
Formal Techniques for Software Engineering:
Modal Logics

Rocco De Nicola

IMT Institute for Advanced Studies, Lucca
rocco.denicola@imtlucca.it

June 2013

Lesson 12

R. De Nicola (IMT-Lucca) FoTSE@LMU 1 / 56

Introduction to Model Checking Equivalence Checking vs. Model Checking

Verifying Correctness of Reactive Systems

Let Impl be an implementation of a system (e.g. in CCS syntax).

Equivalence Checking Approach

Impl ≡ Spec
≡ is an abstract equivalence, e.g. ∼ or ≈
Spec is often expressed in the same language as Impl

Spec provides the full specification of the intended behaviour

Model Checking Approach

Impl |= Property
|= is the satisfaction relation

Property is a particular feature, often expressed via a logic

Property is a partial specification of the intended behaviour

R. De Nicola (IMT-Lucca) FoTSE@LMU 2 / 56

Introduction to Model Checking Equivalence Checking vs. Model Checking

Verifying Correctness of Reactive Systems

Let Impl be an implementation of a system (e.g. in CCS syntax).

Equivalence Checking Approach

Impl ≡ Spec
≡ is an abstract equivalence, e.g. ∼ or ≈
Spec is often expressed in the same language as Impl

Spec provides the full specification of the intended behaviour

Model Checking Approach

Impl |= Property
|= is the satisfaction relation

Property is a particular feature, often expressed via a logic

Property is a partial specification of the intended behaviour

R. De Nicola (IMT-Lucca) FoTSE@LMU 2 / 56

Introduction to Model Checking Equivalence Checking vs. Model Checking

Model Checking of Reactive Systems

Our Aim

Develop a logic in which we can express interesting properties of reactive
systems.

R. De Nicola (IMT-Lucca) FoTSE@LMU 3 / 56

Introduction to Model Checking Modal and Temporal Properties

Logical Properties of Reactive Systems

Modal Properties – what can happen now (possibility, necessity)

drink a coffee (can drink a coffee now)

does not drink tea

drinks both tea and coffee

drinks tea after coffee

Temporal Properties – behaviour in time

never drinks any alcohol
(safety property: nothing bad can happen)

eventually will have a glass of wine
(liveness property: something good will happen)

Can these properties be expressed using equivalence checking?

R. De Nicola (IMT-Lucca) FoTSE@LMU 4 / 56

Introduction to Model Checking Modal and Temporal Properties

Logical Properties of Reactive Systems

Modal Properties – what can happen now (possibility, necessity)

drink a coffee (can drink a coffee now)

does not drink tea

drinks both tea and coffee

drinks tea after coffee

Temporal Properties – behaviour in time

never drinks any alcohol
(safety property: nothing bad can happen)

eventually will have a glass of wine
(liveness property: something good will happen)

Can these properties be expressed using equivalence checking?

R. De Nicola (IMT-Lucca) FoTSE@LMU 4 / 56

Introduction to Model Checking Modal and Temporal Properties

Logical Properties of Reactive Systems

Modal Properties – what can happen now (possibility, necessity)

drink a coffee (can drink a coffee now)

does not drink tea

drinks both tea and coffee

drinks tea after coffee

Temporal Properties – behaviour in time

never drinks any alcohol
(safety property: nothing bad can happen)

eventually will have a glass of wine
(liveness property: something good will happen)

Can these properties be expressed using equivalence checking?

R. De Nicola (IMT-Lucca) FoTSE@LMU 4 / 56

Hennessy-Milner Logic Syntax

Hennessy-Milner Logic – Syntax

Syntax of the Formulae (a ∈ Act)

F ,G ::= tt | ff | F ∧ G | F ∨ G | 〈a〉F | [a]F

tt all processes satisfy this property
ff no process satisfies this property

∧, ∨ usual logical AND and OR
〈a〉F (possibility) asserts (of a given P): It is possible for P to perform an

action a and evolve into a Q that satisfies F - there is at least one
a-successor that satisfies F

[a]F (necessity) asserts (of a given P): If P can perform an action a then
it must evolve into a Q that satisfies F - all a-successors have to
satisfy F

〈a〉tt expresses the capability of performing action a.

[a]ff expresses the inability to perform an action a.
R. De Nicola (IMT-Lucca) FoTSE@LMU 5 / 56

Hennessy-Milner Logic Syntax

Hennessy-Milner Logic – Syntax

Syntax of the Formulae (a ∈ Act)

F ,G ::= tt | ff | F ∧ G | F ∨ G | 〈a〉F | [a]F

tt all processes satisfy this property
ff no process satisfies this property

∧, ∨ usual logical AND and OR
〈a〉F (possibility) asserts (of a given P): It is possible for P to perform an

action a and evolve into a Q that satisfies F - there is at least one
a-successor that satisfies F

[a]F (necessity) asserts (of a given P): If P can perform an action a then
it must evolve into a Q that satisfies F - all a-successors have to
satisfy F

〈a〉tt expresses the capability of performing action a.

[a]ff expresses the inability to perform an action a.
R. De Nicola (IMT-Lucca) FoTSE@LMU 5 / 56

Hennessy-Milner Logic Syntax

Hennessy-Milner Logic – Syntax

Syntax of the Formulae (a ∈ Act)

F ,G ::= tt | ff | F ∧ G | F ∨ G | 〈a〉F | [a]F

tt all processes satisfy this property
ff no process satisfies this property

∧, ∨ usual logical AND and OR
〈a〉F (possibility) asserts (of a given P): It is possible for P to perform an

action a and evolve into a Q that satisfies F - there is at least one
a-successor that satisfies F

[a]F (necessity) asserts (of a given P): If P can perform an action a then
it must evolve into a Q that satisfies F - all a-successors have to
satisfy F

〈a〉tt expresses the capability of performing action a.

[a]ff expresses the inability to perform an action a.
R. De Nicola (IMT-Lucca) FoTSE@LMU 5 / 56

Hennessy-Milner Logic Syntax

Hennessy-Milner Logic – Syntax

Syntax of the Formulae (a ∈ Act)

F ,G ::= tt | ff | F ∧ G | F ∨ G | 〈a〉F | [a]F

tt all processes satisfy this property
ff no process satisfies this property

∧, ∨ usual logical AND and OR
〈a〉F (possibility) asserts (of a given P): It is possible for P to perform an

action a and evolve into a Q that satisfies F - there is at least one
a-successor that satisfies F

[a]F (necessity) asserts (of a given P): If P can perform an action a then
it must evolve into a Q that satisfies F - all a-successors have to
satisfy F

〈a〉tt expresses the capability of performing action a.

[a]ff expresses the inability to perform an action a.
R. De Nicola (IMT-Lucca) FoTSE@LMU 5 / 56

Hennessy-Milner Logic Syntax

Hennessy-Milner Logic – Syntax

Syntax of the Formulae (a ∈ Act)

F ,G ::= tt | ff | F ∧ G | F ∨ G | 〈a〉F | [a]F

tt all processes satisfy this property
ff no process satisfies this property

∧, ∨ usual logical AND and OR
〈a〉F (possibility) asserts (of a given P): It is possible for P to perform an

action a and evolve into a Q that satisfies F - there is at least one
a-successor that satisfies F

[a]F (necessity) asserts (of a given P): If P can perform an action a then
it must evolve into a Q that satisfies F - all a-successors have to
satisfy F

〈a〉tt expresses the capability of performing action a.

[a]ff expresses the inability to perform an action a.
R. De Nicola (IMT-Lucca) FoTSE@LMU 5 / 56

Hennessy-Milner Logic Semantics

Hennessy-Milner Logic – Semantics

Let (Proc,Act, { a−→| a ∈ Act}) be an LTS.

Validity of the logical triple p |= F (p ∈ Proc, F a HM formula)

p |= tt for each p ∈ Proc

p |= ff for no p (we also write p 6|= ff)

p |= F ∧ G iff p |= F and p |= G

p |= F ∨ G iff p |= F or p |= G

p |= 〈a〉F iff p
a−→ p′ for some p′ ∈ Proc such that p′ |= F

p |= [a]F iff p′ |= F , for all p′ ∈ Proc such that p
a−→ p′

We write:

p 6|= F if p does not satisfy F

〈{a1, a2, . . . an}〉F for 〈a1〉F ∨ 〈a2〉F · · · ∨ 〈an〉F
[{a1, a2, . . . an}]F for [a1]F ∧ [a2]F · · · ∧ [an]F

R. De Nicola (IMT-Lucca) FoTSE@LMU 6 / 56

Hennessy-Milner Logic Semantics

Hennessy-Milner Logic – Semantics

Let (Proc,Act, { a−→| a ∈ Act}) be an LTS.

Validity of the logical triple p |= F (p ∈ Proc, F a HM formula)

p |= tt for each p ∈ Proc

p |= ff for no p (we also write p 6|= ff)

p |= F ∧ G iff p |= F and p |= G

p |= F ∨ G iff p |= F or p |= G

p |= 〈a〉F iff p
a−→ p′ for some p′ ∈ Proc such that p′ |= F

p |= [a]F iff p′ |= F , for all p′ ∈ Proc such that p
a−→ p′

We write:

p 6|= F if p does not satisfy F

〈{a1, a2, . . . an}〉F for 〈a1〉F ∨ 〈a2〉F · · · ∨ 〈an〉F
[{a1, a2, . . . an}]F for [a1]F ∧ [a2]F · · · ∧ [an]F

R. De Nicola (IMT-Lucca) FoTSE@LMU 6 / 56

Hennessy-Milner Logic Semantics

Hennessy-Milner Logic – Semantics

Let (Proc,Act, { a−→| a ∈ Act}) be an LTS.

Validity of the logical triple p |= F (p ∈ Proc, F a HM formula)

p |= tt for each p ∈ Proc

p |= ff for no p (we also write p 6|= ff)

p |= F ∧ G iff p |= F and p |= G

p |= F ∨ G iff p |= F or p |= G

p |= 〈a〉F iff p
a−→ p′ for some p′ ∈ Proc such that p′ |= F

p |= [a]F iff p′ |= F , for all p′ ∈ Proc such that p
a−→ p′

We write:

p 6|= F if p does not satisfy F

〈{a1, a2, . . . an}〉F for 〈a1〉F ∨ 〈a2〉F · · · ∨ 〈an〉F
[{a1, a2, . . . an}]F for [a1]F ∧ [a2]F · · · ∧ [an]F

R. De Nicola (IMT-Lucca) FoTSE@LMU 6 / 56

Hennessy-Milner Logic Semantics

Hennessy-Milner Logic – Semantics

Let (Proc,Act, { a−→| a ∈ Act}) be an LTS.

Validity of the logical triple p |= F (p ∈ Proc, F a HM formula)

p |= tt for each p ∈ Proc

p |= ff for no p (we also write p 6|= ff)

p |= F ∧ G iff p |= F and p |= G

p |= F ∨ G iff p |= F or p |= G

p |= 〈a〉F iff p
a−→ p′ for some p′ ∈ Proc such that p′ |= F

p |= [a]F iff p′ |= F , for all p′ ∈ Proc such that p
a−→ p′

We write:

p 6|= F if p does not satisfy F

〈{a1, a2, . . . an}〉F for 〈a1〉F ∨ 〈a2〉F · · · ∨ 〈an〉F
[{a1, a2, . . . an}]F for [a1]F ∧ [a2]F · · · ∧ [an]F

R. De Nicola (IMT-Lucca) FoTSE@LMU 6 / 56

Hennessy-Milner Logic Semantics

Examples

E |= < tick > tt
E can do a tick

E |= < tick >< tock > tt
E can do a tick and then a tock

E |= < {tick , tock} > tt
E can do a tick or a tock

E |= [tick]ff
E cannot do a tick

E |= < tick > ff
This is equivalent to false!

