
Formal Techniques for Software Engineering:
Regular Expressions

Rocco De Nicola

IMT Institute for Advanced Studies, Lucca
rocco.denicola@imtlucca.it

April 2013

Lesson 2

R. De Nicola (IMT-Lucca) FoTSE@LMU 1 / 32

A motivating example:

Formal semantics of regular expressions

R. De Nicola (IMT-Lucca) FoTSE@LMU 2 / 32

Formal semantics

Three main approaches to formal semantics of programming
languages:

Operational Semantics (How a program computes) [Plotkin, Kahn]:

Sets of computations resulting from the execution of programs by an
abstract machine

Denotational Semantics (What a program computes) [Strachey, Scott]:

An input/output function that denotes the effect of executing the
program

Axiomatic Semantics (What a program modifies) [Floyd, Hoare]:

Pairs of observable properties that hold before and after program
execution

Different purposes, complementary use.

R. De Nicola (IMT-Lucca) FoTSE@LMU 3 / 32

A motivating example: regular expressions
Regular expressions

Commonly used for:
searching and manipulating text based on patterns

Example
Regular expression: [hc]at ⇒ (h + c);a; t
Text: the cat eats the bat’s hat rather than the rat
Matches: cat, hat

R. De Nicola (IMT-Lucca) FoTSE@LMU 4 / 32

A motivating example: regular expressions

Regular expressions

Commonly used for:
searching and manipulating text based on patterns
representing regular languages in a compact form
describing sequences of actions that a system can execute

Regular expressions as a simple programming language

Programming constructs: sequence, choice, iteration, stop

We define the semantics of regular expressions by applying the
three approaches

We show that the three semantics are consistent

R. De Nicola (IMT-Lucca) FoTSE@LMU 5 / 32

A motivating example: regular expressions

Regular expressions

Commonly used for:
searching and manipulating text based on patterns
representing regular languages in a compact form
describing sequences of actions that a system can execute

Regular expressions as a simple programming language

Programming constructs: sequence, choice, iteration, stop

We define the semantics of regular expressions by applying the
three approaches

We show that the three semantics are consistent

R. De Nicola (IMT-Lucca) FoTSE@LMU 5 / 32

Regular expressions: syntax and informal semantics
Abstract syntax

E ::= 0 | 1 | a | E + E | E ;E | E∗

Operators precedence
∗ binds more than + and ;

; binds more than +

Informal semantics
0 is the empty event

1 is the terminal event

a is an event (or atomic action) where a ∈ A, with A finite alphabet

E + F can be either E or F (choice operator)

E ;F is the expression E followed by F (sequencing)

E∗ is an n-length sequence of E with n ≥ 0 (Kleene star)
R. De Nicola (IMT-Lucca) FoTSE@LMU 6 / 32

Regular expressions: syntax and informal semantics
Abstract syntax

E ::= 0 | 1 | a | E + E | E ;E | E∗

Operators precedence
∗ binds more than + and ;

; binds more than +

Informal semantics
0 is the empty event

1 is the terminal event

a is an event (or atomic action) where a ∈ A, with A finite alphabet

E + F can be either E or F (choice operator)

E ;F is the expression E followed by F (sequencing)

E∗ is an n-length sequence of E with n ≥ 0 (Kleene star)
R. De Nicola (IMT-Lucca) FoTSE@LMU 6 / 32

Regular expressions: syntax and informal semantics
Abstract syntax

E ::= 0 | 1 | a | E + E | E ;E | E∗

Operators precedence
∗ binds more than + and ;

; binds more than +

Informal semantics
0 is the empty event

1 is the terminal event

a is an event (or atomic action) where a ∈ A, with A finite alphabet

E + F can be either E or F (choice operator)

E ;F is the expression E followed by F (sequencing)

E∗ is an n-length sequence of E with n ≥ 0 (Kleene star)
R. De Nicola (IMT-Lucca) FoTSE@LMU 6 / 32

