models G \\
& p \models F \vee G \text { iff } p \models F \text { or } p \models G \\
& p \models\langle a\rangle F \text { iff } p \xrightarrow{a} p^{\prime} \text { for some } p^{\prime} \in \operatorname{Proc} \text { such that } p^{\prime} \models F \\
& p \models[a] F \text { iff } p^{\prime} \models F, \text { for all } p^{\prime} \in \text { Proc such that } p \xrightarrow{a} p^{\prime}
\end{aligned}
$$

We write:

- $p \not \models F$ if p does not satisfy F
- $\left\langle\left\{a_{1}, a_{2}, \ldots a_{n}\right\}\right\rangle F$ for $\left\langle a_{1}\right\rangle F \vee\left\langle a_{2}\right\rangle F \cdots \vee\left\langle a_{n}\right\rangle F$

Hennessy-Milner Logic - Semantics

Let (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$) be an LTS.
Validity of the logical triple $p \models F(p \in \operatorname{Proc}, F$ a HM formula $)$

$$
\begin{aligned}
& p \models t \text { for each } p \in \text { Proc } \\
& p \models f \text { for no } p \text { (we also write } p \not \models \text { f) } \\
& p \models F \wedge G \text { iff } p \models F \text { and } p \models G \\
& p \models F \vee G \text { iff } p \models F \text { or } p \models G \\
& p \models\langle a\rangle F \text { iff } p \xrightarrow{a} p^{\prime} \text { for some } p^{\prime} \in \operatorname{Proc} \text { such that } p^{\prime} \models F \\
& p \models[a] F \text { iff } p^{\prime} \models F, \text { for all } p^{\prime} \in \text { Proc such that } p \xrightarrow{a} p^{\prime}
\end{aligned}
$$

We write:

- $p \not \models F$ if p does not satisfy F
- $\left\langle\left\{a_{1}, a_{2}, \ldots a_{n}\right\}\right\rangle F$ for $\left\langle a_{1}\right\rangle F \vee\left\langle a_{2}\right\rangle F \cdots \vee\left\langle a_{n}\right\rangle F$
- $\left[\left\{a_{1}, a_{2}, \ldots a_{n}\right\}\right] F$ for $\left[a_{1}\right] F \wedge\left[a_{2}\right] F \cdots \wedge\left[a_{n}\right] F$

Examples

- $E \models<$ tick $>t t$ E can do a tick

E can do a tick and then a tock

- $E=<\{$ tick, tock $\}>t t$

E can do a tick or a tock

- $E=[t i c k] f f$

This is equivalent to false!

This is equivalent to true!

Examples

- $E \models<$ tick $>t t$ E can do a tick
- $E \models<$ tick $><$ tock $>t t$

E can do a tick and then a tock

Examples

- $E \models<$ tick $>t t$ E can do a tick
- $E \models<$ tick $><$ tock $>t t$

E can do a tick and then a tock

- $E \models<\{$ tick, tock $\}>t t$

E can do a tick or a tock

This is equivalent to false!

Examples

- $E \models<$ tick $>t t$ E can do a tick
- $E \models<$ tick $><$ tock $>t t$

E can do a tick and then a tock

- $E \models<\{$ tick, tock $\}>t t$

E can do a tick or a tock

- $E \models[t i c k] f f$

E cannot do a tick

Examples

- $E \models<$ tick $>t t$

E can do a tick

- $E \models<$ tick $><$ tock $>t t$

E can do a tick and then a tock

- $E \models<\{$ tick, tock $\}>t t$

E can do a tick or a tock

- $E \models$ [tick]ff

E cannot do a tick

- $E \models<$ tick $>f f$

This is equivalent to false!

Examples

- $E \models<$ tick $>t t$

E can do a tick

- $E \models<$ tick $><$ tock $>t t$

E can do a tick and then a tock

- $E \models<\{$ tick, tock $\}>t t$

E can do a tick or a tock

- $E \models$ [tick]ff

E cannot do a tick

- $E \models<$ tick $>f f$

This is equivalent to false!

- $E \models$ [tick] $t t$

This is equivalent to true!

Checking satisfaction

$C 1={ }_{\text {def }}$ tick. $C 1$

Does $C 1$ have property: [tick] $(<$ tick $>t t \wedge[t o c k] f f)$?

$$
C 1 \models[t i c k](<\text { tick }>t t \wedge[t o c k] f f)
$$

Checking satisfaction

$C 1={ }_{\text {def }}$ tick. C 1

Does $C 1$ have property: [tick] $(<$ tick $>t t \wedge[t o c k] f f)$?

$$
\begin{gathered}
C 1 \models[\text { tick }](<\text { tick }>t t \wedge[\text { tock }] f f) \\
\text { iff } \forall F \in\{E: C 1 \xrightarrow{\text { tick }} E\} . F \models<\text { tick }>t t \wedge[\text { tock }] f f
\end{gathered}
$$

Checking satisfaction

$C 1={ }_{\text {def }}$ tick. $C 1$
Does $C 1$ have property: $[$ tick $](<$ tick $>t t \wedge[t o c k] f f)$?

$$
\begin{aligned}
& \qquad C 1 \models[\text { tick }](<\text { tick }>t t \wedge[\text { tock }] f f) \\
& \text { iff } \forall F \in\{E: C 1 \xrightarrow{\text { tick }} E\} . F \models<\text { tick }>t t \wedge[t o c k] f f \\
& \text { iff } C 1 \models<\text { tick }>t t \wedge[t o c k] f f
\end{aligned}
$$

Checking satisfaction

$C 1={ }_{\text {def }}$ tick. $C 1$
Does $C 1$ have property: $[$ tick $](<$ tick $>t t \wedge[t o c k] f f)$?

$$
\begin{aligned}
& \qquad C 1 \models[t i c k](<\text { tick }>t t \wedge[t o c k] f f) \\
& \text { iff } \forall F \in\{E: C 1 \xrightarrow[\longrightarrow]{\text { tick }} E\} . F \models<t i c k>t t \wedge[t o c k] f f \\
& \text { iff } C 1 \models<t i c k>t t \wedge[t o c k] f f \\
& \text { iff } C 1 \models<\text { tick }>t t \text { and } C 1 \models[\text { tock }] f f
\end{aligned}
$$

Checking satisfaction

$C 1={ }_{\text {def }}$ tick. $C 1$
Does $C 1$ have property: $[$ tick $](<$ tick $>t t \wedge[t o c k] f f)$?

$$
\begin{aligned}
& \qquad C 1 \models[t i c k](<t i c k>t t \wedge[t o c k] f f) \\
& \text { iff } \forall F \in\{E: C 1 \xrightarrow{\text { tick }} E\} . F \models<t i c k>t t \wedge[t o c k] f f \\
& \text { iff } C 1 \models<t i c k>t t \wedge[t o c k] f f \\
& \text { iff } C 1 \models<\text { tick }>t t \text { and } C 1 \models[\text { tock }] f f \\
& \text { iff } \exists F \in\{E: C 1 \xrightarrow{\text { tick }} E\} \text { and } C 1 \models[t o c k] f f
\end{aligned}
$$

Checking satisfaction

$C 1={ }_{\text {def }}$ tick. $C 1$
Does $C 1$ have property: $[$ tick $](<$ tick $>t t \wedge[t o c k] f f)$?

$$
\begin{aligned}
& \qquad C 1 \models[\text { tick }](<\text { tick }>t t \wedge[\text { tock }] f f) \\
& \text { iff } \forall F \in\{E: C 1 \xrightarrow[\longrightarrow]{\text { tick }} E\} . F \models<\text { tick }>t t \wedge[\text { tock }] f f \\
& \text { iff } C 1 \models<\text { tick }>t t \wedge[\text { tock }] f f \\
& \text { iff } C 1 \models<\text { tick }>t t \text { and } C 1 \models[\text { tock }] f f \\
& \text { iff } \exists F \in\{E: C 1 \xrightarrow[\longrightarrow]{\text { tick }} E\} \text { and } C 1 \models[\text { tock }] f f \\
& \text { iff } \exists F \in\{C 1\} \text { and } C 1 \models[\text { tock }] f f
\end{aligned}
$$

Checking satisfaction

$C 1={ }_{\text {def }}$ tick. $C 1$
Does $C 1$ have property: $[$ tick $](<$ tick $>t t \wedge[t o c k] f f)$?