E |= [tick]tt
This is equivalent to true!

R. De Nicola (IMT-Lucca) FoTSE@LMU 7 / 56

Hennessy-Milner Logic Semantics

Examples

E |= < tick > tt
E can do a tick

E |= < tick >< tock > tt
E can do a tick and then a tock

E |= < {tick , tock} > tt
E can do a tick or a tock

E |= [tick]ff
E cannot do a tick

E |= < tick > ff
This is equivalent to false!

E |= [tick]tt
This is equivalent to true!

R. De Nicola (IMT-Lucca) FoTSE@LMU 7 / 56

Hennessy-Milner Logic Semantics

Examples

E |= < tick > tt
E can do a tick

E |= < tick >< tock > tt
E can do a tick and then a tock

E |= < {tick , tock} > tt
E can do a tick or a tock

E |= [tick]ff
E cannot do a tick

E |= < tick > ff
This is equivalent to false!

E |= [tick]tt
This is equivalent to true!

R. De Nicola (IMT-Lucca) FoTSE@LMU 7 / 56

Hennessy-Milner Logic Semantics

Examples

E |= < tick > tt
E can do a tick

E |= < tick >< tock > tt
E can do a tick and then a tock

E |= < {tick , tock} > tt
E can do a tick or a tock

E |= [tick]ff
E cannot do a tick

E |= < tick > ff
This is equivalent to false!

E |= [tick]tt
This is equivalent to true!

R. De Nicola (IMT-Lucca) FoTSE@LMU 7 / 56

Hennessy-Milner Logic Semantics

Examples

E |= < tick > tt
E can do a tick

E |= < tick >< tock > tt
E can do a tick and then a tock

E |= < {tick , tock} > tt
E can do a tick or a tock

E |= [tick]ff
E cannot do a tick

E |= < tick > ff
This is equivalent to false!

E |= [tick]tt
This is equivalent to true!

R. De Nicola (IMT-Lucca) FoTSE@LMU 7 / 56

Hennessy-Milner Logic Semantics

Examples

E |= < tick > tt
E can do a tick

E |= < tick >< tock > tt
E can do a tick and then a tock

E |= < {tick , tock} > tt
E can do a tick or a tock

E |= [tick]ff
E cannot do a tick

E |= < tick > ff
This is equivalent to false!

E |= [tick]tt
This is equivalent to true!

R. De Nicola (IMT-Lucca) FoTSE@LMU 7 / 56

Hennessy-Milner Logic Semantics

Checking satisfaction

C 1 =def tick .C 1
Does C 1 have property: [tick](< tick > tt ∧ [tock]ff)?

C 1 |= [tick](< tick > tt ∧ [tock]ff)

iff ∀F ∈ {E : C 1
tick−→ E}. F |= < tick > tt ∧ [tock]ff

iff C 1 |= < tick > tt ∧ [tock]ff

iff C 1 |= < tick > tt and C1 |= [tock]ff

iff ∃F ∈ {E : C 1
tick−→ E} and C 1 |= [tock]ff

iff ∃F ∈ {C 1} and C 1 |= [tock]ff

iff C 1 |= [tock]ff

iff {E : C 1
tock−→ E} = ∅

R. De Nicola (IMT-Lucca) FoTSE@LMU 8 / 56

Hennessy-Milner Logic Semantics

Checking satisfaction

C 1 =def tick .C 1
Does C 1 have property: [tick](< tick > tt ∧ [tock]ff)?

C 1 |= [tick](< tick > tt ∧ [tock]ff)

iff ∀F ∈ {E : C 1
tick−→ E}. F |= < tick > tt ∧ [tock]ff

iff C 1 |= < tick > tt ∧ [tock]ff

iff C 1 |= < tick > tt and C1 |= [tock]ff

iff ∃F ∈ {E : C 1
tick−→ E} and C 1 |= [tock]ff

iff ∃F ∈ {C 1} and C 1 |= [tock]ff

iff C 1 |= [tock]ff

iff {E : C 1
tock−→ E} = ∅

R. De Nicola (IMT-Lucca) FoTSE@LMU 8 / 56

Hennessy-Milner Logic Semantics

Checking satisfaction

C 1 =def tick .C 1
Does C 1 have property: [tick](< tick > tt ∧ [tock]ff)?

C 1 |= [tick](< tick > tt ∧ [tock]ff)

iff ∀F ∈ {E : C 1
tick−→ E}. F |= < tick > tt ∧ [tock]ff

iff C 1 |= < tick > tt ∧ [tock]ff

iff C 1 |= < tick > tt and C1 |= [tock]ff

iff ∃F ∈ {E : C 1
tick−→ E} and C 1 |= [tock]ff

iff ∃F ∈ {C 1} and C 1 |= [tock]ff

iff C 1 |= [tock]ff

iff {E : C 1
tock−→ E} = ∅

R. De Nicola (IMT-Lucca) FoTSE@LMU 8 / 56

Hennessy-Milner Logic Semantics

Checking satisfaction

C 1 =def tick .C 1
Does C 1 have property: [tick](< tick > tt ∧ [tock]ff)?

C 1 |= [tick](< tick > tt ∧ [tock]ff)

iff ∀F ∈ {E : C 1
tick−→ E}. F |= < tick > tt ∧ [tock]ff

iff C 1 |= < tick > tt ∧ [tock]ff

iff C 1 |= < tick > tt and C1 |= [tock]ff

iff ∃F ∈ {E : C 1
tick−→ E} and C 1 |= [tock]ff

iff ∃F ∈ {C 1} and C 1 |= [tock]ff

iff C 1 |= [tock]ff

iff {E : C 1
tock−→ E} = ∅

R. De Nicola (IMT-Lucca) FoTSE@LMU 8 / 56

Hennessy-Milner Logic Semantics

Checking satisfaction

C 1 =def tick .C 1
Does C 1 have property: [tick](< tick > tt ∧ [tock]ff)?

C 1 |= [tick](< tick > tt ∧ [tock]ff)

iff ∀F ∈ {E : C 1
tick−→ E}. F |= < tick > tt ∧ [tock]ff

iff C 1 |= < tick > tt ∧ [tock]ff

iff C 1 |= < tick > tt and C1 |= [tock]ff

iff ∃F ∈ {E : C 1
tick−→ E} and C 1 |= [tock]ff

iff ∃F ∈ {C 1} and C 1 |= [tock]ff

iff C 1 |= [tock]ff

iff {E : C 1
tock−→ E} = ∅

R. De Nicola (IMT-Lucca) FoTSE@LMU 8 / 56

Hennessy-Milner Logic Semantics

Checking satisfaction

C 1 =def tick .C 1
Does C 1 have property: [tick](< tick > tt ∧ [tock]ff)?

C 1 |= [tick](< tick > tt ∧ [tock]ff)

iff ∀F ∈ {E : C 1
tick−→ E}. F |= < tick > tt ∧ [tock]ff

iff C 1 |= < tick > tt ∧ [tock]ff

iff C 1 |= < tick > tt and C1 |= [tock]ff

iff ∃F ∈ {E : C 1
tick−→ E} and C 1 |= [tock]ff

iff ∃F ∈ {C 1} and C 1 |= [tock]ff

iff C 1 |= [tock]ff

iff {E : C 1
tock−→ E} = ∅

R. De Nicola (IMT-Lucca) FoTSE@LMU 8 / 56

Hennessy-Milner Logic Semantics

Checking satisfaction

C 1 =def tick .C 1
Does C 1 have property: [tick](< tick > tt ∧ [tock]ff)?

C 1 |= [tick](< tick > tt ∧ [tock]ff)

iff ∀F ∈ {E : C 1
tick−→ E}. F |= < tick > tt ∧ [tock]ff

iff C 1 |= < tick > tt ∧ [tock]ff

iff C 1 |= < tick > tt and C1 |= [tock]ff

iff ∃F ∈ {E : C 1
tick−→ E} and C 1 |= [tock]ff

iff ∃F ∈ {C 1} and C 1 |= [tock]ff

iff C 1 |= [tock]ff

iff {E : C 1
tock−→ E} = ∅

R. De Nicola (IMT-Lucca) FoTSE@LMU 8 / 56

Hennessy-Milner Logic Semantics

Checking satisfaction

C 1 =def tick .C 1
Does C 1 have property: [tick](< tick > tt ∧ [tock]ff)?

C 1 |= [tick](< tick > tt ∧ [tock]ff)

iff ∀F ∈ {E : C 1
tick−→ E}. F |= < tick > tt ∧ [tock]ff

iff C 1 |= < tick > tt ∧ [tock]ff

iff C 1 |= < tick > tt and C1 |= [tock]ff

iff ∃F ∈ {E : C 1
tick−→ E} and C 1 |= [tock]ff

iff ∃F ∈ {C 1} and C 1 |= [tock]ff

iff C 1 |= [tock]ff

iff {E : C 1
tock−→ E} = ∅

R. De Nicola (IMT-Lucca) FoTSE@LMU 8 / 56

Hennessy-Milner Logic Properties of Hennessy-Milner Logic

What about Negation?

For every formula F we define the formula F c as follows:

ttc = ff

ff c = tt

(F ∧ G)c = F c ∨ G c

(F ∨ G)c = F c ∧ G c

(〈a〉F)c = [a]F c

([a]F)c = 〈a〉F c

Theorem (F c is equivalent to the negation of F)

For any p ∈ Proc and any HML formula F

1 p |= F =⇒ p 6|= F c

2 p 6|= F =⇒ p |= F c

R. De Nicola (IMT-Lucca) FoTSE@LMU 9 / 56

Hennessy-Milner Logic Properties of Hennessy-Milner Logic

What about Negation?