Regular expressions: syntax and informal semantics
Abstract syntax

E ::= 0 | 1 | a | E + E | E ;E | E∗

Operators precedence
∗ binds more than + and ;

; binds more than +

Informal semantics
0 is the empty event

1 is the terminal event

a is an event (or atomic action) where a ∈ A, with A finite alphabet

E + F can be either E or F (choice operator)

E ;F is the expression E followed by F (sequencing)

E∗ is an n-length sequence of E with n ≥ 0 (Kleene star)
R. De Nicola (IMT-Lucca) FoTSE@LMU 6 / 32

Regular expressions: syntax and informal semantics
Abstract syntax

E ::= 0 | 1 | a | E + E | E ;E | E∗

Operators precedence
∗ binds more than + and ;

; binds more than +

Informal semantics
0 is the empty event

1 is the terminal event

a is an event (or atomic action) where a ∈ A, with A finite alphabet

E + F can be either E or F (choice operator)

E ;F is the expression E followed by F (sequencing)

E∗ is an n-length sequence of E with n ≥ 0 (Kleene star)
R. De Nicola (IMT-Lucca) FoTSE@LMU 6 / 32

Regular expressions: syntax and informal semantics
Abstract syntax

E ::= 0 | 1 | a | E + E | E ;E | E∗

Operators precedence
∗ binds more than + and ;

; binds more than +

Informal semantics
0 is the empty event

1 is the terminal event

a is an event (or atomic action) where a ∈ A, with A finite alphabet

E + F can be either E or F (choice operator)

E ;F is the expression E followed by F (sequencing)

E∗ is an n-length sequence of E with n ≥ 0 (Kleene star)
R. De Nicola (IMT-Lucca) FoTSE@LMU 6 / 32

Regular expressions: syntax and informal semantics
Abstract syntax

E ::= 0 | 1 | a | E + E | E ;E | E∗

Operators precedence
∗ binds more than + and ;

; binds more than +

Informal semantics
0 is the empty event

1 is the terminal event

a is an event (or atomic action) where a ∈ A, with A finite alphabet

E + F can be either E or F (choice operator)

E ;F is the expression E followed by F (sequencing)

E∗ is an n-length sequence of E with n ≥ 0 (Kleene star)
R. De Nicola (IMT-Lucca) FoTSE@LMU 6 / 32

Regular expressions: informal semantics

With an informal semantics the meaning of composite expressions
may be not clear.

Example

(a + b)∗ (a∗ + b∗)∗

They are syntactically different

What about their meaning?

We shall apply the three approaches used for defining formal
semantics to regular expressions.

R. De Nicola (IMT-Lucca) FoTSE@LMU 7 / 32

Regular expressions: informal semantics

With an informal semantics the meaning of composite expressions
may be not clear.

Example

(a + b)∗ (a∗ + b∗)∗

They are syntactically different

What about their meaning?

We shall apply the three approaches used for defining formal
semantics to regular expressions.

R. De Nicola (IMT-Lucca) FoTSE@LMU 7 / 32

Regular expressions: informal semantics

With an informal semantics the meaning of composite expressions
may be not clear.

Example

(a + b)∗ (a∗ + b∗)∗

They are syntactically different

What about their meaning?

We shall apply the three approaches used for defining formal
semantics to regular expressions.

R. De Nicola (IMT-Lucca) FoTSE@LMU 7 / 32

Regular expressions: informal semantics

With an informal semantics the meaning of composite expressions
may be not clear.

Example

(a + b)∗ (a∗ + b∗)∗

They are syntactically different

What about their meaning?

We shall apply the three approaches used for defining formal
semantics to regular expressions.

R. De Nicola (IMT-Lucca) FoTSE@LMU 7 / 32

Regular expressions: operational semantics

We introduce an abstract machine for executing regular expressions

Transition relation

Is a ternary relation E
µ−→ F , where µ ∈ A ∪ {ε} (ε empty action)

Is defined by an inference system

Describes, by induction on the structure of the expressions, the
behaviour of a machine that takes as input a regular expression
and executes it

For a generic operator op we shall have one or more rules like:

Ei1
α1−→ E ′i1 · · · Eim

αm−→ E ′im
op(E1, · · · ,En)

α−→ op(E ′1, · · · ,E ′n)
where {i1, · · · , im} ⊆ {1, · · · ,n}.