$$
\begin{aligned}
& \qquad C 1 \models[\text { tick }](<\text { tick }>t t \wedge[\text { tock }] f f) \\
& \text { iff } \forall F \in\{E: C 1 \xrightarrow{\text { tick }} E\} . F \models<\text { tick }>t t \wedge[\text { tock }] f f \\
& \text { iff } C 1 \models<t i c k>t t \wedge[\text { tock }] f f \\
& \text { iff } C 1 \models<\text { tick }>t t \text { and } C 1 \models[\text { tock }] f f \\
& \text { iff } \exists F \in\{E: C 1 \xrightarrow[\longrightarrow]{\text { tick }} E\} \text { and } C 1 \models[\text { tock }] f f \\
& \text { iff } \exists F \in\{C 1\} \text { and } C 1 \models[\text { tock }] f f \\
& \text { iff } C 1 \models[\text { tock }] f f
\end{aligned}
$$

Checking satisfaction

$C 1={ }_{\text {def }}$ tick..$C 1$
Does $C 1$ have property: $[$ tick $](<$ tick $>t t \wedge[t o c k] f f)$?

$$
C 1 \models[t i c k](<t i c k>t t \wedge[t o c k] f f)
$$

$$
\text { iff } \forall F \in\{E: C 1 \xrightarrow{\text { tick }} E\} . F \models<\text { tick }>t t \wedge[\text { tock }] f f
$$

$$
\text { iff } C 1 \models<\text { tick }>t t \wedge[\text { tock }] f f
$$

$$
\text { iff } C 1 \models<\text { tick }>t t \text { and } C 1 \models[\text { tock }] f f
$$

$$
\text { iff } \exists F \in\{E: C 1 \xrightarrow{\text { tick }} E\} \text { and } C 1 \models[\text { tock }] f f
$$

$$
\text { iff } \exists F \in\{C 1\} \text { and } C 1 \models[\text { tock }] f f
$$

$$
\text { iff } C 1 \models[t o c k] f f
$$

$$
\text { iff }\{E: C 1 \xrightarrow{\text { tock }} E\}=\emptyset
$$

What about Negation?

For every formula F we define the formula F^{c} as follows:

- $t^{c}=f f$
- $f^{c}=t$
- $(F \wedge G)^{c}=F^{c} \vee G^{c}$
- $(F \vee G)^{c}=F^{c} \wedge G^{c}$
- $(\langle a\rangle F)^{c}=[a] F^{c}$
- $([a] F)^{c}=\langle a\rangle F^{c}$

What about Negation?

For every formula F we define the formula F^{c} as follows:

- $t^{c}=f f$
- $f^{c}=t$
- $(F \wedge G)^{c}=F^{c} \vee G^{c}$
- $(F \vee G)^{c}=F^{c} \wedge G^{c}$
- $(\langle a\rangle F)^{c}=[a] F^{c}$
- $([a] F)^{c}=\langle a\rangle F^{c}$

Theorem (F^{c} is equivalent to the negation of F)
For any $p \in \operatorname{Proc}$ and any HML formula F
(1) $p \models F \Longrightarrow p \not \vDash F^{c}$
(2) $p \not \vDash F \Longrightarrow p \neq F^{c}$

Checking Validity of HML Formulae

(1) Decompose the HML formula into all its subformulas
© Starting with the smallest subformula, label all states of the LTS where it holds

- Repeat the previous step for the smallest remaining formula (0) If the state is labeled with the formula to be checked the formula is valid that state, otherwise, it is invalid.

Checking Validity of HML Formulae

(1) Decompose the HML formula into all its subformulas
(2) Starting with the smallest subformula, label all states of the LTS where it holds
© Repeat the previous step for the smallest remaining formula
\square

Checking Validity of HML Formulae

(1) Decompose the HML formula into all its subformulas
(2) Starting with the smallest subformula, label all states of the LTS where it holds
(3) Repeat the previous step for the smallest remaining formula
\square

Checking Validity of HML Formulae

(1) Decompose the HML formula into all its subformulas
(2) Starting with the smallest subformula, label all states of the LTS where it holds
(3) Repeat the previous step for the smallest remaining formula
(4) If the state is labeled with the formula to be checked the formula is valid that state, otherwise, it is invalid.

Examples of Model Checking

Does the transition system corresponding to a.nil + a.b.nil satisfy the formula $<a>t$

Subformulae of $<a>t t$:
tt $t t<a>t$

Examples of Model Checking

Does the transition system corresponding to a.nil + a.b.nil satisfy the formula $<a>t$

Subformulae of $<a>t t$:
tt $t t<a>t$

Examples of Model Checking

Does the transition system corresponding to a.nil + a.b.nil satisfy the formula $<a>t$

Subformulae of $<a>t t$:
tt $t t<a>t$

Examples of Model Checking

Does the transition system corresponding to a.nil + a.b.nil satisfy formula $<a>[b] f f$

Subformulae of $\langle a\rangle[b] f f$:

$$
f f \quad[b] f f \quad<a>[b] f f
$$

Examples of Model Checking

Does the transition system corresponding to a.nil + a.b.nil satisfy formula $<a>[b] f f$

Subformulae of $\langle a\rangle[b] f f$:

$$
f f \quad[b] f f \quad<a>[b] f f
$$

Examples of Model Checking

Does the transition system corresponding to a.nil + a.b.nil satisfy formula $<a>[b] f f$

Subformulae of $\langle a\rangle[b] f f$:
[b]ff $<a>[b] f f$

Examples of Model Checking

Does the transition system corresponding to a.nil + a.b.nil satisfy formula [a] $\langle b\rangle t$

Examples of Model Checking

Does the transition system corresponding to a.nil + a.b.nil satisfy formula $[a]t$

Examples of Model Checking

Does the transition system corresponding to a.nil + a.b.nil satisfy formula [a] $\langle b\rangle t$

Examples of Model Checking

Does the transition system corresponding to a.nil + a.b.nil satisfy formula [a][b]f

Examples of Model Checking

Does the transition system corresponding to a.nil + a.b.nil satisfy formula [a][b] ff

Examples of Model Checking

Does the transition system corresponding to a.nil + a.b.nil satisfy formula [a][b] f

HML and Bisimulation

Examples

- a. $($ b.nil $+c . n i l) \models\langle a\rangle(\langle b\rangle t t \wedge\langle c\rangle t t)$
- a.b.nil + a.c.nil $\vDash\langle\rangle(\langle b\rangle t t \wedge\langle c\rangle t t)$

HML and Bisimulation

Examples

- a. $(b . n i l+c . n i l) \models\langle a\rangle(\langle b\rangle t t \wedge\langle c\rangle t t)$
- a.b.nil + a.c.nil $\vDash\langle\rangle(\langle b\rangle t t \wedge\langle c\rangle t t)$
- a.b.nil $\models[a]\langle b\rangle t t$
- a.b.nil + a.nil $\forall=[a]\langle b\rangle t t$

HML and Bisimulation

Examples

- a. $(b . n i l+c . n i l) \models\langle a\rangle(\langle b\rangle t t \wedge\langle c\rangle t t)$
- a.b.nil + a.c.nil $\vDash\langle\rangle(\langle b\rangle t t \wedge\langle c\rangle t t)$
- a.b.nil $\models[a]\langle b\rangle t t$
- a.b.nil + a.nil $\forall=[a]\langle b\rangle t t$
- a.b. $(c . n i l+$ d.nil $) \models[a]\langle b\rangle\langle c\rangle t t$
- a.b.c.nil + a.b.d.nil $\forall=[a]\langle b\rangle\langle c\rangle t t$

HML and Bisimulation

Examples

- a. $(b . n i l+c . n i l) \models\langle a\rangle(\langle b\rangle t t \wedge\langle c\rangle t t)$
- a.b.nil + a.c.nil $\vDash\langle\langle a\rangle(\langle b\rangle t t \wedge\langle c\rangle t t)$
- a.b.nil $\models[a]\langle b\rangle t t$
- a.b.nil + a.nil $\not \models[a]\langle b\rangle t t$
- a.b. $(c . n i l+$ d.nil $) \models[a]\langle b\rangle\langle c\rangle t t$
- a.b.c.nil + a.b.d.nil $\forall=[a]\langle b\rangle\langle c\rangle t t$
- a. $($ b.c.nil + b.d.nil $) \models[a](\langle b\rangle\langle c\rangle t t \wedge\langle b\rangle\langle d\rangle t t)$
- a.b.c.nil + a.b.d.nil $\forall=[a](\langle b\rangle\langle c\rangle t t \wedge\langle b\rangle\langle d\rangle t t)$

HML and Bisimulation

Theorem
$P \sim Q \quad$ if and only if $\quad P \models F \Leftrightarrow Q \models F$ for every HML formula F.