For every formula F we define the formula F c as follows:

ttc = ff

ff c = tt

(F ∧ G)c = F c ∨ G c

(F ∨ G)c = F c ∧ G c

(〈a〉F)c = [a]F c

([a]F)c = 〈a〉F c

Theorem (F c is equivalent to the negation of F)

For any p ∈ Proc and any HML formula F

1 p |= F =⇒ p 6|= F c

2 p 6|= F =⇒ p |= F c

R. De Nicola (IMT-Lucca) FoTSE@LMU 9 / 56

Hennessy-Milner Logic Properties of Hennessy-Milner Logic

Checking Validity of HML Formulae

1 Decompose the HML formula into all its subformulas

2 Starting with the smallest subformula, label all states of the LTS
where it holds

3 Repeat the previous step for the smallest remaining formula

4 If the state is labeled with the formula to be checked the formula is
valid that state, otherwise, it is invalid.

R. De Nicola (IMT-Lucca) FoTSE@LMU 10 / 56

Hennessy-Milner Logic Properties of Hennessy-Milner Logic

Checking Validity of HML Formulae

1 Decompose the HML formula into all its subformulas

2 Starting with the smallest subformula, label all states of the LTS
where it holds

3 Repeat the previous step for the smallest remaining formula

4 If the state is labeled with the formula to be checked the formula is
valid that state, otherwise, it is invalid.

R. De Nicola (IMT-Lucca) FoTSE@LMU 10 / 56

Hennessy-Milner Logic Properties of Hennessy-Milner Logic

Checking Validity of HML Formulae

1 Decompose the HML formula into all its subformulas

2 Starting with the smallest subformula, label all states of the LTS
where it holds

3 Repeat the previous step for the smallest remaining formula

4 If the state is labeled with the formula to be checked the formula is
valid that state, otherwise, it is invalid.

R. De Nicola (IMT-Lucca) FoTSE@LMU 10 / 56

Hennessy-Milner Logic Properties of Hennessy-Milner Logic

Checking Validity of HML Formulae

1 Decompose the HML formula into all its subformulas

2 Starting with the smallest subformula, label all states of the LTS
where it holds

3 Repeat the previous step for the smallest remaining formula

4 If the state is labeled with the formula to be checked the formula is
valid that state, otherwise, it is invalid.

R. De Nicola (IMT-Lucca) FoTSE@LMU 10 / 56

Hennessy-Milner Logic Properties of Hennessy-Milner Logic

Examples of Model Checking

Does the transition system corresponding to a.nil + a.b.nil satisfy the
formula < a >< b > tt

< b > tt

< a >< b > tt

Subformulae of < a >< b > tt :
tt < b > tt < a >< b > tt

R. De Nicola (IMT-Lucca) FoTSE@LMU 11 / 56

Hennessy-Milner Logic Properties of Hennessy-Milner Logic

Examples of Model Checking

Does the transition system corresponding to a.nil + a.b.nil satisfy the
formula < a >< b > tt

< b > tt

< a >< b > tt

Subformulae of < a >< b > tt :
tt < b > tt < a >< b > tt

R. De Nicola (IMT-Lucca) FoTSE@LMU 11 / 56

Hennessy-Milner Logic Properties of Hennessy-Milner Logic

Examples of Model Checking

Does the transition system corresponding to a.nil + a.b.nil satisfy the
formula < a >< b > tt

< b > tt

< a >< b > tt

Subformulae of < a >< b > tt :
tt < b > tt < a >< b > tt

R. De Nicola (IMT-Lucca) FoTSE@LMU 11 / 56

Hennessy-Milner Logic Properties of Hennessy-Milner Logic

Examples of Model Checking

Does the transition system corresponding to a.nil + a.b.nil satisfy formula
< a > [b]ff

[b]ff

[b]ff

[b]ff

< a > [b]ff

Subformulae of < a > [b]ff :
ff [b]ff < a > [b]ff

R. De Nicola (IMT-Lucca) FoTSE@LMU 12 / 56

Hennessy-Milner Logic Properties of Hennessy-Milner Logic

Examples of Model Checking

Does the transition system corresponding to a.nil + a.b.nil satisfy formula
< a > [b]ff

[b]ff

[b]ff

[b]ff

< a > [b]ff

Subformulae of < a > [b]ff :
ff [b]ff < a > [b]ff

R. De Nicola (IMT-Lucca) FoTSE@LMU 12 / 56

Hennessy-Milner Logic Properties of Hennessy-Milner Logic

Examples of Model Checking

Does the transition system corresponding to a.nil + a.b.nil satisfy formula
< a > [b]ff

[b]ff

[b]ff

[b]ff

< a > [b]ff

Subformulae of < a > [b]ff :
ff [b]ff < a > [b]ff

R. De Nicola (IMT-Lucca) FoTSE@LMU 12 / 56

Hennessy-Milner Logic Properties of Hennessy-Milner Logic

Examples of Model Checking

Does the transition system corresponding to a.nil + a.b.nil satisfy formula
[a] < b > tt

< b > tt[a] < b > tt

[a] < b > tt

[a] < b > tt

R. De Nicola (IMT-Lucca) FoTSE@LMU 13 / 56

Hennessy-Milner Logic Properties of Hennessy-Milner Logic

Examples of Model Checking

Does the transition system corresponding to a.nil + a.b.nil satisfy formula
[a] < b > tt

< b > tt[a] < b > tt

[a] < b > tt

[a] < b > tt

R. De Nicola (IMT-Lucca) FoTSE@LMU 13 / 56

Hennessy-Milner Logic Properties of Hennessy-Milner Logic

Examples of Model Checking

Does the transition system corresponding to a.nil + a.b.nil satisfy formula
[a] < b > tt

< b > tt[a] < b > tt

[a] < b > tt

[a] < b > tt

R. De Nicola (IMT-Lucca) FoTSE@LMU 13 / 56

Hennessy-Milner Logic Properties of Hennessy-Milner Logic

Examples of Model Checking

Does the transition system corresponding to a.nil + a.b.nil satisfy formula
[a][b]ff

[b]ff

[b]ff

[b]ff

[a][b]ff

[a][b]ff

[a][b]ff

R. De Nicola (IMT-Lucca) FoTSE@LMU 14 / 56

Hennessy-Milner Logic Properties of Hennessy-Milner Logic

Examples of Model Checking

Does the transition system corresponding to a.nil + a.b.nil satisfy formula
[a][b]ff

[b]ff

[b]ff

[b]ff

[a][b]ff

[a][b]ff

[a][b]ff

R. De Nicola (IMT-Lucca) FoTSE@LMU 14 / 56

Hennessy-Milner Logic Properties of Hennessy-Milner Logic

Examples of Model Checking

Does the transition system corresponding to a.nil + a.b.nil satisfy formula
[a][b]ff

[b]ff

[b]ff

[b]ff

[a][b]ff

[a][b]ff

[a][b]ff

R. De Nicola (IMT-Lucca) FoTSE@LMU 14 / 56

Hennessy-Milner Logic Properties of Hennessy-Milner Logic

HML and Bisimulation

Examples

a.(b.nil + c .nil) |= 〈a〉(〈b〉tt ∧ 〈c〉tt)

a.b.nil + a.c .nil 6|= 〈a〉(〈b〉tt ∧ 〈c〉tt)

a.b.nil |= [a]〈b〉tt
a.b.nil + a.nil 6|= [a]〈b〉tt

a.b.(c.nil + d .nil) |= [a]〈b〉〈c〉tt
a.b.c .nil + a.b.d .nil 6|= [a]〈b〉〈c〉tt

a.(b.c.nil + b.d .nil) |= [a](〈b〉〈c〉tt ∧ 〈b〉〈d〉tt)

a.b.c .nil + a.b.d .nil 6|= [a](〈b〉〈c〉tt ∧ 〈b〉〈d〉tt)

R. De Nicola (IMT-Lucca) FoTSE@LMU 15 / 56

Hennessy-Milner Logic Properties of Hennessy-Milner Logic

HML and Bisimulation

Examples

a.(b.nil + c .nil) |= 〈a〉(〈b〉tt ∧ 〈c〉tt)

a.b.nil + a.c .nil 6|= 〈a〉(〈b〉tt ∧ 〈c〉tt)

a.b.nil |= [a]〈b〉tt
a.b.nil + a.nil 6|= [a]〈b〉tt

a.b.(c.nil + d .nil) |= [a]〈b〉〈c〉tt
a.b.c .nil + a.b.d .nil 6|= [a]〈b〉〈c〉tt

a.(b.c.nil + b.d .nil) |= [a](〈b〉〈c〉tt ∧ 〈b〉〈d〉tt)

a.b.c .nil + a.b.d .nil 6|= [a](〈b〉〈c〉tt ∧ 〈b〉〈d〉tt)

R. De Nicola (IMT-Lucca) FoTSE@LMU 15 / 56

Hennessy-Milner Logic Properties of Hennessy-Milner Logic

HML and Bisimulation

Examples

a.(b.nil + c .nil) |= 〈a〉(〈b〉tt ∧ 〈c〉tt)

a.b.nil + a.c .nil 6|= 〈a〉(〈b〉tt ∧ 〈c〉tt)

a.b.nil |= [a]〈b〉tt
a.b.nil + a.nil 6|= [a]〈b〉tt

a.b.(c.nil + d .nil) |= [a]〈b〉〈c〉tt
a.b.c .nil + a.b.d .nil 6|= [a]〈b〉〈c〉tt

a.(b.c.nil + b.d .nil) |= [a](〈b〉〈c〉tt ∧ 〈b〉〈d〉tt)

a.b.c .nil + a.b.d .nil 6|= [a](〈b〉〈c〉tt ∧ 〈b〉〈d〉tt)

R. De Nicola (IMT-Lucca) FoTSE@LMU 15 / 56

Hennessy-Milner Logic Properties of Hennessy-Milner Logic

HML and Bisimulation

Examples

a.(b.nil + c .nil) |= 〈a〉(〈b〉tt ∧ 〈c〉tt)

a.b.nil + a.c .nil 6|= 〈a〉(〈b〉tt ∧ 〈c〉tt)

a.b.nil |= [a]〈b〉tt
a.b.nil + a.nil 6|= [a]〈b〉tt

a.b.(c.nil + d .nil) |= [a]〈b〉〈c〉tt
a.b.c .nil + a.b.d .nil 6|= [a]〈b〉〈c〉tt

a.(b.c.nil + b.d .nil) |= [a](〈b〉〈c〉tt ∧ 〈b〉〈d〉tt)

a.b.c .nil + a.b.d .nil 6|= [a](〈b〉〈c〉tt ∧ 〈b〉〈d〉tt)

R. De Nicola (IMT-Lucca) FoTSE@LMU 15 / 56

Hennessy-Milner Logic Properties of Hennessy-Milner Logic

HML and Bisimulation

Theorem

P ∼ Q if and only if P |= F ⇔ Q |= F for every HML formula F .

Proof

(=⇒) Proceeds by induction on F . The interesting case is [a]F .
(⇐=) We show that the set S of all pair of processes that satisfy the same
HML formulae is a bisimulation. Suppose S is not a bisimulation. Then,
there exists a pair < P,Q >∈ S such that Q cannot match a move
P

a−→ P ′. There are two cases.
Case 1: Q does not have a transition Q

a−→ Q ′, but then clearly P and Q
do not satisfy the same formulae.
Case 2: for every evolution of Q

a−→ Q ′, Q ′ and P ′ do not satisfy the
same formulae. Then, it is possible to construct a formula (of the form
〈a〉F with F = F1 ∧ . . . ∧ Fn) that P satisfies but Q does not.

R. De Nicola (IMT-Lucca) FoTSE@LMU 16 / 56

Hennessy-Milner Logic Properties of Hennessy-Milner Logic

HML and Bisimulation: a Remark

Remark

The (=⇒) implication of the theorem holds for arbitrary processes.
The (⇐=) implication of the theorem holds for image-finite processes
only, but not in general. This is because the construction of the formula
〈a〉F with F = F1 ∧ . . . ∧ Fn in the (⇐=)-part of the theorem is possible
only when Q is image-finite.

Definition

A process P is image-finite if for any action a the set

{P ′ | P
a−→ P ′ }

is finite.

R. De Nicola (IMT-Lucca) FoTSE@LMU 17 / 56

Recursion Weaknesses of Hennessy-Milner Logic

Is Hennessy-Milner Logic Powerful Enough?

Idea: a formula F can “see” only upto its depth - md(F)

Modal depth (nesting degree) for Hennessy-Milner formulae:

md(tt) = md(ff) = 0

md(F ∧ G) = md(F ∨ G) = max{md(F),md(G)}
md([a]F) = md(〈a〉F) = md(F) + 1

Theorem

Let F be a HML formula and k = md(F). If the defender has a defending
strategy in the strong bisimulation game between s and t up to k rounds
then s |= F if and only if t |= F .

Conclusion

There is no HML formula F that can detect a deadlock in an arbitrary
LTS: deadlock might happen after a trace of length greater than md(F).