R. De Nicola (IMT-Lucca) FoTSE@LMU 8 / 32

Regular expressions: operational semantics

We introduce an abstract machine for executing regular expressions

Transition relation

Is a ternary relation E
µ−→ F , where µ ∈ A ∪ {ε} (ε empty action)

Is defined by an inference system

Describes, by induction on the structure of the expressions, the
behaviour of a machine that takes as input a regular expression
and executes it

For a generic operator op we shall have one or more rules like:

Ei1
α1−→ E ′i1 · · · Eim

αm−→ E ′im
op(E1, · · · ,En)

α−→ op(E ′1, · · · ,E ′n)
where {i1, · · · , im} ⊆ {1, · · · ,n}.

R. De Nicola (IMT-Lucca) FoTSE@LMU 8 / 32

Regular expressions: operational semantics

We introduce an abstract machine for executing regular expressions

Transition relation

Is a ternary relation E
µ−→ F , where µ ∈ A ∪ {ε} (ε empty action)

Is defined by an inference system

Describes, by induction on the structure of the expressions, the
behaviour of a machine that takes as input a regular expression
and executes it

For a generic operator op we shall have one or more rules like:

Ei1
α1−→ E ′i1 · · · Eim

αm−→ E ′im
op(E1, · · · ,En)

α−→ op(E ′1, · · · ,E ′n)
where {i1, · · · , im} ⊆ {1, · · · ,n}.

R. De Nicola (IMT-Lucca) FoTSE@LMU 8 / 32

Regular expressions: operational semantics

Transition relation rules
(Tic)

1 ε−→ 1
(Atom)

a a−→ 1
a ∈ A

(Sum1)
E

µ−→ E ′

E + F
µ−→ E ′

(Sum2)
F

µ−→ F ′

E + F
µ−→ F ′

(Seq1)
E a−→ E ′

E ;F a−→ E ′;F
(Seq2)

E ε−→ 1

E ;F ε−→ F

(Star1)
E∗ ε−→ 1

(Star2)
E

µ−→ E ′

E∗
µ−→ E ′;E∗

Structural Operational Semantics (SOS [Plotkin])
Transition relation is the least relation satisfying the above rules

R. De Nicola (IMT-Lucca) FoTSE@LMU 9 / 32

Regular expressions: operational semantics

Transition relation rules
(Tic)

1 ε−→ 1
(Atom)

a a−→ 1
a ∈ A

(Sum1)
E

µ−→ E ′

E + F
µ−→ E ′

(Sum2)
F

µ−→ F ′

E + F
µ−→ F ′

(Seq1)
E a−→ E ′

E ;F a−→ E ′;F
(Seq2)

E ε−→ 1

E ;F ε−→ F

(Star1)
E∗ ε−→ 1

(Star2)
E

µ−→ E ′

E∗
µ−→ E ′;E∗

1 indicates the terminal state: the machine has completed the
execution and loops by executing the empty action

R. De Nicola (IMT-Lucca) FoTSE@LMU 9 / 32

Regular expressions: operational semantics

Transition relation rules
(Tic)

1 ε−→ 1
(Atom)

a a−→ 1
a ∈ A

(Sum1)
E

µ−→ E ′

E + F
µ−→ E ′

(Sum2)
F

µ−→ F ′

E + F
µ−→ F ′

(Seq1)
E a−→ E ′

E ;F a−→ E ′;F
(Seq2)

E ε−→ 1

E ;F ε−→ F

(Star1)
E∗ ε−→ 1

(Star2)
E

µ−→ E ′

E∗
µ−→ E ′;E∗

Expression a executes action a and stops

R. De Nicola (IMT-Lucca) FoTSE@LMU 9 / 32

Regular expressions: operational semantics

Transition relation rules
(Tic)