Proof

(\Longrightarrow) Proceeds by induction on F. The interesting case is $[a] F$.
(\Longleftarrow) We show that the set \mathcal{S} of all pair of processes that satisfy the same HML formulae is a bisimulation. Suppose \mathcal{S} is not a bisimulation. Then, there exists a pair $<P, Q>\in \mathcal{S}$ such that Q cannot match a move $P \xrightarrow{a} P^{\prime}$. There are two cases.
Case 1: Q does not have a transition $Q \xrightarrow{a} Q^{\prime}$, but then clearly P and Q do not satisfy the same formulae.
Case 2: for every evolution of $Q \xrightarrow{a} Q^{\prime}, Q^{\prime}$ and P^{\prime} do not satisfy the same formulae. Then, it is possible to construct a formula (of the form $\langle a\rangle F$ with $\left.F=F_{1} \wedge \ldots \wedge F_{n}\right)$ that P satisfies but Q does not.

HML and Bisimulation: a Remark

Remark

The (\Longrightarrow) implication of the theorem holds for arbitrary processes. The ($\Longleftarrow)$ implication of the theorem holds for image-finite processes only, but not in general. This is because the construction of the formula $\langle a\rangle F$ with $F=F_{1} \wedge \ldots \wedge F_{n}$ in the (\Longleftarrow)-part of the theorem is possible only when Q is image-finite.

Definition

A process P is image-finite if for any action a the set

$$
\left\{P^{\prime} \mid P \xrightarrow{a} P^{\prime}\right\}
$$

is finite.

Is Hennessy-Milner Logic Powerful Enough?

Idea: a formula F can "see" only upto its depth - $m d(F)$
Modal depth (nesting degree) for Hennessy-Milner formulae:

- $m d(t t)=m d(f f)=0$
- $m d(F \wedge G)=m d(F \vee G)=\max \{m d(F), m d(G)\}$
- $m d([a] F)=m d(\langle a\rangle F)=m d(F)+1$

Is Hennessy-Milner Logic Powerful Enough?

Idea: a formula F can "see" only upto its depth - $m d(F)$
Modal depth (nesting degree) for Hennessy-Milner formulae:

- $m d(t t)=m d(f f)=0$
- $m d(F \wedge G)=m d(F \vee G)=\max \{m d(F), m d(G)\}$
- $m d([a] F)=m d(\langle a\rangle F)=m d(F)+1$

Theorem

Let F be a HML formula and $k=m d(F)$. If the defender has a defending strategy in the strong bisimulation game between s and t up to k rounds then $s \models F$ if and only if $t \models F$.

Is Hennessy-Milner Logic Powerful Enough?

Idea: a formula F can "see" only upto its depth - $m d(F)$
Modal depth (nesting degree) for Hennessy-Milner formulae:

- $m d(t t)=m d(f f)=0$
- $m d(F \wedge G)=m d(F \vee G)=\max \{m d(F), m d(G)\}$
- $m d([a] F)=m d(\langle a\rangle F)=m d(F)+1$

Theorem

Let F be a HML formula and $k=m d(F)$. If the defender has a defending strategy in the strong bisimulation game between s and t up to k rounds then $s \models F$ if and only if $t \models F$.

Conclusion

There is no HML formula F that can detect a deadlock in an arbitrary LTS: deadlock might happen after a trace of length greater than $\operatorname{md}(F)$.

Temporal Properties not Expressible in HM Logic

Two basic temporal properties
Can properties $\operatorname{Inev}(F)$ and $\operatorname{Poss}(F)$ where

- $s \neq \operatorname{Inev}(F)$ iff all states reachable from s satisfy F
- $s \models \operatorname{Poss}(F)$ iff there exists a reachable state which satisfies F be expressed as HML formulae?

Temporal Properties not Expressible in HM Logic

Two basic temporal properties
Can properties $\operatorname{Inev}(F)$ and $\operatorname{Poss}(F)$ where

- $s \models \operatorname{Inev}(F)$ iff all states reachable from s satisfy F
- $s \models \operatorname{Poss}(F)$ iff there exists a reachable state which satisfies F be expressed as HML formulae?

Idea: Use infinite conjunction and disjunction
Let $A c t=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a finite set of actions. We define

- $\langle A c t\rangle F \stackrel{\text { def }}{=}\left\langle a_{1}\right\rangle F \vee\left\langle a_{2}\right\rangle F \vee \ldots \vee\left\langle a_{n}\right\rangle F$
- $[A c t] F \stackrel{\text { def }}{=}\left[a_{1}\right] F \wedge\left[a_{2}\right] F \wedge \ldots \wedge\left[a_{n}\right] F$
then we can define:
- $\operatorname{Inev}(F) \equiv F \wedge[A c t] F \wedge[A c t][A c t] F \wedge[A c t][A c t][A c t] F \wedge \ldots$
- $\operatorname{Poss}(F) \equiv F \vee\langle A c t\rangle F \vee\langle A c t\rangle\langle A c t\rangle F \vee\langle A c t\rangle\langle A c t\rangle\langle A c t\rangle F \vee \ldots$

Infinite Conjunctions and Disjunctions vs. Recursion

Problems

- Infinite formulae are not allowed in HML
- Infinite formulae are difficult to handle

Infinite Conjunctions and Disjunctions vs. Recursion

Problems

- Infinite formulae are not allowed in HML
- Infinite formulae are difficult to handle

Solution: Use recursion!

- $\operatorname{Inev}(F)$ can be expressed by $X \stackrel{\text { def }}{=} F \wedge[A c t] X$
- $\operatorname{Poss}(F)$ can expressed by $X \stackrel{\text { def }}{=} F \vee\langle A c t\rangle X$

Infinite Conjunctions and Disjunctions vs. Recursion

Problems

- Infinite formulae are not allowed in HML
- Infinite formulae are difficult to handle

Solution: Use recursion!

- $\operatorname{Inev}(F)$ can be expressed by $X \stackrel{\text { def }}{=} F \wedge[A c t] X$
- $\operatorname{Poss}(F)$ can expressed by $X \stackrel{\text { def }}{=} F \vee\langle A c t\rangle X$

However, to do that, we need to provide appropriate syntax and semantics.

Infinite Conjunctions and Disjunctions vs. Recursion

Syntax of Formulae

$$
F::=X \mid \text { tt }|f| F_{1} \wedge F_{2}\left|F_{1} \vee F_{2}\right|\langle a\rangle F \mid[a] F
$$

where

- $a \in A c t$
- X is a variable definition:

$$
X \stackrel{\min }{=} F_{X} \text { or } X \stackrel{\max }{=} F_{X}
$$

and F_{X} is a formula of the logic that can contain X.

Infinite Conjunctions and Disjunctions vs. Recursion

Syntax of Formulae

$$
F::=X|t| f\left|F_{1} \wedge F_{2}\right| F_{1} \vee F_{2}|\langle a\rangle F|[a] F
$$

where

- $a \in A c t$
- X is a variable definition:

$$
X \stackrel{\min }{=} F_{X} \text { or } X \stackrel{\max }{=} F_{X}
$$

and F_{X} is a formula of the logic that can contain X.

Question:

How to define the semantics of $X \stackrel{\min }{=} F_{X}$ and $X \stackrel{\max }{=} F_{X}$?

Infinite Conjunctions and Disjunctions vs. Recursion

Syntax of Formulae

$$
F::=X \mid \text { tt }|f| F_{1} \wedge F_{2}\left|F_{1} \vee F_{2}\right|\langle a\rangle F \mid[a] F
$$

where

- $a \in A c t$
- X is a variable definition:

$$
X \stackrel{\min }{=} F_{X} \text { or } X \stackrel{\max }{=} F_{X}
$$

and F_{X} is a formula of the logic that can contain X.

Question:

How to define the semantics of $X \stackrel{\min }{=} F_{X}$ and $X \stackrel{\max }{=} F_{X}$?
Answer:
Use Fixed Points to assign a meaning to recursive definitions!