R. De Nicola (IMT-Lucca) FoTSE@LMU 18 / 56

Recursion Weaknesses of Hennessy-Milner Logic

Is Hennessy-Milner Logic Powerful Enough?

Idea: a formula F can “see” only upto its depth - md(F)

Modal depth (nesting degree) for Hennessy-Milner formulae:

md(tt) = md(ff) = 0

md(F ∧ G) = md(F ∨ G) = max{md(F),md(G)}
md([a]F) = md(〈a〉F) = md(F) + 1

Theorem

Let F be a HML formula and k = md(F). If the defender has a defending
strategy in the strong bisimulation game between s and t up to k rounds
then s |= F if and only if t |= F .

Conclusion

There is no HML formula F that can detect a deadlock in an arbitrary
LTS: deadlock might happen after a trace of length greater than md(F).

R. De Nicola (IMT-Lucca) FoTSE@LMU 18 / 56

Recursion Weaknesses of Hennessy-Milner Logic

Is Hennessy-Milner Logic Powerful Enough?

Idea: a formula F can “see” only upto its depth - md(F)

Modal depth (nesting degree) for Hennessy-Milner formulae:

md(tt) = md(ff) = 0

md(F ∧ G) = md(F ∨ G) = max{md(F),md(G)}
md([a]F) = md(〈a〉F) = md(F) + 1

Theorem

Let F be a HML formula and k = md(F). If the defender has a defending
strategy in the strong bisimulation game between s and t up to k rounds
then s |= F if and only if t |= F .

Conclusion

There is no HML formula F that can detect a deadlock in an arbitrary
LTS: deadlock might happen after a trace of length greater than md(F).

R. De Nicola (IMT-Lucca) FoTSE@LMU 18 / 56

Recursion Temporal Properties – Invariance and Possibility

Temporal Properties not Expressible in HM Logic

Two basic temporal properties

Can properties Inev(F) and Poss(F) where

s |= Inev(F) iff all states reachable from s satisfy F

s |= Poss(F) iff there exists a reachable state which satisfies F

be expressed as HML formulae?

Idea: Use infinite conjunction and disjunction

Let Act = {a1, a2, . . . , an} be a finite set of actions. We define

〈Act〉F def
= 〈a1〉F ∨ 〈a2〉F ∨ . . . ∨ 〈an〉F

[Act]F
def
= [a1]F ∧ [a2]F ∧ . . . ∧ [an]F

then we can define:

Inev(F) ≡ F ∧ [Act]F ∧ [Act][Act]F ∧ [Act][Act][Act]F ∧ . . .

Poss(F) ≡ F ∨ 〈Act〉F ∨ 〈Act〉〈Act〉F ∨ 〈Act〉〈Act〉〈Act〉F ∨ . . .
R. De Nicola (IMT-Lucca) FoTSE@LMU 19 / 56

Recursion Temporal Properties – Invariance and Possibility

Temporal Properties not Expressible in HM Logic

Two basic temporal properties

Can properties Inev(F) and Poss(F) where

s |= Inev(F) iff all states reachable from s satisfy F

s |= Poss(F) iff there exists a reachable state which satisfies F

be expressed as HML formulae?

Idea: Use infinite conjunction and disjunction

Let Act = {a1, a2, . . . , an} be a finite set of actions. We define

〈Act〉F def
= 〈a1〉F ∨ 〈a2〉F ∨ . . . ∨ 〈an〉F

[Act]F
def
= [a1]F ∧ [a2]F ∧ . . . ∧ [an]F

then we can define:

Inev(F) ≡ F ∧ [Act]F ∧ [Act][Act]F ∧ [Act][Act][Act]F ∧ . . .

Poss(F) ≡ F ∨ 〈Act〉F ∨ 〈Act〉〈Act〉F ∨ 〈Act〉〈Act〉〈Act〉F ∨ . . .
R. De Nicola (IMT-Lucca) FoTSE@LMU 19 / 56

Recursion Solving Equations

Infinite Conjunctions and Disjunctions vs. Recursion

Problems

Infinite formulae are not allowed in HML

Infinite formulae are difficult to handle

Solution: Use recursion!

Inev(F) can be expressed by X
def
= F ∧ [Act]X

Poss(F) can expressed by X
def
= F ∨ 〈Act〉X

However, to do that, we need to provide appropriate syntax and semantics.

R. De Nicola (IMT-Lucca) FoTSE@LMU 20 / 56

Recursion Solving Equations

Infinite Conjunctions and Disjunctions vs. Recursion

Problems

Infinite formulae are not allowed in HML

Infinite formulae are difficult to handle

Solution: Use recursion!

Inev(F) can be expressed by X
def
= F ∧ [Act]X

Poss(F) can expressed by X
def
= F ∨ 〈Act〉X

However, to do that, we need to provide appropriate syntax and semantics.

R. De Nicola (IMT-Lucca) FoTSE@LMU 20 / 56

Recursion Solving Equations

Infinite Conjunctions and Disjunctions vs. Recursion

Problems

Infinite formulae are not allowed in HML

Infinite formulae are difficult to handle

Solution: Use recursion!

Inev(F) can be expressed by X
def
= F ∧ [Act]X

Poss(F) can expressed by X
def
= F ∨ 〈Act〉X

However, to do that, we need to provide appropriate syntax and semantics.

R. De Nicola (IMT-Lucca) FoTSE@LMU 20 / 56

Recursion Solving Equations

Infinite Conjunctions and Disjunctions vs. Recursion

Syntax of Formulae

F ::= X | tt | ff | F1 ∧ F2 | F1 ∨ F2 | 〈a〉F | [a]F

where

a ∈ Act

X is a variable definition:
X

min
= FX or X

max
= FX

and FX is a formula of the logic that can contain X .

Question:

How to define the semantics of X
min
= FX and X

max
= FX ?

Answer:

Use Fixed Points to assign a meaning to recursive definitions!

R. De Nicola (IMT-Lucca) FoTSE@LMU 21 / 56

Recursion Solving Equations

Infinite Conjunctions and Disjunctions vs. Recursion

Syntax of Formulae

F ::= X | tt | ff | F1 ∧ F2 | F1 ∨ F2 | 〈a〉F | [a]F

where

a ∈ Act

X is a variable definition:
X

min
= FX or X

max
= FX

and FX is a formula of the logic that can contain X .

Question:

How to define the semantics of X
min
= FX and X

max
= FX ?

Answer:

Use Fixed Points to assign a meaning to recursive definitions!

R. De Nicola (IMT-Lucca) FoTSE@LMU 21 / 56

Recursion Solving Equations

Infinite Conjunctions and Disjunctions vs. Recursion

Syntax of Formulae

F ::= X | tt | ff | F1 ∧ F2 | F1 ∨ F2 | 〈a〉F | [a]F

where

a ∈ Act

X is a variable definition:
X

min
= FX or X

max
= FX

and FX is a formula of the logic that can contain X .

Question:

How to define the semantics of X
min
= FX and X

max
= FX ?

Answer:

Use Fixed Points to assign a meaning to recursive definitions!

R. De Nicola (IMT-Lucca) FoTSE@LMU 21 / 56

Recursion Solving Equations

Solving Recursive Equations is Tricky

Equations over Natural Numbers (n ∈ N)

n = 2 ∗ n one solution n = 0
n = n + 1 no solution
n = 1 ∗ n many solutions (every n ∈ Nat is a solution)

Equations over Sets of Integers (M ∈ 2N)

M = {7} ∩M two solutions M = {7} and M = ∅
M = Nr M no solution
M = {3} ∪M many solutions (every M ⊇ {3} is a solution)

What about Equations over Processes?

To solve X
def
= [a]ff ∨ 〈a〉X we need to find a set of processes S ⊆ 2Proc

such that S = [·a·]∅ ∪ 〈·a·〉S

R. De Nicola (IMT-Lucca) FoTSE@LMU 22 / 56

Recursion Solving Equations

Solving Recursive Equations is Tricky

Equations over Natural Numbers (n ∈ N)

n = 2 ∗ n one solution n = 0
n = n + 1 no solution
n = 1 ∗ n many solutions (every n ∈ Nat is a solution)

Equations over Sets of Integers (M ∈ 2N)

M = {7} ∩M two solutions M = {7} and M = ∅
M = Nr M no solution
M = {3} ∪M many solutions (every M ⊇ {3} is a solution)

What about Equations over Processes?

To solve X
def
= [a]ff ∨ 〈a〉X we need to find a set of processes S ⊆ 2Proc

such that S = [·a·]∅ ∪ 〈·a·〉S

R. De Nicola (IMT-Lucca) FoTSE@LMU 22 / 56

Recursion Solving Equations

Solving Recursive Equations is Tricky

Equations over Natural Numbers (n ∈ N)

n = 2 ∗ n one solution n = 0
n = n + 1 no solution
n = 1 ∗ n many solutions (every n ∈ Nat is a solution)

Equations over Sets of Integers (M ∈ 2N)

M = {7} ∩M two solutions M = {7} and M = ∅
M = Nr M no solution
M = {3} ∪M many solutions (every M ⊇ {3} is a solution)

What about Equations over Processes?

To solve X
def
= [a]ff ∨ 〈a〉X we need to find a set of processes S ⊆ 2Proc

such that S = [·a·]∅ ∪ 〈·a·〉S

R. De Nicola (IMT-Lucca) FoTSE@LMU 22 / 56

Recursion Denotational Semantics

Denotational Semantics for HML - without recursion

Idea: [[F]] is the set of all states that satisfy F

[[tt]] = Proc

[[ff]] = ∅
[[F ∨ G]] = [[F]] ∪ [[G]]

[[F ∧ G]] = [[F]] ∩ [[G]]

[[〈a〉F]] = 〈·a·〉[[F]]

[[[a]F]] = [·a·][[F]]

where 〈·a·〉, [·a·] : 2(Proc) → 2(Proc) are defined by:

〈·a·〉S = {p ∈ Proc | ∃p′. p
a−→ p′ and p′ ∈ S}

[·a·]S = {p ∈ Proc | ∀p′. p
a−→ p′ =⇒ p′ ∈ S}.

R. De Nicola (IMT-Lucca) FoTSE@LMU 23 / 56

Recursion Denotational Semantics

Denotational Semantics for HML - without recursion

Idea: [[F]] is the set of all states that satisfy F

[[tt]] = Proc

[[ff]] = ∅
[[F ∨ G]] = [[F]] ∪ [[G]]

[[F ∧ G]] = [[F]] ∩ [[G]]

[[〈a〉F]] = 〈·a·〉[[F]]

[[[a]F]] = [·a·][[F]]

where 〈·a·〉, [·a·] : 2(Proc) → 2(Proc) are defined by:

〈·a·〉S = {p ∈ Proc | ∃p′. p
a−→ p′ and p′ ∈ S}

[·a·]S = {p ∈ Proc | ∀p′. p
a−→ p′ =⇒ p′ ∈ S}.