1 ε−→ 1
(Atom)

a a−→ 1
a ∈ A

(Sum1)
E

µ−→ E ′

E + F
µ−→ E ′

(Sum2)
F

µ−→ F ′

E + F
µ−→ F ′

(Seq1)
E a−→ E ′

E ;F a−→ E ′;F
(Seq2)

E ε−→ 1

E ;F ε−→ F

(Star1)
E∗ ε−→ 1

(Star2)
E

µ−→ E ′

E∗
µ−→ E ′;E∗

E + F can behave either as E or as F : if E evolves to E ′ by performing
action µ then E + F can evolve to E ′ by performing µ; similarly for F

R. De Nicola (IMT-Lucca) FoTSE@LMU 9 / 32

Regular expressions: operational semantics

Transition relation rules
(Tic)

1 ε−→ 1
(Atom)

a a−→ 1
a ∈ A

(Sum1)
E

µ−→ E ′

E + F
µ−→ E ′

(Sum2)
F

µ−→ F ′

E + F
µ−→ F ′

(Seq1)
E a−→ E ′

E ;F a−→ E ′;F
(Seq2)

E ε−→ 1

E ;F ε−→ F

(Star1)
E∗ ε−→ 1

(Star2)
E

µ−→ E ′

E∗
µ−→ E ′;E∗

E ;F executes the actions of E and, afterwards, the actions of F

R. De Nicola (IMT-Lucca) FoTSE@LMU 9 / 32

Regular expressions: operational semantics

Transition relation rules
(Tic)

1 ε−→ 1
(Atom)

a a−→ 1
a ∈ A

(Sum1)
E

µ−→ E ′

E + F
µ−→ E ′

(Sum2)
F

µ−→ F ′

E + F
µ−→ F ′

(Seq1)
E a−→ E ′

E ;F a−→ E ′;F
(Seq2)

E ε−→ 1

E ;F ε−→ F

(Star1)
E∗ ε−→ 1

(Star2)
E

µ−→ E ′

E∗
µ−→ E ′;E∗

E ;F executes the actions of E and, afterwards, the actions of F

R. De Nicola (IMT-Lucca) FoTSE@LMU 9 / 32

Regular expressions: operational semantics

Transition relation rules
(Tic)

1 ε−→ 1
(Atom)

a a−→ 1
a ∈ A

(Sum1)
E

µ−→ E ′

E + F
µ−→ E ′

(Sum2)
F

µ−→ F ′

E + F
µ−→ F ′

(Seq1)
E a−→ E ′

E ;F a−→ E ′;F
(Seq2)

E ε−→ 1

E ;F ε−→ F

(Star1)
E∗ ε−→ 1

(Star2)
E

µ−→ E ′

E∗
µ−→ E ′;E∗

E ;F executes the actions of E and, afterwards, the actions of F

R. De Nicola (IMT-Lucca) FoTSE@LMU 9 / 32

Regular expressions: operational semantics

Transition relation rules
(Tic)

1 ε−→ 1
(Atom)

a a−→ 1
a ∈ A

(Sum1)
E

µ−→ E ′

E + F
µ−→ E ′

(Sum2)
F

µ−→ F ′

E + F
µ−→ F ′

(Seq1)
E a−→ E ′

E ;F a−→ E ′;F
(Seq2)

E ε−→ 1

E ;F ε−→ F

(Star1)
E∗ ε−→ 1

(Star2)
E

µ−→ E ′

E∗
µ−→ E ′;E∗

E∗ can either directly evolve to 1 or evolve to E ′;E∗ if E evolves to E ′

R. De Nicola (IMT-Lucca) FoTSE@LMU 9 / 32

Regular expressions: operational semantics

Transition relation rules
(Tic)

1 ε−→ 1
(Atom)

a a−→ 1
a ∈ A

(Sum1)
E

µ−→ E ′

E + F
µ−→ E ′

(Sum2)
F

µ−→ F ′

E + F
µ−→ F ′

(Seq1)
E a−→ E ′

E ;F a−→ E ′;F
(Seq2)