Solving Recursive Equations is Tricky

Equations over Natural Numbers $(n \in \mathbb{N})$
$n=2 * n \quad$ one solution $n=0$
$n=n+1 \quad$ no solution
$n=1 * n \quad$ many solutions (every $n \in N a t$ is a solution)

Solving Recursive Equations is Tricky

Equations over Natural Numbers $(n \in \mathbb{N})$
$n=2 * n \quad$ one solution $n=0$
$n=n+1$ no solution
$n=1 * n \quad$ many solutions (every $n \in N a t$ is a solution)
Equations over Sets of Integers $\left(M \in 2^{\mathbb{N}}\right)$
$M=\{7\} \cap M$ two solutions $M=\{7\}$ and $M=\emptyset$
$M=\mathbb{N} \backslash M \quad$ no solution $M=\{3\} \cup M$ many solutions (every $M \supseteq\{3\}$ is a solution)

Solving Recursive Equations is Tricky

Equations over Natural Numbers $(n \in \mathbb{N})$
$n=2 * n \quad$ one solution $n=0$
$n=n+1 \quad$ no solution
$n=1 * n \quad$ many solutions (every $n \in N a t$ is a solution)

Equations over Sets of Integers $\left(M \in 2^{\mathbb{N}}\right)$
$M=\{7\} \cap M$ two solutions $M=\{7\}$ and $M=\emptyset$
$M=\mathbb{N} \backslash M$ no solution $M=\{3\} \cup M$ many solutions (every $M \supseteq\{3\}$ is a solution)

What about Equations over Processes?

To solve $X \stackrel{\text { def }}{=}[a] f f \vee\langle a\rangle X$ we need to find a set of processes $S \subseteq 2^{\text {Proc }}$ such that $S=[\cdot a \cdot] \emptyset \cup\langle\cdot a \cdot\rangle S$

Denotational Semantics for HML - without recursion

Idea: $\llbracket F \rrbracket$ is the set of all states that satisfy F

- $\llbracket t \rrbracket=$ Proc
- $\llbracket f \rrbracket=\emptyset$
- $\llbracket F \vee G \rrbracket=\llbracket F \rrbracket \cup \llbracket G \rrbracket$
- $\llbracket F \wedge G \rrbracket=\llbracket F \rrbracket \cap \llbracket G \rrbracket$
- $\llbracket\langle a\rangle F \rrbracket=\langle\cdot a \cdot\rangle \llbracket F \rrbracket$
- 【[a]F】 $=[\cdot a \cdot] \llbracket \mp \rrbracket$

Denotational Semantics for HML - without recursion

Idea: $\llbracket F \rrbracket$ is the set of all states that satisfy F

- $\llbracket t t \rrbracket=$ Proc
- $\llbracket f \rrbracket=\emptyset$
- $\llbracket F \vee G \rrbracket=\llbracket F \rrbracket \cup \llbracket G \rrbracket$
- $\llbracket F \wedge G \rrbracket=\llbracket F \rrbracket \cap \llbracket G \rrbracket$
- $\llbracket\langle a\rangle F \rrbracket=\langle\cdot a\rangle \backslash F \rrbracket$
- 【[a]F】 $=[\cdot a \cdot] \llbracket F \rrbracket$
where $\langle\cdot a \cdot\rangle,[\cdot a \cdot]: 2^{(\text {Proc })} \rightarrow 2^{(\text {Proc })}$ are defined by:
- $\langle\cdot a \cdot\rangle S=\left\{p \in \operatorname{Proc} \mid \exists p^{\prime} \cdot p \xrightarrow{a} p^{\prime}\right.$ and $\left.p^{\prime} \in S\right\}$
- $[\cdot a \cdot] S=\left\{p \in \operatorname{Proc} \mid \forall p^{\prime} . p \xrightarrow{a} p^{\prime} \Longrightarrow p^{\prime} \in S\right\}$.

Examples for $\langle\cdot a \cdot\rangle$ and $[\cdot a \cdot]$

- $\langle\cdot a \cdot\rangle\{1,4\}=\{0,3\}$
- $[\cdot a \cdot 1\{1,4\}=\{1,2,3,4\}$

Examples for $\langle\cdot a \cdot\rangle$ and $[\cdot a \cdot]$

- $\langle\cdot a \cdot\rangle\{1,4\}=$

Examples for $\langle\cdot a \cdot\rangle$ and $[\cdot a \cdot]$

- $\langle\cdot a \cdot\rangle\{1,4\}=\{0,3\}$

Examples for $\langle\cdot a \cdot\rangle$ and $[\cdot a \cdot]$

- $\langle\cdot a \cdot\rangle\{1,4\}=\{0,3\}$
- $[\cdot a \cdot]\{1,4\}=$

Examples for $\langle\cdot a \cdot\rangle$ and $[\cdot a \cdot]$

- $\langle\cdot a \cdot\rangle\{1,4\}=\{0,3\}$
- [.a. $]\{1,4\}=\{1,2,3,4\}$

The Correspondence Theorem

Theorem
Let (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$) be an LTS, $p \in$ Proc and F a formula of Hennessy-Milner logic. Then

$$
p \models F \quad \text { if and only if } \quad p \in \llbracket F \rrbracket \text {. }
$$

The Correspondence Theorem

Theorem
Let (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$) be an LTS, $p \in$ Proc and F a formula of Hennessy-Milner logic. Then

$$
p \models F \quad \text { if and only if } \quad p \in \llbracket F \rrbracket \text {. }
$$

Proof: by structural induction on the structure of the formula F.

Image-Finite Labelled Transition System

Image-Finite System

Let (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$) be an LTS. We call it image-finite iff for every $p \in$ Proc and every $a \in$ Act the set

$$
\left\{p^{\prime} \in \operatorname{Proc} \mid p \xrightarrow{a} p^{\prime}\right\}
$$

is finite.

Relationship between HML and Strong Bisimilarity

Theorem (Hennessy-Milner)
Let (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$) be an image-finite LTS and $p, q \in S t$. Then

$$
\begin{aligned}
& \qquad p \sim q \\
& \text { if and only if } \\
& \text { for every HML formula } F:(p \models F \Longleftrightarrow q \models F) .
\end{aligned}
$$

Denotational Semantics for HML with recursion

Syntax of HML

$$
F::=X|t t| f f\left|F_{1} \wedge F_{2}\right| F_{1} \vee F_{2}|\langle a\rangle F|[a] F
$$

where $a \in$ Act and X is a distinguished variable with a definition

- $X \stackrel{\min }{=} F_{X}$, or $X \stackrel{\max }{=} F_{X}$
such that F_{X} is a formula of the logic that can contain X.

How to Define Semantics?

To deal with recursive variables, assumptions on the states satisfied by them are made, and for every formula F a function $O_{F}: 2^{\text {Proc }} \rightarrow 2^{\text {Proc }}$ is defined such that:

- if S is the set of processes that satisfy X then $O_{F}(S)$ is the set of processes that satisfy F.

Definition of $O_{F}: 2^{\text {Proc }} \rightarrow 2^{\text {Proc }}$ with $S \subseteq 2^{\text {Proc }}$ Semantics of HML Formulae with Variables

$$
\left.\begin{array}{rl}
O_{X}(S) & =S \\
O_{t t}(S) & =\text { Proc } \\
O_{f}(S) & =\emptyset \\
O_{F_{1} \wedge F_{2}}(S) & =O_{F_{1}(S) \cap O_{F_{2}}(S)}^{O_{F_{1} \vee F_{2}}(S)}
\end{array}\right)=O_{F_{1}(S) \cup O_{F_{2}}(S)}\left(O_{\langle a\rangle F}(S)=\langle\cdot \cdot\rangle O_{F}(S),\right.
$$

Definition of $O_{F}: 2^{\text {Proc }} \rightarrow 2^{\text {Proc }}$ with $S \subseteq 2^{\text {Proc }}$

Semantics of HML Formulae with Variables

$$
\left.\begin{array}{rl}
O_{X}(S) & =S \\
O_{t t}(S) & =\text { Proc } \\
O_{f f}(S) & =\emptyset \\
O_{F_{1} \wedge F_{2}}(S) & =O_{F_{1}(S) \cap O_{F_{2}}(S)}^{O_{F_{1} \vee F_{2}}(S)}
\end{array}\right)=O_{F_{1}(S) \cup O_{F_{2}}(S)}\left(O_{\langle a\rangle F}(S)=\langle\cdot \cdot\rangle O_{F}(S),\right.
$$

We can now deal with $X \stackrel{\text { def }}{=} F \wedge[A c t] X$ and $X \stackrel{\text { def }}{=} F \vee\langle A c t\rangle X$ by considering the recursive equations over set of processes:

- $O_{X}(S)=O_{F \wedge[A c t] X}(S)$
- $O_{X}(S)=O_{F \vee \backslash A c t\rangle X}(S)$.