R. De Nicola (IMT-Lucca) FoTSE@LMU 23 / 56

Recursion Denotational Semantics

Examples for 〈·a·〉 and [·a·]

〈·a·〉{1, 4} = {0, 3}

[·a·]{1, 4} = {1, 2, 3, 4}

R. De Nicola (IMT-Lucca) FoTSE@LMU 24 / 56

Recursion Denotational Semantics

Examples for 〈·a·〉 and [·a·]

〈·a·〉{1, 4} = {0, 3}

[·a·]{1, 4} = {1, 2, 3, 4}

R. De Nicola (IMT-Lucca) FoTSE@LMU 24 / 56

Recursion Denotational Semantics

Examples for 〈·a·〉 and [·a·]

〈·a·〉{1, 4} = {0, 3}

[·a·]{1, 4} = {1, 2, 3, 4}

R. De Nicola (IMT-Lucca) FoTSE@LMU 24 / 56

Recursion Denotational Semantics

Examples for 〈·a·〉 and [·a·]

〈·a·〉{1, 4} = {0, 3}

[·a·]{1, 4} = {1, 2, 3, 4}

R. De Nicola (IMT-Lucca) FoTSE@LMU 24 / 56

Recursion Denotational Semantics

Examples for 〈·a·〉 and [·a·]

〈·a·〉{1, 4} = {0, 3}

[·a·]{1, 4} = {1, 2, 3, 4}

R. De Nicola (IMT-Lucca) FoTSE@LMU 24 / 56

Recursion Denotational Semantics

The Correspondence Theorem

Theorem

Let (Proc,Act, { a−→| a ∈ Act}) be an LTS, p ∈ Proc and F a formula of
Hennessy-Milner logic. Then

p |= F if and only if p ∈ [[F]].

Proof: by structural induction on the structure of the formula F .

R. De Nicola (IMT-Lucca) FoTSE@LMU 25 / 56

Recursion Denotational Semantics

The Correspondence Theorem

Theorem

Let (Proc,Act, { a−→| a ∈ Act}) be an LTS, p ∈ Proc and F a formula of
Hennessy-Milner logic. Then

p |= F if and only if p ∈ [[F]].

Proof: by structural induction on the structure of the formula F .

R. De Nicola (IMT-Lucca) FoTSE@LMU 25 / 56

Correspondence between HML Logic and Strong Bisimilarity Image-Finite Labelled Transition Systems

Image-Finite Labelled Transition System

Image-Finite System

Let (Proc,Act, { a−→| a ∈ Act}) be an LTS. We call it image-finite iff for
every p ∈ Proc and every a ∈ Act the set

{p′ ∈ Proc | p
a−→ p′}

is finite.

R. De Nicola (IMT-Lucca) FoTSE@LMU 26 / 56

Correspondence between HML Logic and Strong Bisimilarity Hennessy-Milner Theorem

Relationship between HML and Strong Bisimilarity

Theorem (Hennessy-Milner)

Let (Proc,Act, { a−→| a ∈ Act}) be an image-finite LTS and p, q ∈ St.
Then

p ∼ q

if and only if

for every HML formula F : (p |= F ⇐⇒ q |= F).

R. De Nicola (IMT-Lucca) FoTSE@LMU 27 / 56

Correspondence between HML Logic and Strong Bisimilarity Hennessy-Milner Theorem

Denotational Semantics for HML with recursion

Syntax of HML

F ::= X | tt | ff | F1 ∧ F2 | F1 ∨ F2 | 〈a〉F | [a]F

where a ∈ Act and X is a distinguished variable with a definition

X
min
= FX , or X

max
= FX

such that FX is a formula of the logic that can contain X .

How to Define Semantics?

To deal with recursive variables, assumptions on the states satisfied by
them are made, and for every formula F a function OF : 2Proc → 2Proc is
defined such that:

if S is the set of processes that satisfy X then OF (S) is the set of
processes that satisfy F .

R. De Nicola (IMT-Lucca) FoTSE@LMU 28 / 56

Correspondence between HML Logic and Strong Bisimilarity Hennessy-Milner Theorem

Definition of OF : 2Proc → 2Proc with S ⊆ 2Proc

Semantics of HML Formulae with Variables

OX (S) = S

Ott(S) = Proc

Off (S) = ∅
OF1∧F2(S) = OF1(S) ∩ OF2(S)

OF1∨F2(S) = OF1(S) ∪ OF2(S)

O〈a〉F (S) = 〈·a·〉OF (S)

O[a]F (S) = [·a·]OF (S)

We can now deal with X
def
= F ∧ [Act]X and X

def
= F ∨ 〈Act〉X by

considering the recursive equations over set of processes:

OX (S) = OF∧[Act]X (S)

OX (S) = OF∨〈Act〉X (S).
R. De Nicola (IMT-Lucca) FoTSE@LMU 29 / 56

Correspondence between HML Logic and Strong Bisimilarity Hennessy-Milner Theorem

Definition of OF : 2Proc → 2Proc with S ⊆ 2Proc

Semantics of HML Formulae with Variables

OX (S) = S

Ott(S) = Proc

Off (S) = ∅
OF1∧F2(S) = OF1(S) ∩ OF2(S)

OF1∨F2(S) = OF1(S) ∪ OF2(S)

O〈a〉F (S) = 〈·a·〉OF (S)

O[a]F (S) = [·a·]OF (S)

We can now deal with X
def
= F ∧ [Act]X and X

def
= F ∨ 〈Act〉X by

considering the recursive equations over set of processes:

OX (S) = OF∧[Act]X (S)

OX (S) = OF∨〈Act〉X (S).
R. De Nicola (IMT-Lucca) FoTSE@LMU 29 / 56

Correspondence between HML Logic and Strong Bisimilarity Hennessy-Milner Theorem

Definition of OF : 2Proc → 2Proc with S ⊆ 2Proc

Semantics of HML Formulae with Variables

OX (S) = S

Ott(S) = Proc

Off (S) = ∅
OF1∧F2(S) = OF1(S) ∩ OF2(S)

OF1∨F2(S) = OF1(S) ∪ OF2(S)

O〈a〉F (S) = 〈·a·〉OF (S)

O[a]F (S) = [·a·]OF (S)

We can now deal with X
def
= F ∧ [Act]X and X

def
= F ∨ 〈Act〉X by

considering the recursive equations over set of processes:

OX (S) = OF∧[Act]X (S)

OX (S) = OF∨〈Act〉X (S).
R. De Nicola (IMT-Lucca) FoTSE@LMU 29 / 56

Correspondence between HML Logic and Strong Bisimilarity Hennessy-Milner Theorem

Alternative semantics for HML

To do that we need to find the appropriate mathematical tools for finding
the (unique?) solutions for such recursive equations and look for fixed
points.

The intuition behind the formal semantics of HML formulae is that each
formula determines a set of states for which the formula is valid. We have
however to consider that:

This kind of equations do not necessarily determine a set of states
uniquely; e.g., for formula X with X = X there is no such unique
set of states; any set of states is a solution of the equation.

Thus it is needed to indicate which solution is meant, e.g., whether one
wants the least or the greatest solution and care needs to be taken that
these solutions do exists.

R. De Nicola (IMT-Lucca) FoTSE@LMU 30 / 56

Lattice Theory Partially Ordered Sets

General Approach – Lattice Theory

Problem

For a set D and a function f : D → D, for which elements x ∈ D we have

x = f (x) ?

Such x ’s are called fixed points.

Partially Ordered Set

Partially ordered set (or simply a partial order) is a pair (D,v) s.t.

D is a set

v ⊆ D × D is a binary relation on D which is

reflexive: ∀d ∈ D. d v d
antisymmetric: ∀d , e ∈ D. d v e ∧ e v d ⇒ d = e
transitive: ∀d , e, f ∈ D. d v e ∧ e v f ⇒ d v f

R. De Nicola (IMT-Lucca) FoTSE@LMU 31 / 56

Lattice Theory Partially Ordered Sets

General Approach – Lattice Theory

Problem

For a set D and a function f : D → D, for which elements x ∈ D we have

x = f (x) ?

Such x ’s are called fixed points.

Partially Ordered Set

Partially ordered set (or simply a partial order) is a pair (D,v) s.t.

D is a set

v ⊆ D × D is a binary relation on D which is

reflexive: ∀d ∈ D. d v d
antisymmetric: ∀d , e ∈ D. d v e ∧ e v d ⇒ d = e
transitive: ∀d , e, f ∈ D. d v e ∧ e v f ⇒ d v f

R. De Nicola (IMT-Lucca) FoTSE@LMU 31 / 56

Lattice Theory Supremum and Infimum

Supremum and Infimum

Upper/Lower Bounds (Let X ⊆ D)

d ∈ D is an upper bound for X (written X v d)
iff x v d for all x ∈ X

d ∈ D is a lower bound for X (written d v X)
iff d v x for all x ∈ X

Least Upper Bound and Greatest Lower Bound (Let X ⊆ D)

d ∈ D is the least upper bound (supremum) for X (tX) iff
1 X v d
2 ∀d ′ ∈ D. X v d ′ ⇒ d v d ′

d ∈ D is the greatest lower bound (infimum) for X (uX) iff
1 d v X
2 ∀d ′ ∈ D. d ′ v X ⇒ d ′ v d

R. De Nicola (IMT-Lucca) FoTSE@LMU 32 / 56

Lattice Theory Supremum and Infimum

Supremum and Infimum

Upper/Lower Bounds (Let X ⊆ D)

d ∈ D is an upper bound for X (written X v d)
iff x v d for all x ∈ X

d ∈ D is a lower bound for X (written d v X)
iff d v x for all x ∈ X

Least Upper Bound and Greatest Lower Bound (Let X ⊆ D)

d ∈ D is the least upper bound (supremum) for X (tX) iff
1 X v d
2 ∀d ′ ∈ D. X v d ′ ⇒ d v d ′

d ∈ D is the greatest lower bound (infimum) for X (uX) iff
1 d v X
2 ∀d ′ ∈ D. d ′ v X ⇒ d ′ v d

R. De Nicola (IMT-Lucca) FoTSE@LMU 32 / 56

Lattice Theory Complete Lattices and Monotonic Functions

Complete Lattices and Monotonic Functions

Complete Lattice

A partially ordered set (D,v) is called complete lattice iff tX and uX
exist for any X ⊆ D.

We define the top and bottom by > def
= tD and ⊥ def

= uD.

Monotonic Function and Fixed Points

A function f : D → D is called monotonic iff

d v e ⇒ f (d) v f (e)

for all d , e ∈ D.

Element d ∈ D is called fixed point iff d = f (d).

R. De Nicola (IMT-Lucca) FoTSE@LMU 33 / 56

Lattice Theory Complete Lattices and Monotonic Functions

Complete Lattices and Monotonic Functions

Complete Lattice

A partially ordered set (D,v) is called complete lattice iff tX and uX
exist for any X ⊆ D.

We define the top and bottom by > def
= tD and ⊥ def

= uD.

Monotonic Function and Fixed Points

A function f : D → D is called monotonic iff

d v e ⇒ f (d) v f (e)

for all d , e ∈ D.

Element d ∈ D is called fixed point iff d = f (d).

R. De Nicola (IMT-Lucca) FoTSE@LMU 33 / 56

Tarski’s Fixed Point Theorem For General Complete Lattices

Tarski’s Fixed Point Theorem

Theorem (Tarski)

Let (D,v) be a complete lattice and let f : D → D be a monotonic
function.

Then f has a unique largest fixed point zmax and a unique least fixed point
zmin given by:

zmax
def
= t{x ∈ D | x v f (x)}

zmin
def
= u{x ∈ D | f (x) v x}

R. De Nicola (IMT-Lucca) FoTSE@LMU 34 / 56

Tarski’s Fixed Point Theorem For Finite Lattices

Computing Min and Max Fixed Points on Finite Lattices

Let (D,v) be a complete lattice and f : D → D monotonic.