E ε−→ 1

E ;F ε−→ F

(Star1)
E∗ ε−→ 1

(Star2)
E

µ−→ E ′

E∗
µ−→ E ′;E∗

E∗ can either directly evolve to 1 or evolve to E ′;E∗ if E evolves to E ′

R. De Nicola (IMT-Lucca) FoTSE@LMU 9 / 32

Regular expressions: operational semantics

Transition relation rules
(Tic)

1 ε−→ 1
(Atom)

a a−→ 1
a ∈ A

(Sum1)
E

µ−→ E ′

E + F
µ−→ E ′

(Sum2)
F

µ−→ F ′

E + F
µ−→ F ′

(Seq1)
E a−→ E ′

E ;F a−→ E ′;F
(Seq2)

E ε−→ 1

E ;F ε−→ F

(Star1)
E∗ ε−→ 1

(Star2)
E

µ−→ E ′

E∗
µ−→ E ′;E∗

E∗ can either directly evolve to 1 or evolve to E ′;E∗ if E evolves to E ′

R. De Nicola (IMT-Lucca) FoTSE@LMU 9 / 32

Regular expressions: operational semantics

Transition relation rules
(Tic)

1 ε−→ 1
(Atom)

a a−→ 1
a ∈ A

(Sum1)
E

µ−→ E ′

E + F
µ−→ E ′

(Sum2)
F

µ−→ F ′

E + F
µ−→ F ′

(Seq1)
E a−→ E ′

E ;F a−→ E ′;F
(Seq2)

E ε−→ 1

E ;F ε−→ F

(Star1)
E∗ ε−→ 1

(Star2)
E

µ−→ E ′

E∗
µ−→ E ′;E∗

No rule for 0: expression 0 does nothing
0 indicates the deadlock state: the machine is stuck

R. De Nicola (IMT-Lucca) FoTSE@LMU 9 / 32

The automaton associated to a regular expression

The SOS inference rules implicitly defines a particular automaton for
each regular expression E (essentially a fragment of the whole LTS):

the initial state is e (we shall often omit to mark it)
the set of labels is A
the set of states consists of all regular expressions that can be
reached starting from E via a sequence of transitions
the transition relation is the one induced from the SOS rules
the only final state is 1 (we shall often omit to mark it)

Semantic correspondence
Given any regular expression E , the automaton generated by the SOS
rules has the property of recognizing exactly the language L[[E]], but it
is not the unique automaton satisfying such property.
Other "similar" automata might have less (or more) ε transitions.

R. De Nicola (IMT-Lucca) FoTSE@LMU 10 / 32

A few examples for Regular Expressions

(a + b)∗ a−→ 1 · (a + b)∗

(Atom)
a a−→ 1

(Sum1)
a + b a−→ 1

(Star2)
(a + b)∗ a−→ 1 · (a + b)∗

1 · (a + b)∗ ε−→ (a + b)∗

(Tic)
1 ε−→ 1

(Seq2)
1 · (a + b)∗ ε−→ (a + b)∗

R. De Nicola (IMT-Lucca) FoTSE@LMU 11 / 32

A few examples for Regular Expressions

(a + b)∗ a−→ 1 · (a + b)∗

(Atom)
a a−→ 1

(Sum1)
a + b a−→ 1

(Star2)
(a + b)∗ a−→ 1 · (a + b)∗

1 · (a + b)∗ ε−→ (a + b)∗

(Tic)
1 ε−→ 1

(Seq2)
1 · (a + b)∗ ε−→ (a + b)∗

R. De Nicola (IMT-Lucca) FoTSE@LMU 11 / 32

Regular expressions: operational semantics

Definition (Traces of Regular expressions)
Let E be a regular expression and s ∈ A∗ be a string,
we write E s

=⇒ E ′ if there exists µ1, . . . , µn ∈ A ∪ {ε} (n ≥ 0) s.t.:
1 the string µ1 . . . µn coincides with s (up to some occurrence of ε)
2 E µ1−→ E1

µ2−→ E2
µ3−→ . . .