Definition of $O_{F}: 2^{\text {Proc }} \rightarrow 2^{\text {Proc }}$ with $S \subseteq 2^{\text {Proc }}$

Semantics of HML Formulae with Variables

$$
\left.\begin{array}{rl}
O_{X}(S) & =S \\
O_{t t}(S) & =\text { Proc } \\
O_{f f}(S) & =\emptyset \\
O_{F_{1} \wedge F_{2}}(S) & =O_{F_{1}(S) \cap O_{F_{2}}(S)}^{O_{F_{1} \vee F_{2}}(S)}
\end{array}\right)=O_{F_{1}(S) \cup O_{F_{2}}(S)}\left(O_{\langle a\rangle F}(S)=\langle\cdot \cdot\rangle O_{F}(S),\right.
$$

We can now deal with $X \stackrel{\text { def }}{=} F \wedge[A c t] X$ and $X \stackrel{\text { def }}{=} F \vee\langle A c t\rangle X$ by considering the recursive equations over set of processes:

- $O_{X}(S)=O_{F \wedge[A c t] X}(S)$
- $O_{X}(S)=O_{F \vee \backslash A c t\rangle X}(S)$.

Alternative semantics for HML

To do that we need to find the appropriate mathematical tools for finding the (unique?) solutions for such recursive equations and look for fixed points.

The intuition behind the formal semantics of HML formulae is that each formula determines a set of states for which the formula is valid. We have however to consider that:

- This kind of equations do not necessarily determine a set of states uniquely; e.g., for formula X with $X=X$ there is no such unique set of states; any set of states is a solution of the equation.

Thus it is needed to indicate which solution is meant, e.g., whether one wants the least or the greatest solution and care needs to be taken that these solutions do exists.

General Approach - Lattice Theory

Problem

For a set D and a function $f: D \rightarrow D$, for which elements $x \in D$ we have

$$
x=f(x) ?
$$

Such x's are called fixed points.

General Approach - Lattice Theory

Problem

For a set D and a function $f: D \rightarrow D$, for which elements $x \in D$ we have

$$
x=f(x) ?
$$

Such x 's are called fixed points.

Partially Ordered Set

Partially ordered set (or simply a partial order) is a pair (D, \sqsubseteq) s.t.

- D is a set
- $\subseteq \subseteq D \times D$ is a binary relation on D which is
- reflexive: $\forall d \in D . d \sqsubseteq d$
- antisymmetric: $\forall d, e \in D . d \sqsubseteq e \wedge e \sqsubseteq d \Rightarrow d=e$
- transitive: $\forall d, e, f \in D . d \sqsubseteq e \wedge e \sqsubseteq f \Rightarrow d \sqsubseteq f$

Supremum and Infimum

Upper/Lower Bounds (Let $X \subseteq D$)

- $d \in D$ is an upper bound for X (written $X \sqsubseteq d$) iff $x \sqsubseteq d$ for all $x \in X$
- $d \in D$ is a lower bound for X (written $d \sqsubseteq X$) iff $d \sqsubseteq x$ for all $x \in X$

Supremum and Infimum

Upper/Lower Bounds (Let $X \subseteq D$)

- $d \in D$ is an upper bound for X (written $X \sqsubseteq d$) iff $x \sqsubseteq d$ for all $x \in X$
- $d \in D$ is a lower bound for X (written $d \sqsubseteq X$) iff $d \sqsubseteq x$ for all $x \in X$

Least Upper Bound and Greatest Lower Bound (Let $X \subseteq D$)

- $d \in D$ is the least upper bound (supremum) for $X(\sqcup X)$ iff
(1) $X \sqsubseteq d$
(2) $\forall d^{\prime} \in D . X \sqsubseteq d^{\prime} \Rightarrow d \sqsubseteq d^{\prime}$
- $d \in D$ is the greatest lower bound (infimum) for $X(\sqcap X)$ iff
(1) $d \sqsubseteq X$
(2) $\forall d^{\prime} \in D . d^{\prime} \sqsubseteq X \Rightarrow d^{\prime} \sqsubseteq d$

Complete Lattices and Monotonic Functions

Complete Lattice
A partially ordered set (D, \sqsubseteq) is called complete lattice iff $\sqcup X$ and $\sqcap X$ exist for any $X \subseteq D$.

We define the top and bottom by $\top \stackrel{\text { def }}{=} \sqcup D$ and $\perp \stackrel{\text { def }}{=} \sqcap D$.

Complete Lattices and Monotonic Functions

Complete Lattice

A partially ordered set (D, \sqsubseteq) is called complete lattice iff $\sqcup X$ and $\sqcap X$ exist for any $X \subseteq D$.

We define the top and bottom by $T \stackrel{\text { def }}{=} \sqcup D$ and $\perp \stackrel{\text { def }}{=} \sqcap D$.
Monotonic Function and Fixed Points
A function $f: D \rightarrow D$ is called monotonic iff

$$
d \sqsubseteq e \Rightarrow f(d) \sqsubseteq f(e)
$$

for all $d, e \in D$.
Element $d \in D$ is called fixed point iff $d=f(d)$.

Tarski's Fixed Point Theorem

Theorem (Tarski)
Let (D, \sqsubseteq) be a complete lattice and let $f: D \rightarrow D$ be a monotonic function.

Then f has a unique largest fixed point $z_{\max }$ and a unique least fixed point $z_{\text {min }}$ given by:

$$
\begin{aligned}
& z_{\text {max }} \stackrel{\text { def }}{=} \sqcup\{x \in D \mid x \sqsubseteq f(x)\} \\
& z_{\text {min }} \stackrel{\text { def }}{=} \sqcap\{x \in D \mid f(x) \sqsubseteq x\}
\end{aligned}
$$

Computing Min and Max Fixed Points on Finite Lattices

Let (D, \sqsubseteq) be a complete lattice and $f: D \rightarrow D$ monotonic.
Let $f^{1}(x) \stackrel{\text { def }}{=} f(x)$ and $f^{n}(x) \stackrel{\text { def }}{=} f\left(f^{n-1}(x)\right)$ for $n>1$, i.e.,

$$
f^{n}(x)=\underbrace{f(f(\ldots f}_{n \text { times }}(x) \ldots)) .
$$

Computing Min and Max Fixed Points on Finite Lattices

Let (D, \sqsubseteq) be a complete lattice and $f: D \rightarrow D$ monotonic.
Let $f^{1}(x) \stackrel{\text { def }}{=} f(x)$ and $f^{n}(x) \stackrel{\text { def }}{=} f\left(f^{n-1}(x)\right)$ for $n>1$, i.e.,

$$
f^{n}(x)=\underbrace{f(f(\ldots f}_{n \text { times }}(x) \ldots)) .
$$

Theorem

If D is a finite set then there exist integers $M, m>0$ such that

- $z_{\text {max }}=f^{M}(T)$
- $z_{\text {min }}=f^{m}(\perp)$

Idea (for $z_{\text {min }}$ and $z_{\text {max }}$)
The following sequences stabilize for any finite D

- $\perp \sqsubseteq f(\perp) \sqsubseteq f(f(\perp)) \sqsubseteq f(f(f(\perp))) \sqsubseteq \cdots$
- $D \sqsupseteq f(D) \sqsupseteq f(f(D)) \sqsupseteq f(f(f(D))) \sqsupseteq \cdots$

Monotonic Functions over Sets of Processes

Fixed Points of Functions Sets of Processes
A function $f: 2^{\text {Proc }} \rightarrow 2^{\text {Proc }}$ is called monotonic iff

$$
X \subseteq Y \Rightarrow f(X) \subseteq f(Y)
$$

for all $X, Y \in 2^{\text {Proc }}$.
A set $X \in 2^{\text {Proc }}$ is called a fixed point of f iff $X=f(X)$.

Questions

Is the function $f(X)=X \cup\{s, t\}$ monotonic? What about $g(X)=\operatorname{Proc} \backslash X$? Do these functions have fixed points?