Let f 1(x)
def
= f (x) and f n(x)

def
= f (f n−1(x)) for n > 1, i.e.,

f n(x) = f (f (. . . f︸ ︷︷ ︸
n times

(x) . . .)).

Theorem

If D is a finite set then there exist integers M,m > 0 such that

zmax = f M(>)

zmin = f m(⊥)

Idea (for zmin and zmax)

The following sequences stabilize for any finite D

⊥ v f (⊥) v f (f (⊥)) v f (f (f (⊥))) v · · ·
D w f (D) w f (f (D)) w f (f (f (D))) w · · ·

R. De Nicola (IMT-Lucca) FoTSE@LMU 35 / 56

Tarski’s Fixed Point Theorem For Finite Lattices

Computing Min and Max Fixed Points on Finite Lattices

Let (D,v) be a complete lattice and f : D → D monotonic.

Let f 1(x)
def
= f (x) and f n(x)

def
= f (f n−1(x)) for n > 1, i.e.,

f n(x) = f (f (. . . f︸ ︷︷ ︸
n times

(x) . . .)).

Theorem

If D is a finite set then there exist integers M,m > 0 such that

zmax = f M(>)

zmin = f m(⊥)

Idea (for zmin and zmax)

The following sequences stabilize for any finite D

⊥ v f (⊥) v f (f (⊥)) v f (f (f (⊥))) v · · ·
D w f (D) w f (f (D)) w f (f (f (D))) w · · ·

R. De Nicola (IMT-Lucca) FoTSE@LMU 35 / 56

Tarski’s Fixed Point Theorem Solving Equations over the Set of Processes

Monotonic Functions over Sets of Processes

Fixed Points of Functions Sets of Processes

A function f : 2Proc → 2Proc is called monotonic iff

X ⊆ Y ⇒ f (X) ⊆ f (Y)

for all X ,Y ∈ 2Proc .

A set X ∈ 2Proc is called a fixed point of f iff X = f (X).

Questions

Is the function f (X) = X ∪ {s, t} monotonic? What about
g(X) = Proc \ X ? Do these functions have fixed points?

R. De Nicola (IMT-Lucca) FoTSE@LMU 36 / 56

Tarski’s Fixed Point Theorem Solving Equations over the Set of Processes

Tarski’s Fixed Point Theorem for Processes

Theorem (Tarski)

Let f : 2Proc → 2Proc be a monotonic function.
Then f has a unique largest fixed point zmax and a unique least fixed point
zmin given by:

zmax
def
=

⋃
{X ∈ 2Proc | X ⊆ f (X)}

zmin
def
=

⋂
{X ∈ 2Proc | f (X) ⊆ X}

R. De Nicola (IMT-Lucca) FoTSE@LMU 37 / 56

Tarski’s Fixed Point Theorem Solving Equations over the Set of Processes

Computing Fixed Points on Finite Sets of Processes

Let f : 2Proc → 2Proc be monotonic.
Let f 1(X)

def
= f (X) and f n(X)

def
= f (f n−1(X)) for n > 1, i.e.,

f n(X) = f (f (. . . f︸ ︷︷ ︸
n times

(X) . . .)).

Theorem

If 2Proc is a finite set then there exist integers M,m > 0 such that

zmax = f M(Proc)

zmin = f m(∅)

The following sequences stabilize for any finite set Proc of processes

∅ ⊆ f (∅) ⊆ f (f (∅)) ⊆ f (f (f (∅))) ⊆ · · ·
Proc ⊇ f (Proc) ⊇ f (f (Proc)) ⊇ f (f (f (Proc))) ⊇ · · ·

R. De Nicola (IMT-Lucca) FoTSE@LMU 38 / 56

Tarski’s Fixed Point Theorem Solving Equations over the Set of Processes

Computing Fixed Points on Finite Sets of Processes

Let f : 2Proc → 2Proc be monotonic.
Let f 1(X)

def
= f (X) and f n(X)

def
= f (f n−1(X)) for n > 1, i.e.,

f n(X) = f (f (. . . f︸ ︷︷ ︸
n times

(X) . . .)).

Theorem

If 2Proc is a finite set then there exist integers M,m > 0 such that

zmax = f M(Proc)

zmin = f m(∅)

The following sequences stabilize for any finite set Proc of processes

∅ ⊆ f (∅) ⊆ f (f (∅)) ⊆ f (f (f (∅))) ⊆ · · ·
Proc ⊇ f (Proc) ⊇ f (f (Proc)) ⊇ f (f (f (Proc))) ⊇ · · ·

R. De Nicola (IMT-Lucca) FoTSE@LMU 38 / 56

Tarski’s Fixed Point Theorem Summary of Tarski’s Fixed Point Theorem

Tarski’s Fixed Point Theorem – Summary

Let (D,v) be a complete lattice and let f : D → D be a monotonic
function.

Tarski’s Fixed Point Theorem

Then f has a unique largest fixed point zmax and a unique least fixed point
zmin given by:

zmax
def
= t{x ∈ D | x v f (x)}

zmin
def
= u{x ∈ D | f (x) v x}

Computing Fixed Points in Finite Lattices

If D is a finite set then there exist integers M,m > 0 such that

zmax = f M(>)

zmin = f m(⊥)

R. De Nicola (IMT-Lucca) FoTSE@LMU 39 / 56

Hennessy-Milner Logic with One Recursive Definition Syntax

HML with One Recursively Defined Variable

Syntax of Formulae

Formulae are given by the following abstract syntax

F ::= X | tt | ff | F1 ∧ F2 | F1 ∨ F2 | 〈a〉F | [a]F

where a ∈ Act and X is a distinguished variable with a definition

X
min
= FX , or X

max
= FX

such that FX is a formula of the logic (can contain X).

How to Define Semantics?

In order to deal with recursion variable X, we make assumption on the
states satisfied by X and for every formula F we define a function
OF : 2Proc → 2Proc such that:

if S is the set of processes that satisfy X then OF (S) is the set of
processes that satisfy F .

R. De Nicola (IMT-Lucca) FoTSE@LMU 40 / 56

Hennessy-Milner Logic with One Recursive Definition Syntax

HML with One Recursively Defined Variable

Syntax of Formulae

Formulae are given by the following abstract syntax

F ::= X | tt | ff | F1 ∧ F2 | F1 ∨ F2 | 〈a〉F | [a]F

where a ∈ Act and X is a distinguished variable with a definition

X
min
= FX , or X

max
= FX

such that FX is a formula of the logic (can contain X).

How to Define Semantics?

In order to deal with recursion variable X, we make assumption on the
states satisfied by X and for every formula F we define a function
OF : 2Proc → 2Proc such that:

if S is the set of processes that satisfy X then OF (S) is the set of
processes that satisfy F .

R. De Nicola (IMT-Lucca) FoTSE@LMU 40 / 56

Hennessy-Milner Logic with One Recursive Definition Semantics

Definition of OF : 2Proc → 2Proc (let S ⊆ 2Proc)

OX (S) = S

Ott(S) = Proc

Off (S) = ∅
OF1∧F2(S) = OF1(S) ∩ OF2(S)

OF1∨F2(S) = OF1(S) ∪ OF2(S)

O〈a〉F (S) = 〈·a·〉OF (S)

O[a]F (S) = [·a·]OF (S)

OF is monotonic for every formula F

S1 ⊆ S2 ⇒ OF (S1) ⊆ OF (S2)

Proof: easy (structural induction on the structure of F).

R. De Nicola (IMT-Lucca) FoTSE@LMU 41 / 56

Hennessy-Milner Logic with One Recursive Definition Semantics

Definition of OF : 2Proc → 2Proc (let S ⊆ 2Proc)

OX (S) = S

Ott(S) = Proc

Off (S) = ∅
OF1∧F2(S) = OF1(S) ∩ OF2(S)

OF1∨F2(S) = OF1(S) ∪ OF2(S)

O〈a〉F (S) = 〈·a·〉OF (S)

O[a]F (S) = [·a·]OF (S)

OF is monotonic for every formula F

S1 ⊆ S2 ⇒ OF (S1) ⊆ OF (S2)

Proof: easy (structural induction on the structure of F).

R. De Nicola (IMT-Lucca) FoTSE@LMU 41 / 56

Hennessy-Milner Logic with One Recursive Definition Semantics

Semantics

Observation

We know OF is monotonic, so OF has a unique greatest and least fixed
point.

Semantics of the Variable X

If X
max
= FX then

[[X]] =
⋃
{S ⊆ Proc | S ⊆ OFX

(S)}.

If X
min
= FX then

[[X]] =
⋂
{S ⊆ Proc | OFX

(S) ⊆ S}.

R. De Nicola (IMT-Lucca) FoTSE@LMU 42 / 56

Example for HML with recursion

Example 1

A state can be reached where a cannot be executed

X
def
= [a]false ∨ 〈Act〉X

HML + restricted recursion Blocks of equations Regular modal µ-calculus Typical properties

Example: A state can be reached where a cannot be executed:

X ?
= [a]false ∨ �Act�X

01 2

a

a
a

a

The property is valid for the labeled transition system

Solutions of this equation are the sets: {0,2} and {0,1,2}
We intended to describe the least solution!

X min
= [a]false ∨ �Act�X

Mousavi: Software Specification - Correctness Properties

The property is valid for the labeled transition system
Solutions of this equation are the sets: {0, 2} and {0, 1, 2}
We intended to describe the least solution!

X
min
= [a]false ∨ 〈Act〉X

R. De Nicola (IMT-Lucca) FoTSE@LMU 43 / 56

Example for HML with recursion

Example 1

A state can be reached where a cannot be executed

X
def
= [a]false ∨ 〈Act〉X

HML + restricted recursion Blocks of equations Regular modal µ-calculus Typical properties

Example: A state can be reached where a cannot be executed:

X ?
= [a]false ∨ �Act�X

01 2

a

a
a

a

The property is valid for the labeled transition system

Solutions of this equation are the sets: {0,2} and {0,1,2}
We intended to describe the least solution!

X min
= [a]false ∨ �Act�X

Mousavi: Software Specification - Correctness Properties

The property is valid for the labeled transition system
Solutions of this equation are the sets: {0, 2} and {0, 1, 2}
We intended to describe the least solution!

X
min
= [a]false ∨ 〈Act〉X

R. De Nicola (IMT-Lucca) FoTSE@LMU 43 / 56

Example for HML with recursion

Example 1

A state can be reached where a cannot be executed

X
def
= [a]false ∨ 〈Act〉X

HML + restricted recursion Blocks of equations Regular modal µ-calculus Typical properties

Example: A state can be reached where a cannot be executed:

X ?
= [a]false ∨ �Act�X

01 2

a

a
a

a

The property is valid for the labeled transition system

Solutions of this equation are the sets: {0,2} and {0,1,2}
We intended to describe the least solution!

X min
= [a]false ∨ �Act�X

Mousavi: Software Specification - Correctness Properties

The property is valid for the labeled transition system
Solutions of this equation are the sets: {0, 2} and {0, 1, 2}
We intended to describe the least solution!