µn−→ En ≡ E ′ (≡ syntactical equiv.)

The set of traces of E is the set of strings

Traces(E) = {s ∈ A∗ : E s
=⇒ 1}

Definition (Trace equivalence)
Two regular expressions E and F are trace equivalent if

Traces(E) = Traces(F)

R. De Nicola (IMT-Lucca) FoTSE@LMU 12 / 32

Regular expressions: operational semantics

Definition (Traces of Regular expressions)
Let E be a regular expression and s ∈ A∗ be a string,
we write E s

=⇒ E ′ if there exists µ1, . . . , µn ∈ A ∪ {ε} (n ≥ 0) s.t.:
1 the string µ1 . . . µn coincides with s (up to some occurrence of ε)
2 E µ1−→ E1

µ2−→ E2
µ3−→ . . .

µn−→ En ≡ E ′ (≡ syntactical equiv.)

The set of traces of E is the set of strings

Traces(E) = {s ∈ A∗ : E s
=⇒ 1}

Definition (Trace equivalence)
Two regular expressions E and F are trace equivalent if

Traces(E) = Traces(F)

R. De Nicola (IMT-Lucca) FoTSE@LMU 12 / 32

Regular expressions: operational semantics

Example

(a + b)∗ (a∗ + b∗)∗

They are syntactically different

Are they semantically equivalent?

We have to show that:

s is a trace of (a + b)∗ if and only if s is a trace of (a∗ + b∗)∗

R. De Nicola (IMT-Lucca) FoTSE@LMU 13 / 32

Regular expressions: operational semantics

Example

(a + b)∗ (a∗ + b∗)∗

They are syntactically different

Traces((a + b)∗) ?
= Traces((a∗ + b∗)∗)

We have to show that:

s is a trace of (a + b)∗ if and only if s is a trace of (a∗ + b∗)∗

R. De Nicola (IMT-Lucca) FoTSE@LMU 13 / 32

Regular expressions: operational semantics

Example

(a + b)∗ (a∗ + b∗)∗

They are syntactically different

Traces((a + b)∗) ?
= Traces((a∗ + b∗)∗)

We have to show that:

s is a trace of (a + b)∗ if and only if s is a trace of (a∗ + b∗)∗

R. De Nicola (IMT-Lucca) FoTSE@LMU 13 / 32

Regular expressions: operational semantics

Example

(a + b)∗ (a∗ + b∗)∗

They are syntactically different

Traces((a + b)∗) ?
= Traces((a∗ + b∗)∗)

We have to show that:

s is a trace of (a + b)∗ if and only if s is a trace of (a∗ + b∗)∗

R. De Nicola (IMT-Lucca) FoTSE@LMU 13 / 32

Regular expressions: operational semantics

if s is a trace of (a + b)∗ then s is a trace of (a∗ + b∗)∗

Induction on the length of s.

Base step: |s| = 0 (i.e., s = ε). Trivial: (Star1), (a∗ + b∗)∗ ε−→ 1

Inductive step: |s| > 0, then s = as′ or s = bs′; w.l.o.g. assume s = as′.
The only possible a-transition for (a + b)∗ is (a + b)∗ a

=⇒ (a + b)∗:
This is proved via the following derivations:

(Atom)
a a−→ 1

(Sum1)
a + b a−→ 1

(Star2)
(a + b)∗ a−→ 1; (a + b)∗

(Tic)
1 ε−→ 1

(Seq2)
1; (a + b)∗ ε−→ (a + b)∗

R. De Nicola (IMT-Lucca) FoTSE@LMU 14 / 32

Regular expressions: operational semantics

if s is a trace of (a + b)∗ then s is a trace of (a∗ + b∗)∗

Induction on the length of s.