Tarski's Fixed Point Theorem for Processes

Theorem (Tarski)
Let $f: 2^{\text {Proc }} \rightarrow 2^{\text {Proc }}$ be a monotonic function.
Then f has a unique largest fixed point $z_{\text {max }}$ and a unique least fixed point $z_{\text {min }}$ given by:

$$
\begin{aligned}
& z_{\max } \stackrel{\text { def }}{=} \bigcup\left\{X \in 2^{\text {Proc }} \mid X \subseteq f(X)\right\} \\
& z_{\text {min }} \stackrel{\text { def }}{=} \bigcap\left\{X \in 2^{\text {Proc }} \mid f(X) \subseteq X\right\}
\end{aligned}
$$

Computing Fixed Points on Finite Sets of Processes

Let $f: 2^{\text {Proc }} \rightarrow 2^{\text {Proc }}$ be monotonic.
Let $f^{1}(X) \stackrel{\text { def }}{=} f(X)$ and $f^{n}(X) \stackrel{\text { def }}{=} f\left(f^{n-1}(X)\right)$ for $n>1$, i.e.,

$$
f^{n}(X)=\underbrace{f(f(\ldots f}_{n \text { times }}(X) \ldots)) .
$$

Computing Fixed Points on Finite Sets of Processes

Let $f: 2^{\text {Proc }} \rightarrow 2^{\text {Proc }}$ be monotonic.
Let $f^{1}(X) \stackrel{\text { def }}{=} f(X)$ and $f^{n}(X) \stackrel{\text { def }}{=} f\left(f^{n-1}(X)\right)$ for $n>1$, i.e.,

$$
f^{n}(X)=\underbrace{f(f(\ldots f}_{n \text { times }}(X) \ldots)) .
$$

Theorem

If $2^{\text {Proc }}$ is a finite set then there exist integers $M, m>0$ such that

- $z_{\max }=f^{M}$ (Proc)
- $z_{\text {min }}=f^{m}(\emptyset)$

The following sequences stabilize for any finite set Proc of processes

- $\emptyset \subseteq f(\emptyset) \subseteq f(f(\emptyset)) \subseteq f(f(f(\emptyset))) \subseteq \cdots$
- Proc $\supseteq f($ Proc $) \supseteq f(f($ Proc $)) \supseteq f(f(f($ Proc $))) \supseteq \cdots$

Tarski's Fixed Point Theorem - Summary

Let (D, \sqsubseteq) be a complete lattice and let $f: D \rightarrow D$ be a monotonic function.

Tarski's Fixed Point Theorem

Then f has a unique largest fixed point $z_{\max }$ and a unique least fixed point $z_{\text {min }}$ given by:

$$
\begin{aligned}
& z_{\text {max }} \stackrel{\text { def }}{=} \sqcup\{x \in D \mid x \sqsubseteq f(x)\} \\
& z_{\text {min }} \stackrel{\text { def }}{=} \sqcap\{x \in D \mid f(x) \sqsubseteq x\}
\end{aligned}
$$

Computing Fixed Points in Finite Lattices

If D is a finite set then there exist integers $M, m>0$ such that

- $z_{\text {max }}=f^{M}(\top)$
- $z_{\text {min }}=f^{m}(\perp)$

HML with One Recursively Defined Variable

Syntax of Formulae
Formulae are given by the following abstract syntax

$$
F::=X \mid \text { tt }|f| F_{1} \wedge F_{2}\left|F_{1} \vee F_{2}\right|\langle a\rangle F \mid[a] F
$$

where $a \in$ Act and X is a distinguished variable with a definition

- $X \stackrel{\min }{=} F_{X}$, or $X \stackrel{\max }{=} F_{X}$ such that F_{X} is a formula of the logic (can contain X).

HML with One Recursively Defined Variable

Syntax of Formulae

Formulae are given by the following abstract syntax

$$
F::=X \mid \text { tt }|f| F_{1} \wedge F_{2}\left|F_{1} \vee F_{2}\right|\langle a\rangle F \mid[a] F
$$

where $a \in$ Act and X is a distinguished variable with a definition

- $X \stackrel{\min }{=} F_{X}$, or $X \stackrel{\max }{=} F_{X}$
such that F_{X} is a formula of the logic (can contain X).

How to Define Semantics?

In order to deal with recursion variable X , we make assumption on the states satisfied by X and for every formula F we define a function $O_{F}: 2^{\text {Proc }} \rightarrow 2^{\text {Proc }}$ such that:

- if S is the set of processes that satisfy X then $O_{F}(S)$ is the set of processes that satisfy F.

Definition of $O_{F}: 2^{\text {Proc }} \rightarrow 2^{\text {Proc }}$ (let $S \subseteq 2^{\text {Proc }}$)

$$
\left.\begin{array}{rl}
O_{X}(S) & =S \\
O_{t t}(S) & =\operatorname{Proc} \\
O_{f f}(S) & =\emptyset \\
O_{F_{1} \wedge F_{2}}(S) & =O_{F_{1}(S) \cap O_{F_{2}}(S)} \\
O_{F_{1} \vee F_{2}}(S) & =O_{F_{1}(S) \cup O_{F_{2}}(S)}^{O_{\langle a\rangle F}(S)}
\end{array}\right)\left\langle\langle\cdot \cdot\rangle O_{F}(S),\right.
$$

Definition of $O_{F}: 2^{\text {Proc }} \rightarrow 2^{\text {Proc }}\left(\right.$ let $S \subseteq 2^{\text {Proc }}$)

$$
\begin{aligned}
O_{X}(S) & =S \\
O_{t t}(S) & =\text { Proc } \\
O_{f}(S) & =\emptyset \\
O_{F_{1} \wedge F_{2}}(S) & =O_{F_{1}}(S) \cap O_{F_{2}}(S) \\
O_{F_{1} \vee F_{2}}(S) & =O_{F_{1}}(S) \cup O_{F_{2}}(S) \\
O_{\langle a) F}(S) & =\langle\cdot \cdot \cdot\rangle O_{F}(S) \\
O_{[a] F}(S) & =[\cdot a \cdot] O_{F}(S)
\end{aligned}
$$

O_{F} is monotonic for every formula F

$$
S_{1} \subseteq S_{2} \Rightarrow O_{F}\left(S_{1}\right) \subseteq O_{F}\left(S_{2}\right)
$$

Proof: easy (structural induction on the structure of F).

Semantics

Observation

We know O_{F} is monotonic, so O_{F} has a unique greatest and least fixed point.

Semantics of the Variable X

- If $X \stackrel{\max }{=} F_{X}$ then

$$
\llbracket X \rrbracket=\bigcup\left\{S \subseteq \operatorname{Proc} \mid S \subseteq O_{F_{X}}(S)\right\}
$$

- If $X \stackrel{\min }{=} F_{X}$ then

$$
\llbracket X \rrbracket=\bigcap\left\{S \subseteq \operatorname{Proc} \mid O_{F_{X}}(S) \subseteq S\right\}
$$

Example 1

A state can be reached where a cannot be executed

$$
X \stackrel{\text { def }}{=}[a] f a l s e \vee\langle A c t\rangle X
$$

The property is valid for the labeled transition system

Example 1

A state can be reached where a cannot be executed

$$
X \stackrel{\text { def }}{=}[a] f a l s e \vee\langle A c t\rangle X
$$

The property is valid for the labeled transition system Solutions of this equation are the sets: $\{0,2\}$ and $\{0,1,2\}$

Example 1

A state can be reached where a cannot be executed

$$
X \stackrel{\text { def }}{=}[a] f a l s e V\langle A c t\rangle X
$$

The property is valid for the labeled transition system Solutions of this equation are the sets: $\{0,2\}$ and $\{0,1,2\}$ We intended to describe the least solution!

$$
X \stackrel{\min }{=}[a] f a l s e \vee\langle A c t\rangle X
$$

Example 2

A state can be reached where a cannot be executed

$$
X \stackrel{\min }{=}[a] \text { false } \vee\langle A c t\rangle X
$$

The unique least solution for this equation is the empty set of states (\emptyset)

Example 2

A state can be reached where a cannot be executed

$$
X \stackrel{\min }{=}[a] \text { false } \vee\langle A c t\rangle X
$$

The unique least solution for this equation is the empty set of states (\emptyset) Hence the property is not valid for the labeled transition system

Example 3

In every reachable state an a-transition is possible

$$
X \stackrel{\text { def }}{=}[a] f a l s e \vee\langle A c t\rangle X
$$

Solutions of this equation are the sets: $\emptyset,\{1\}$ and $\{0,1\}$

Example 3

In every reachable state an a-transition is possible

$$
X \stackrel{\text { def }}{=}[a] f a l s e \vee\langle A c t\rangle X
$$

Solutions of this equation are the sets: $\emptyset,\{1\}$ and $\{0,1\}$
We intended to describe the greatest solution!

$$
X \stackrel{\max }{=}[a] \text { false } \vee\langle A c t\rangle X
$$

Example 4

In every reachable state an a-transition is possible

$$
X \stackrel{\max }{=}\langle a\rangle \text { true } \wedge[A c t] X
$$

The greatest solution for this equation is the set of states: $\{1\}$

Example 4

In every reachable state an a-transition is possible

$$
X \stackrel{\max }{=}\langle a\rangle \text { true } \wedge[A c t] X
$$

The greatest solution for this equation is the set of states: $\{1\}$
Thus property is not valid for the labeled transition system.