X
min
= [a]false ∨ 〈Act〉X

R. De Nicola (IMT-Lucca) FoTSE@LMU 43 / 56

Example for HML with recursion

Example 2

A state can be reached where a cannot be executed

X
min
= [a]false ∨ 〈Act〉X

HML + restricted recursion Blocks of equations Regular modal µ-calculus Typical properties

Example: A state can be reached where a cannot be executed:

X min
= [a]false ∨ �Act�X

01

a

a

a

The unique least solution for this equation is the set of states ∅

Hence the property is not valid for the labeled transition system

Mousavi: Software Specification - Correctness Properties

The unique least solution for this equation is the empty set of states (∅)
Hence the property is not valid for the labeled transition system

R. De Nicola (IMT-Lucca) FoTSE@LMU 44 / 56

Example for HML with recursion

Example 2

A state can be reached where a cannot be executed

X
min
= [a]false ∨ 〈Act〉X

HML + restricted recursion Blocks of equations Regular modal µ-calculus Typical properties

Example: A state can be reached where a cannot be executed:

X min
= [a]false ∨ �Act�X

01

a

a

a

The unique least solution for this equation is the set of states ∅

Hence the property is not valid for the labeled transition system

Mousavi: Software Specification - Correctness Properties

The unique least solution for this equation is the empty set of states (∅)
Hence the property is not valid for the labeled transition system

R. De Nicola (IMT-Lucca) FoTSE@LMU 44 / 56

Example for HML with recursion

Example 3

In every reachable state an a-transition is possible

X
def
= [a]false ∨ 〈Act〉X

HML + restricted recursion Blocks of equations Regular modal µ-calculus Typical properties

Example: A state can be reached where a cannot be executed:

X min
= [a]false ∨ �Act�X

01

a

a

a

The unique least solution for this equation is the set of states ∅

Hence the property is not valid for the labeled transition system

Mousavi: Software Specification - Correctness Properties

Solutions of this equation are the sets: ∅, {1} and {0, 1}

We intended to describe the greatest solution!

X
max
= [a]false ∨ 〈Act〉X

R. De Nicola (IMT-Lucca) FoTSE@LMU 45 / 56

Example for HML with recursion

Example 3

In every reachable state an a-transition is possible

X
def
= [a]false ∨ 〈Act〉X

HML + restricted recursion Blocks of equations Regular modal µ-calculus Typical properties

Example: A state can be reached where a cannot be executed:

X min
= [a]false ∨ �Act�X

01

a

a

a

The unique least solution for this equation is the set of states ∅

Hence the property is not valid for the labeled transition system

Mousavi: Software Specification - Correctness Properties

Solutions of this equation are the sets: ∅, {1} and {0, 1}

We intended to describe the greatest solution!

X
max
= [a]false ∨ 〈Act〉X

R. De Nicola (IMT-Lucca) FoTSE@LMU 45 / 56

Example for HML with recursion

Example 4

In every reachable state an a-transition is possible

X
max
= 〈a〉true ∧ [Act]X

HML + restricted recursion Blocks of equations Regular modal µ-calculus Typical properties

Example: A state can be reached where a cannot be executed:

X ?
= [a]false ∨ �Act�X

01 2

a

a
a

a

The property is valid for the labeled transition system

Solutions of this equation are the sets: {0,2} and {0,1,2}
We intended to describe the least solution!

X min
= [a]false ∨ �Act�X

Mousavi: Software Specification - Correctness Properties

The greatest solution for this equation is the set of states: {1}

Thus property is not valid for the labeled transition system.

R. De Nicola (IMT-Lucca) FoTSE@LMU 46 / 56

Example for HML with recursion

Example 4

In every reachable state an a-transition is possible

X
max
= 〈a〉true ∧ [Act]X

HML + restricted recursion Blocks of equations Regular modal µ-calculus Typical properties

Example: A state can be reached where a cannot be executed:

X ?
= [a]false ∨ �Act�X

01 2

a

a
a

a

The property is valid for the labeled transition system

Solutions of this equation are the sets: {0,2} and {0,1,2}
We intended to describe the least solution!

X min
= [a]false ∨ �Act�X

Mousavi: Software Specification - Correctness Properties

The greatest solution for this equation is the set of states: {1}

Thus property is not valid for the labeled transition system.

R. De Nicola (IMT-Lucca) FoTSE@LMU 46 / 56

Example for HML with recursion

Example 5

There is a path of (a and b) transitions to a b-transition

X
min
= 〈b〉true ∨ 〈{a, b}〉X

HML + restricted recursion Blocks of equations Regular modal µ-calculus Typical properties

Example

X min
= �b�true ∨ �{a,b}�X

there is a path (of a and b) transitions to a b-transition

0

1

2

3 4

a

a

a
b

a
a

The least solution: {0,1,2,4}; the property is valid.

Mousavi: Software Specification - Correctness Properties

The solution for this equation is the set of states: {0, 1, 2, 4}

Thus property is valid for the labeled transition system.

R. De Nicola (IMT-Lucca) FoTSE@LMU 47 / 56

Example for HML with recursion

Example 5

There is a path of (a and b) transitions to a b-transition

X
min
= 〈b〉true ∨ 〈{a, b}〉X

HML + restricted recursion Blocks of equations Regular modal µ-calculus Typical properties

Example

X min
= �b�true ∨ �{a,b}�X

there is a path (of a and b) transitions to a b-transition

0

1

2

3 4

a

a

a
b

a
a

The least solution: {0,1,2,4}; the property is valid.

Mousavi: Software Specification - Correctness Properties

The solution for this equation is the set of states: {0, 1, 2, 4}

Thus property is valid for the labeled transition system.

R. De Nicola (IMT-Lucca) FoTSE@LMU 47 / 56

Example for HML with recursion

Example 6

All states reachable by b-transitions (0 or more) have a b-transition

X
max
= 〈b〉true ∧ [b]X

HML + restricted recursion Blocks of equations Regular modal µ-calculus Typical properties

Example

X max
= �b�true ∧ [b]X

in all states reachable by b-transitions (0 or more), a
b-transition is possible

s

s1 s2 t1

t

a a

b

b

a

b

The greatest solution: {s1, s2, t1}.
Mousavi: Software Specification - Correctness Properties

The greatest solution for this equation is the set of states: {s1, s2, t1}

R. De Nicola (IMT-Lucca) FoTSE@LMU 48 / 56

Example for HML with recursion

Calculating Minimum Fixed PointsHML + restricted recursion Blocks of equations Regular modal µ-calculus Typical properties

Example: X min
= [a]false ∨ �Act�X

01 2

a

a a

a

OFX (S) = O[a]false(S) ∪O�Act�X (S)
= [·a·]Ofalse(S) ∪ �·Act ·�OX (S)
= [·a·]∅ ∪ �·Act ·�S
= {2} ∪ �·Act ·�S

1. OFX (∅) = {2} ∪ �·Act ·�∅ = {2} ∪ ∅ = {2}
2. OFX ({2}) = {2} ∪ �·Act ·�{2} = {2} ∪ {0} = {0,2}
3. OFX ({0,2}) = {2} ∪ �·Act ·�{0,2} = {2} ∪ {0} = {0,2}

Mousavi: Software Specification - Correctness Properties

R. De Nicola (IMT-Lucca) FoTSE@LMU 49 / 56

Example for HML with recursion

Calculating Maximum Fixed PointsHML + restricted recursion Blocks of equations Regular modal µ-calculus Typical properties

Example: X max
= �b�true ∧ [b]X

s

s1 s2 t1

t

a a
b

b

a

b

OFX (S) = O�b�true(S) ∩O[b]X (S)
= �·b·�Otrue(S) ∩ [·b·]OX (S)
= �·b·�Proc ∩ [·b·]S
= {s1, s2, t1} ∩ [·b·]S

1. OFX (Proc) = {s1, s2, t1} ∩ [·b·]Proc =
{s1, s2, t1} ∩ {s, s1, s2, t , t1} = {s1, s2, t1}

2. OFX ({s1, s2, t1}) = {s1, s2, t1} ∩ [·b·]{s1, s2, t1} =
{s1, s2, t1} ∩ {s, s1, s2, t , t1} = {s1, s2, t1}

Mousavi: Software Specification - Correctness Properties

R. De Nicola (IMT-Lucca) FoTSE@LMU 50 / 56

Selection of Temporal Properties Inv, Pos, Safe, Even and Until

Selection of Temporal Properties

Inv(F): X
max
= F ∧ [Act]X

Pos(F): X
min
= F ∨ 〈Act〉X

Safe(F): X
max
= F ∧ ([Act]ff ∨ 〈Act〉X)

Even(F): X
min
= F ∨ (〈Act〉tt ∧ [Act]X)

F Uw G : X
max
= G ∨ (F ∧ [Act]X)

F U s G : X
min
= G ∨ (F ∧ 〈Act〉tt ∧ [Act]X)

Using until we can express e.g. Inv(F) and Even(F):

Inv(F) ≡ F Uw ff Even(F) ≡ tt U s F

R. De Nicola (IMT-Lucca) FoTSE@LMU 51 / 56

Selection of Temporal Properties Inv, Pos, Safe, Even and Until

Selection of Temporal Properties

Inv(F): X
max
= F ∧ [Act]X

Pos(F): X
min
= F ∨ 〈Act〉X

Safe(F): X
max
= F ∧ ([Act]ff ∨ 〈Act〉X)

Even(F): X
min
= F ∨ (〈Act〉tt ∧ [Act]X)

F Uw G : X
max
= G ∨ (F ∧ [Act]X)

F U s G : X
min
= G ∨ (F ∧ 〈Act〉tt ∧ [Act]X)

Using until we can express e.g. Inv(F) and Even(F):

Inv(F) ≡ F Uw ff Even(F) ≡ tt U s F

R. De Nicola (IMT-Lucca) FoTSE@LMU 51 / 56

Selection of Temporal Properties Inv, Pos, Safe, Even and Until

Selection of Temporal Properties

Inv(F): X
max
= F ∧ [Act]X

Pos(F): X
min
= F ∨ 〈Act〉X

Safe(F): X
max
= F ∧ ([Act]ff ∨ 〈Act〉X)

Even(F): X
min
= F ∨ (〈Act〉tt ∧ [Act]X)

F Uw G : X
max
= G ∨ (F ∧ [Act]X)

F U s G : X
min
= G ∨ (F ∧ 〈Act〉tt ∧ [Act]X)

Using until we can express e.g. Inv(F) and Even(F):

Inv(F) ≡ F Uw ff Even(F) ≡ tt U s F

R. De Nicola (IMT-Lucca) FoTSE@LMU 51 / 56

Selection of Temporal Properties Inv, Pos, Safe, Even and Until

Selection of Temporal Properties

Inv(F): X
max
= F ∧ [Act]X

Pos(F): X
min
= F ∨ 〈Act〉X

Safe(F): X
max
= F ∧ ([Act]ff ∨ 〈Act〉X)

Even(F): X
min
= F ∨ (〈Act〉tt ∧ [Act]X)

F Uw G : X
max
= G ∨ (F ∧ [Act]X)

F U s G : X
min
= G ∨ (F ∧ 〈Act〉tt ∧ [Act]X)

Using until we can express e.g. Inv(F) and Even(F):

Inv(F) ≡ F Uw ff Even(F) ≡ tt U s F

R. De Nicola (IMT-Lucca) FoTSE@LMU 51 / 56

Selection of Temporal Properties Nested and Mutually Recursive Formulae

Examples of More Advanced Recursive Formulae

Nested Definitions of Recursive Variables

X
min
= Y ∨ 〈Act〉X Y

max
= 〈a〉tt ∧ 〈Act〉Y

Solution: compute first [[Y]] and then [[X]].

Mutually Recursive Definitions

X
max
= [a]Y Y

max
= 〈a〉X

Solution: consider a complete lattice (2Proc × 2Proc ,v) where
(S1, S2) v (S ′1,S ′2) iff S1 ⊆ S ′1 and S2 ⊆ S ′2.