Base step: |s| = 0 (i.e., s = ε). Trivial: (Star1), (a∗ + b∗)∗ ε−→ 1

Inductive step: |s| > 0, then s = as′ or s = bs′; w.l.o.g. assume s = as′.
The only possible a-transition for (a + b)∗ is (a + b)∗ a

=⇒ (a + b)∗:
This is proved via the following derivations:

(Atom)
a a−→ 1

(Sum1)
a + b a−→ 1

(Star2)
(a + b)∗ a−→ 1; (a + b)∗

(Tic)
1 ε−→ 1

(Seq2)
1; (a + b)∗ ε−→ (a + b)∗

R. De Nicola (IMT-Lucca) FoTSE@LMU 14 / 32

Regular expressions: operational semantics

if s is a trace of (a + b)∗ then s is a trace of (a∗ + b∗)∗

Induction on the length of s.

Base step: |s| = 0 (i.e., s = ε). Trivial: (Star1), (a∗ + b∗)∗ ε−→ 1

Inductive step: |s| > 0, then s = as′ or s = bs′; w.l.o.g. assume s = as′.
The only possible a-transition for (a + b)∗ is (a + b)∗ a

=⇒ (a + b)∗:
This is proved via the following derivations:

(Atom)
a a−→ 1

(Sum1)
a + b a−→ 1

(Star2)
(a + b)∗ a−→ 1; (a + b)∗

(Tic)
1 ε−→ 1

(Seq2)
1; (a + b)∗ ε−→ (a + b)∗

R. De Nicola (IMT-Lucca) FoTSE@LMU 14 / 32

Regular expressions: operational semantics

if s is a trace of (a + b)∗ then s is a trace of (a∗ + b∗)∗

Induction on the length of s.

Base step: |s| = 0 (i.e., s = ε). Trivial: (Star1), (a∗ + b∗)∗ ε−→ 1

Inductive step: |s| > 0, then s = as′ or s = bs′; w.l.o.g. assume s = as′.
The only possible a-transition for (a + b)∗ is (a + b)∗ a

=⇒ (a + b)∗:
This is proved via the following derivations:

(Atom)
a a−→ 1

(Sum1)
a + b a−→ 1

(Star2)
(a + b)∗ a−→ 1; (a + b)∗

(Tic)
1 ε−→ 1

(Seq2)
1; (a + b)∗ ε−→ (a + b)∗

R. De Nicola (IMT-Lucca) FoTSE@LMU 14 / 32

Regular expressions: operational semantics

if s is a trace of (a + b)∗ then s is a trace of (a∗ + b∗)∗

Induction on the length of s.

Base step: |s| = 0 (i.e., s = ε). Trivial: (Star1), (a∗ + b∗)∗ ε−→ 1

Inductive step: |s| > 0, then s = as′ or s = bs′; w.l.o.g. assume s = as′.
The only possible a-transition for (a + b)∗ is (a + b)∗ a

=⇒ (a + b)∗

By hypothesis, (a + b)∗ as′

=⇒ 1, thus (a + b)∗ s′

=⇒ 1.

By induction, we have (a∗ + b∗)∗ s′

=⇒ 1, thus it is sufficient to prove
(a∗ + b∗)∗ a

=⇒ (a∗ + b∗)∗ to conclude that (a∗ + b∗)∗ s
=⇒ 1.

R. De Nicola (IMT-Lucca) FoTSE@LMU 14 / 32

Regular expressions: operational semantics

if s is a trace of (a + b)∗ then s is a trace of (a∗ + b∗)∗

Induction on the length of s.

Base step: |s| = 0 (i.e., s = ε). Trivial: (Star1), (a∗ + b∗)∗ ε−→ 1

Inductive step: |s| > 0, then s = as′ or s = bs′; w.l.o.g. assume s = as′.
The only possible a-transition for (a + b)∗ is (a + b)∗ a

=⇒ (a + b)∗

By hypothesis, (a + b)∗ as′

=⇒ 1, thus (a + b)∗ s′

=⇒ 1.

By induction, we have (a∗ + b∗)∗ s′

=⇒ 1, thus it is sufficient to prove
(a∗ + b∗)∗ a

=⇒ (a∗ + b∗)∗ to conclude that (a∗ + b∗)∗ s
=⇒ 1.