Example 5

There is a path of $(a$ and $b)$ transitions to a b-transition

$$
X \stackrel{\min }{=}\langle b\rangle \operatorname{true} \vee\langle\{a, b\}\rangle X
$$

The solution for this equation is the set of states: $\{0,1,2,4\}$

Example 5

There is a path of $(a$ and $b)$ transitions to a b-transition

$$
X \stackrel{\min }{=}\langle b\rangle \operatorname{true} \vee\langle\{a, b\}\rangle X
$$

The solution for this equation is the set of states: $\{0,1,2,4\}$
Thus property is valid for the labeled transition system.

Example 6

All states reachable by b-transitions (0 or more) have a b-transition

$$
X \stackrel{\max }{=}\langle b\rangle \text { true } \wedge[b] X
$$

The greatest solution for this equation is the set of states: $\left\{s_{1}, s_{2}, t_{1}\right\}$

Calculating Minimum Fixed Points

Example: $X \stackrel{\text { min }}{=}[a] f a l s e \vee\langle A c t\rangle X$

$$
\begin{aligned}
& O_{F_{X}}(S)=O_{[\text {alfalse }}(S) \cup O_{\langle A c t\rangle X}(S) \\
& =[\cdot a \cdot] O_{\text {false }}(S) \cup\langle\cdot A c t \cdot\rangle O_{X}(S) \\
& =[\cdot a \cdot] \varnothing \cup\langle\cdot A c t \cdot\rangle S \\
& =\{2\} \cup\langle\cdot A c t \cdot\rangle S
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1. } O_{F_{X}}(\varnothing)=\{2\} \cup\langle\cdot A c t \cdot\rangle=\{2\} \cup \varnothing=\{2\} \\
& \text { 2. } O_{F_{X}}(\{2\})=\{2\} \cup\langle\cdot A c t \cdot\{2\}=\{2\} \cup\{0\}=\{0,2\} \\
& \text { 3. } \left.O E_{E}(\{0,2\})=\{2\} \cup\langle\cdot A c t \cdot\} 0,2\right\}=\{2\} \cup\{0\}=\{0,2\}
\end{aligned}
$$

Calculating Maximum Fixed Points

Example: $X \stackrel{\text { max }}{=}\langle b\rangle$ true $\wedge[b] X$

$$
\begin{aligned}
O_{F_{X}}(S) & =O_{\langle b| \text { true }}(S) \cap O_{[b] X}(S) \\
& =\langle\cdot b \cdot\rangle O_{\text {true }}(S) \cap[\cdot b \cdot] O_{X}(S) \\
& =\langle\cdot b \cdot\rangle P \text { Proc } \cap[\cdot b \cdot] S \\
& =\left\{s_{1}, s_{2}, t_{1}\right\} \cap[\cdot b \cdot] S
\end{aligned}
$$

$$
\text { 1. } O_{F_{x}}(\operatorname{Proc})=\left\{s_{1}, s_{2}, t_{1}\right\} \cap[\cdot b \cdot] \text { Proc }=
$$

$$
\left\{s_{1}, s_{2}, t_{1}\right\} \cap\left\{s, s_{1}, s_{2}, t, t_{1}\right\}=\left\{s_{1}, s_{2}, t_{1}\right\}
$$

$$
\text { 2. } O_{F_{X}}\left(\left\{s_{1}, s_{2}, t_{1}\right\}\right)=\left\{s_{1}, s_{2}, t_{1}\right\} \cap[\cdot b \cdot]\left\{s_{1}, s_{2}, t_{1}\right\}=
$$

Selection of Temporal Properties

- $\operatorname{Inv}(F): \quad X \stackrel{\text { max }}{=} F \wedge[A c t] X$
- $\operatorname{Pos}(F): \quad X \stackrel{\text { min }}{=} F \vee\langle A c t\rangle X$
\square until we can express e.g. $\operatorname{Inv}(F)$ and $\operatorname{Even}(F)$:

Selection of Temporal Properties

- $\operatorname{Inv}(F): \quad X \stackrel{\max }{=} F \wedge[A c t] X$
- $\operatorname{Pos}(F): \quad X \stackrel{\min }{=} F \vee\langle A c t\rangle X$
- $\operatorname{Safe}(F): \quad X \stackrel{\max }{=} F \wedge([A c t] f f \vee\langle A c t\rangle X)$
- Even $(F): \quad X \stackrel{\min }{=} F \vee(\langle A c t\rangle t t \wedge[A c t] X)$

Using until we can express e.g. $\operatorname{Inv}(F)$ and $\operatorname{Even}(F)$:

Selection of Temporal Properties

- $\operatorname{Inv}(F): \quad X \stackrel{\text { max }}{=} F \wedge[A c t] X$
- $\operatorname{Pos}(F): \quad X \stackrel{\min }{=} F \vee\langle A c t\rangle X$
- Safe $(F): \quad X \stackrel{\max }{=} F \wedge([A c t] f \vee\langle A c t\rangle X)$
- $\operatorname{Even}(F): \quad X \stackrel{\text { min }}{=} F \vee(\langle A c t\rangle t t \wedge[A c t] X)$
- $F \mathcal{U}^{w} G: \quad X \stackrel{\max }{=} G \vee(F \wedge[A c t] X)$
- $F \mathcal{U}^{s} G: \quad X \stackrel{\min }{=} G \vee(F \wedge\langle A c t\rangle t t \wedge[A c t] X)$

Selection of Temporal Properties

- $\operatorname{Inv}(F): \quad X \stackrel{\text { max }}{=} F \wedge[A c t] X$
- $\operatorname{Pos}(F): \quad X \stackrel{\min }{=} F \vee\langle A c t\rangle X$
- Safe $(F): \quad X \stackrel{\max }{=} F \wedge([A c t] f \vee\langle A c t\rangle X)$
- $\operatorname{Even}(F): \quad X \stackrel{\text { min }}{=} F \vee(\langle A c t\rangle t t \wedge[A c t] X)$
- $F \mathcal{U}^{w} G: \quad X \stackrel{\max }{=} G \vee(F \wedge[A c t] X)$
- $F \mathcal{U}^{s} G: \quad X \stackrel{\min }{=} G \vee(F \wedge\langle A c t\rangle t t \wedge[A c t] X)$

Using until we can express e.g. $\operatorname{Inv}(F)$ and $\operatorname{Even}(F)$:

$$
\operatorname{lnv}(F) \equiv F \mathcal{U}^{w} f \quad \quad \operatorname{Even}(F) \equiv t t \mathcal{U}^{s} F
$$

Examples of More Advanced Recursive Formulae

Nested Definitions of Recursive Variables

$$
X \stackrel{\min }{=} Y \vee\langle A c t\rangle X \quad Y \stackrel{\max }{=}\langle a\rangle t t \wedge\langle A c t\rangle Y
$$

Solution: compute first $\llbracket Y \rrbracket$ and then $\llbracket X \rrbracket$.

Examples of More Advanced Recursive Formulae

Nested Definitions of Recursive Variables

$$
X \stackrel{\min }{=} Y \vee\langle A c t\rangle X \quad Y \stackrel{\max }{=}\langle a\rangle t t \wedge\langle A c t\rangle Y
$$

Solution: compute first $\llbracket Y \rrbracket$ and then $\llbracket X \rrbracket$.

Mutually Recursive Definitions

$$
X \stackrel{\max }{=}[a] Y \quad Y \stackrel{\max }{=}\langle a\rangle X
$$

Solution: consider a complete lattice ($2^{\text {Proc }} \times 2^{\text {Proc }}, \sqsubseteq$) where $\left(S_{1}, S_{2}\right) \sqsubseteq\left(S_{1}^{\prime}, S_{2}^{\prime}\right)$ iff $S_{1} \subseteq S_{1}^{\prime}$ and $S_{2} \subseteq S_{2}^{\prime}$.

Examples of More Advanced Recursive Formulae

Nested Definitions of Recursive Variables

$$
X \stackrel{\min }{=} Y \vee\langle A c t\rangle X \quad Y \stackrel{\max }{=}\langle a\rangle t t \wedge\langle A c t\rangle Y
$$

Solution: compute first $\llbracket Y \rrbracket$ and then $\llbracket X \rrbracket$.

Mutually Recursive Definitions

$$
X \stackrel{\max }{=}[a] Y \quad Y \stackrel{\max }{=}\langle a\rangle X
$$

Solution: consider a complete lattice ($2^{\text {Proc }} \times 2^{\text {Proc }}, \sqsubseteq$) where $\left(S_{1}, S_{2}\right) \sqsubseteq\left(S_{1}^{\prime}, S_{2}^{\prime}\right)$ iff $S_{1} \subseteq S_{1}^{\prime}$ and $S_{2} \subseteq S_{2}^{\prime}$.