Theorem (Characteristic Property for Finite-State Processes)

Let s be a process with finitely many reachable states. There exists a
property Xs s.t. for all processes t: s ∼ t if and only if t ∈ [[Xs]].

R. De Nicola (IMT-Lucca) FoTSE@LMU 52 / 56

Selection of Temporal Properties Nested and Mutually Recursive Formulae

Examples of More Advanced Recursive Formulae

Nested Definitions of Recursive Variables

X
min
= Y ∨ 〈Act〉X Y

max
= 〈a〉tt ∧ 〈Act〉Y

Solution: compute first [[Y]] and then [[X]].

Mutually Recursive Definitions

X
max
= [a]Y Y

max
= 〈a〉X

Solution: consider a complete lattice (2Proc × 2Proc ,v) where
(S1, S2) v (S ′1,S ′2) iff S1 ⊆ S ′1 and S2 ⊆ S ′2.

Theorem (Characteristic Property for Finite-State Processes)

Let s be a process with finitely many reachable states. There exists a
property Xs s.t. for all processes t: s ∼ t if and only if t ∈ [[Xs]].

R. De Nicola (IMT-Lucca) FoTSE@LMU 52 / 56

Selection of Temporal Properties Nested and Mutually Recursive Formulae

Examples of More Advanced Recursive Formulae

Nested Definitions of Recursive Variables

X
min
= Y ∨ 〈Act〉X Y

max
= 〈a〉tt ∧ 〈Act〉Y

Solution: compute first [[Y]] and then [[X]].

Mutually Recursive Definitions

X
max
= [a]Y Y

max
= 〈a〉X

Solution: consider a complete lattice (2Proc × 2Proc ,v) where
(S1, S2) v (S ′1,S ′2) iff S1 ⊆ S ′1 and S2 ⊆ S ′2.

Theorem (Characteristic Property for Finite-State Processes)

Let s be a process with finitely many reachable states. There exists a
property Xs s.t. for all processes t: s ∼ t if and only if t ∈ [[Xs]].

R. De Nicola (IMT-Lucca) FoTSE@LMU 52 / 56

Selection of Temporal Properties Recalling the Definition of Strong Bisimulation

Definition of Strong Bisimulation

Let (Proc,Act, { a−→| a ∈ Act}) be an LTS.

Strong Bisimulation

A binary relation R ⊆ Proc × Proc is a strong bisimulation iff whenever
(s, t) ∈ R then for each a ∈ Act:

if s
a−→ s ′ then t

a−→ t ′ for some t ′ such that (s ′, t ′) ∈ R

if t
a−→ t ′ then s

a−→ s ′ for some s ′ such that (s ′, t ′) ∈ R.

Two processes p, q ∈ Proc are strongly bisimilar (p ∼ q) iff there exists a
strong bisimulation R such that (p, q) ∈ R.

∼ =
⋃
{R | R is a strong bisimulation}

R. De Nicola (IMT-Lucca) FoTSE@LMU 53 / 56

Selection of Temporal Properties Fixed Point Definition of Strong Bisimilarity

Strong Bisimulation as a Greatest Fixed Point

Function F : 2(Proc×Proc) → 2(Proc×Proc)

Let S ⊆ Proc × Proc. Then we define F(S) as follows:

(s, t) ∈ F(S) if and only if for each a ∈ Act:

if s
a−→ s ′ then t

a−→ t ′ for some t ′ such that (s ′, t ′) ∈ S

if t
a−→ t ′ then s

a−→ s ′ for some s ′ such that (s ′, t ′) ∈ S .

Observations

(2(Proc×Proc),⊆) is a complete lattice and F is monotonic

S is a strong bisimulation if and only if S ⊆ F(S)

Strong Bisimilarity is the Greatest Fixed Point of F

∼=
⋃
{S ∈ 2(Proc×Proc) | S ⊆ F(S)}

R. De Nicola (IMT-Lucca) FoTSE@LMU 54 / 56

Selection of Temporal Properties Fixed Point Definition of Strong Bisimilarity

Strong Bisimulation as a Greatest Fixed Point

Function F : 2(Proc×Proc) → 2(Proc×Proc)

Let S ⊆ Proc × Proc. Then we define F(S) as follows:

(s, t) ∈ F(S) if and only if for each a ∈ Act:

if s
a−→ s ′ then t

a−→ t ′ for some t ′ such that (s ′, t ′) ∈ S

if t
a−→ t ′ then s

a−→ s ′ for some s ′ such that (s ′, t ′) ∈ S .

Observations

(2(Proc×Proc),⊆) is a complete lattice and F is monotonic

S is a strong bisimulation if and only if S ⊆ F(S)

Strong Bisimilarity is the Greatest Fixed Point of F

∼=
⋃
{S ∈ 2(Proc×Proc) | S ⊆ F(S)}

R. De Nicola (IMT-Lucca) FoTSE@LMU 54 / 56

Selection of Temporal Properties Fixed Point Definition of Strong Bisimilarity

Strong Bisimulation as a Greatest Fixed Point

Function F : 2(Proc×Proc) → 2(Proc×Proc)

Let S ⊆ Proc × Proc. Then we define F(S) as follows:

(s, t) ∈ F(S) if and only if for each a ∈ Act:

if s
a−→ s ′ then t

a−→ t ′ for some t ′ such that (s ′, t ′) ∈ S

if t
a−→ t ′ then s

a−→ s ′ for some s ′ such that (s ′, t ′) ∈ S .

Observations

(2(Proc×Proc),⊆) is a complete lattice and F is monotonic

S is a strong bisimulation if and only if S ⊆ F(S)

Strong Bisimilarity is the Greatest Fixed Point of F

∼=
⋃
{S ∈ 2(Proc×Proc) | S ⊆ F(S)}

R. De Nicola (IMT-Lucca) FoTSE@LMU 54 / 56

Selection of Temporal Properties Fixed Point Definition of Strong Bisimilarity

Example

Consider processes:

Q1 = b.Q2 + a.Q3

Q2 = c .Q4

Q3 = c .Q4

Q4 = b.Q2 + a.Q3 + a.Q1

With the non recursive definition, in order to construct ∼ we had to
consider that Qi ∼ Qi , with 1 ≤ i ≤ 4, then we had to check whether
Qi ∼ Qj , for all possible i 6= j , using the bisimulation game (and noticing
that Qi ∼ Qj ⇐⇒ Qj ∼ Qi).

For instance, to show that Q1 6∼ Q4:

1 (Q1,Q4) A: Q4
a−→ Q1 D: Q1

a−→ Q3

2 (Q3,Q1) A: Q3
c−→ Q4 D: Q1 6

c−→
R. De Nicola (IMT-Lucca) FoTSE@LMU 55 / 56

Selection of Temporal Properties Fixed Point Definition of Strong Bisimilarity

Example

Consider processes:

Q1 = b.Q2 + a.Q3

Q2 = c .Q4

Q3 = c .Q4

Q4 = b.Q2 + a.Q3 + a.Q1

With the non recursive definition, in order to construct ∼ we had to
consider that Qi ∼ Qi , with 1 ≤ i ≤ 4, then we had to check whether
Qi ∼ Qj , for all possible i 6= j , using the bisimulation game (and noticing
that Qi ∼ Qj ⇐⇒ Qj ∼ Qi).

For instance, to show that Q1 6∼ Q4:

1 (Q1,Q4) A: Q4
a−→ Q1 D: Q1

a−→ Q3

2 (Q3,Q1) A: Q3
c−→ Q4 D: Q1 6

c−→
R. De Nicola (IMT-Lucca) FoTSE@LMU 55 / 56

Selection of Temporal Properties Fixed Point Definition of Strong Bisimilarity

Example

Consider processes:

Q1 = b.Q2 + a.Q3

Q2 = c .Q4

Q3 = c .Q4

Q4 = b.Q2 + a.Q3 + a.Q1

With the non recursive definition, in order to construct ∼ we had to
consider that Qi ∼ Qi , with 1 ≤ i ≤ 4, then we had to check whether
Qi ∼ Qj , for all possible i 6= j , using the bisimulation game (and noticing
that Qi ∼ Qj ⇐⇒ Qj ∼ Qi).

For instance, to show that Q1 6∼ Q4:

1 (Q1,Q4) A: Q4
a−→ Q1 D: Q1

a−→ Q3

2 (Q3,Q1) A: Q3
c−→ Q4 D: Q1 6

c−→
R. De Nicola (IMT-Lucca) FoTSE@LMU 55 / 56

Selection of Temporal Properties Fixed Point Definition of Strong Bisimilarity

Example

Consider processes:

Q1 = b.Q2 + a.Q3

Q2 = c .Q4

Q3 = c .Q4

Q4 = b.Q2 + a.Q3 + a.Q1

If we instead rely on the mathematical solution of the recursive definition
then we have that:
F0(>) = F0(Proc × Proc) = Proc × Proc
F1(>) = F(Proc × Proc) = {(Q1,Q4), (Q4,Q1), (Q2,Q3), (Q3,Q2)} ∪ Id
F2(>) = {(Q2,Q3), (Q3,Q2)} ∪ Id
F3(>) = {(Q2,Q3), (Q3,Q2)} ∪ Id = F2(>)

where Id = {(Qi ,Qi) ∈ Proc × Proc | 1 ≤ i ≤ 4}

R. De Nicola (IMT-Lucca) FoTSE@LMU 56 / 56

Selection of Temporal Properties Fixed Point Definition of Strong Bisimilarity

Example

Consider processes:

Q1 = b.Q2 + a.Q3

Q2 = c .Q4

Q3 = c .Q4

Q4 = b.Q2 + a.Q3 + a.Q1

If we instead rely on the mathematical solution of the recursive definition
then we have that:
F0(>) = F0(Proc × Proc) = Proc × Proc
F1(>) = F(Proc × Proc) = {(Q1,Q4), (Q4,Q1), (Q2,Q3), (Q3,Q2)} ∪ Id
F2(>) = {(Q2,Q3), (Q3,Q2)} ∪ Id
F3(>) = {(Q2,Q3), (Q3,Q2)} ∪ Id = F2(>)

where Id = {(Qi ,Qi) ∈ Proc × Proc | 1 ≤ i ≤ 4}

R. De Nicola (IMT-Lucca) FoTSE@LMU 56 / 56

	Introduction to Model Checking
	Equivalence Checking vs. Model Checking
	Modal and Temporal Properties

	Hennessy-Milner Logic
	Syntax
	Semantics
	Properties of Hennessy-Milner Logic

	Recursion
	Weaknesses of Hennessy-Milner Logic
	Temporal Properties – Invariance and Possibility
	Solving Equations
	Denotational Semantics

	Correspondence between HML Logic and Strong Bisimilarity
	Image-Finite Labelled Transition Systems
	Hennessy-Milner Theorem

	Lattice Theory
	Partially Ordered Sets
	Supremum and Infimum
	Complete Lattices and Monotonic Functions

	Tarski's Fixed Point Theorem
	For General Complete Lattices
	For Finite Lattices
	Solving Equations over the Set of Processes
	Summary of Tarski's Fixed Point Theorem

	Hennessy-Milner Logic with One Recursive Definition
	Syntax
	Semantics

	Example for HML with recursion
	Selection of Temporal Properties
	Inv, Pos, Safe, Even and Until
	Nested and Mutually Recursive Formulae
	Recalling the Definition of Strong Bisimulation
	Fixed Point Definition of Strong Bisimilarity