Theorem (Characteristic Property for Finite-State Processes)
Let s be a process with finitely many reachable states. There exists a property X_{s} s.t. for all processes $t: s \sim t$ if and only if $t \in \llbracket X_{s} \rrbracket$.

Definition of Strong Bisimulation

Let (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$) be an LTS.

Strong Bisimulation

A binary relation $R \subseteq$ Proc \times Proc is a strong bisimulation iff whenever $(s, t) \in R$ then for each $a \in A c t:$

- if $s \xrightarrow{a} s^{\prime}$ then $t \xrightarrow{a} t^{\prime}$ for some t^{\prime} such that $\left(s^{\prime}, t^{\prime}\right) \in R$
- if $t \xrightarrow{a} t^{\prime}$ then $s \xrightarrow{a} s^{\prime}$ for some s^{\prime} such that $\left(s^{\prime}, t^{\prime}\right) \in R$.

Two processes $p, q \in \operatorname{Proc}$ are strongly bisimilar $(p \sim q)$ iff there exists a strong bisimulation R such that $(p, q) \in R$.

$$
\sim=\bigcup\{R \mid R \text { is a strong bisimulation }\}
$$

Strong Bisimulation as a Greatest Fixed Point

Function $\mathcal{F}: 2^{(\text {Proc } \times \text { Proc })} \rightarrow 2^{(\text {Proc } \times \text { Proc })}$
Let $S \subseteq$ Proc \times Proc. Then we define $\mathcal{F}(S)$ as follows: $(s, t) \in \mathcal{F}(S)$ if and only if for each $a \in A c t$:

- if $s \xrightarrow{a} s^{\prime}$ then $t \xrightarrow{a} t^{\prime}$ for some t^{\prime} such that $\left(s^{\prime}, t^{\prime}\right) \in S$
- if $t \xrightarrow{a} t^{\prime}$ then $s \xrightarrow{a} s^{\prime}$ for some s^{\prime} such that $\left(s^{\prime}, t^{\prime}\right) \in S$.

Strong Bisimulation as a Greatest Fixed Point

Function $\mathcal{F}: 2^{(\text {Proc } \times \text { Proc })} \rightarrow 2^{(\text {Proc } \times \text { Proc })}$
Let $S \subseteq$ Proc \times Proc. Then we define $\mathcal{F}(S)$ as follows:
$(s, t) \in \mathcal{F}(S)$ if and only if for each $a \in A c t$:

- if $s \xrightarrow{a} s^{\prime}$ then $t \xrightarrow{a} t^{\prime}$ for some t^{\prime} such that $\left(s^{\prime}, t^{\prime}\right) \in S$
- if $t \xrightarrow{a} t^{\prime}$ then $s \xrightarrow{a} s^{\prime}$ for some s^{\prime} such that $\left(s^{\prime}, t^{\prime}\right) \in S$.

Observations

- ($\left.2^{(\text {Proc } \times \text { Proc })}, \subseteq\right)$ is a complete lattice and \mathcal{F} is monotonic
- S is a strong bisimulation if and only if $S \subseteq \mathcal{F}(S)$

Strong Bisimulation as a Greatest Fixed Point

Function $\mathcal{F}: 2^{(\text {Proc } \times \text { Proc })} \rightarrow 2^{(\text {Proc } \times \text { Proc })}$
Let $S \subseteq$ Proc \times Proc. Then we define $\mathcal{F}(S)$ as follows:
$(s, t) \in \mathcal{F}(S)$ if and only if for each $a \in A c t$:

- if $s \xrightarrow{a} s^{\prime}$ then $t \xrightarrow{a} t^{\prime}$ for some t^{\prime} such that $\left(s^{\prime}, t^{\prime}\right) \in S$
- if $t \xrightarrow{a} t^{\prime}$ then $s \xrightarrow{a} s^{\prime}$ for some s^{\prime} such that $\left(s^{\prime}, t^{\prime}\right) \in S$.

Observations

- ($\left.2^{(\text {Proc } \times \text { Proc })}, \subseteq\right)$ is a complete lattice and \mathcal{F} is monotonic
- S is a strong bisimulation if and only if $S \subseteq \mathcal{F}(S)$

Strong Bisimilarity is the Greatest Fixed Point of \mathcal{F}

$$
\sim=\bigcup\left\{S \in 2^{(\text {Proc } \times \text { Proc })} \mid S \subseteq \mathcal{F}(S)\right\}
$$

Example

Consider processes:

- $Q_{1}=b . Q_{2}+a . Q_{3}$
- $Q_{2}=c \cdot Q_{4}$
- $Q_{3}=c \cdot Q_{4}$
- $Q_{4}=b \cdot Q_{2}+a \cdot Q_{3}+a \cdot Q_{1}$

Example

Consider processes:

- $Q_{1}=b . Q_{2}+a . Q_{3}$
- $Q_{2}=c \cdot Q_{4}$
- $Q_{3}=c \cdot Q_{4}$
- $Q_{4}=b \cdot Q_{2}+a \cdot Q_{3}+a \cdot Q_{1}$

With the non recursive definition, in order to construct \sim we had to consider that $Q_{i} \sim Q_{i}$, with $1 \leq i \leq 4$, then we had to check whether $Q_{i} \sim Q_{j}$, for all possible $i \neq j$, using the bisimulation game (and noticing that $\left.Q_{i} \sim Q_{j} \Longleftrightarrow Q_{j} \sim Q_{i}\right)$.

Example

Consider processes:

- $Q_{1}=b . Q_{2}+a . Q_{3}$
- $Q_{2}=c \cdot Q_{4}$
- $Q_{3}=c \cdot Q_{4}$
- $Q_{4}=b \cdot Q_{2}+a \cdot Q_{3}+a \cdot Q_{1}$

With the non recursive definition, in order to construct \sim we had to consider that $Q_{i} \sim Q_{i}$, with $1 \leq i \leq 4$, then we had to check whether $Q_{i} \sim Q_{j}$, for all possible $i \neq j$, using the bisimulation game (and noticing that $\left.Q_{i} \sim Q_{j} \Longleftrightarrow Q_{j} \sim Q_{i}\right)$.

For instance, to show that $Q_{1} \nsim Q_{4}$:
(1) $\left(Q_{1}, Q_{4}\right) \mathrm{A}: Q_{4} \xrightarrow{a} Q_{1}$
D: $Q_{1} \xrightarrow{a} Q_{3}$
${ }^{2}\left(Q_{3}, Q_{1}\right) \mathbf{A}: Q_{3} \xrightarrow{c} Q_{4}$
$\xrightarrow[\text { FoTSEQLMU }]{\text { D: }}{ }_{1}{ }^{c}$

Example

Consider processes:

- $Q_{1}=b \cdot Q_{2}+a . Q_{3}$
- $Q_{2}=c \cdot Q_{4}$
- $Q_{3}=c \cdot Q_{4}$
- $Q_{4}=b \cdot Q_{2}+a \cdot Q_{3}+a \cdot Q_{1}$

Example

Consider processes:

- $Q_{1}=b \cdot Q_{2}+a . Q_{3}$
- $Q_{2}=c \cdot Q_{4}$
- $Q_{3}=c \cdot Q_{4}$
- $Q_{4}=b \cdot Q_{2}+a \cdot Q_{3}+a \cdot Q_{1}$

If we instead rely on the mathematical solution of the recursive definition then we have that:

$$
\begin{aligned}
& \mathcal{F}^{0}(T)=\mathcal{F}^{0}(\text { Proc } \times \text { Proc })=\operatorname{Proc} \times \operatorname{Proc} \\
& \mathcal{F}^{1}(T)=\mathcal{F}(\operatorname{Proc} \times \operatorname{Proc})=\left\{\left(Q_{1}, Q_{4}\right),\left(Q_{4}, Q_{1}\right),\left(Q_{2}, Q_{3}\right),\left(Q_{3}, Q_{2}\right)\right\} \cup I d \\
& \mathcal{F}^{2}(T)=\left\{\left(Q_{2}, Q_{3}\right),\left(Q_{3}, Q_{2}\right)\right\} \cup I d \\
& \mathcal{F}^{3}(T)=\left\{\left(Q_{2}, Q_{3}\right),\left(Q_{3}, Q_{2}\right)\right\} \cup I d=\mathcal{F}^{2}(T) \\
& \quad \text { where } I d=\left\{\left(Q_{i}, Q_{i}\right) \in \operatorname{Proc} \times \operatorname{Proc} \mid 1 \leq i \leq 4\right\}
\end{aligned}
$$