R. De Nicola (IMT-Lucca) FoTSE@LMU 14 / 32

Regular expressions: operational semantics

if s is a trace of (a + b)∗ then s is a trace of (a∗ + b∗)∗

Induction on the length of s.

Base step: |s| = 0 (i.e., s = ε). Trivial: (Star1), (a∗ + b∗)∗ ε−→ 1

Inductive step: |s| > 0, then s = as′ or s = bs′; w.l.o.g. assume s = as′.
The only possible a-transition for (a + b)∗ is (a + b)∗ a

=⇒ (a + b)∗

By hypothesis, (a + b)∗ as′

=⇒ 1, thus (a + b)∗ s′

=⇒ 1.

By induction, we have (a∗ + b∗)∗ s′

=⇒ 1, thus it is sufficient to prove
(a∗ + b∗)∗ a

=⇒ (a∗ + b∗)∗ to conclude that (a∗ + b∗)∗ s
=⇒ 1.

R. De Nicola (IMT-Lucca) FoTSE@LMU 14 / 32

Regular expressions: operational semantics

if s is a trace of (a + b)∗ then s is a trace of (a∗ + b∗)∗

Induction on the length of s.

Base step: |s| = 0 (i.e., s = ε). Trivial: (Star1), (a∗ + b∗)∗ ε−→ 1

Inductive step: |s| > 0, then s = as′ or s = bs′; w.l.o.g. assume s = as′.
(a∗ + b∗)∗ a

=⇒ (a∗ + b∗)∗:

(Atom)
a a−→ 1

(Star2)
a∗ a−→ 1; a∗

(Sum1)
a∗ + b∗ a−→ 1; a∗

(Star2)
(a∗ + b∗)∗ a−→ 1; a∗; (a∗ + b∗)∗

(Tic)
1 ε−→ 1

(Seq2)
1; a∗; (a∗ + b∗)∗ ε−→ a∗; (a∗ + b∗)∗

(Star1)
a∗ ε−→ 1

(Seq2)
a∗; (a∗ + b∗)∗ ε−→ (a∗ + b∗)∗

R. De Nicola (IMT-Lucca) FoTSE@LMU 14 / 32

Regular expressions: operational semantics

The abstract machine that describes the execution of a regular
expression is a finite state automaton

Definition (Regular expressions as finite state automata)

Let E be a reg. expr., the finite state automaton associated to E is

ME =
(
QE , A, →E , E , {1}

)
States: QE = {F | ∃ s∈A∗. E s

=⇒ F} (expressions from E)

Actions: A (alphabet of E)

Transition relation: →E s.t. F
µ−→E F ′ if F

µ−→ F ′ with µ ∈ A ∪ {ε}

Initial state: expression E

Accepting states: expression 1

R. De Nicola (IMT-Lucca) FoTSE@LMU 15 / 32

Regular expressions: operational semantics

The abstract machine that describes the execution of a regular
expression is a finite state automaton

Definition (Regular expressions as finite state automata)

Let E be a reg. expr., the finite state automaton associated to E is

ME =
(
QE , A, →E , E , {1}

)
States: QE = {F | ∃ s∈A∗. E s

=⇒ F} (expressions from E)

Actions: A (alphabet of E)

Transition relation: →E s.t. F
µ−→E F ′ if F

µ−→ F ′ with µ ∈ A ∪ {ε}

Initial state: expression E

Accepting states: expression 1

R. De Nicola (IMT-Lucca) FoTSE@LMU 15 / 32

Regular expressions: operational semantics

Automata associated to (a + b)∗ and (a∗ + b∗)∗

R. De Nicola (IMT-Lucca) FoTSE@LMU 16 / 32

Regular expressions: operational semantics

Theorem
Let E be a regular expression and ME the associated automaton, then

Traces(E) = L(ME)

where L(ME) = {s ∈ A∗ : E s
=⇒E 1} (language accepted by ME)

Proof (sketch). Two cases:

⊆ If w ∈ Traces(E), then E w
=⇒ 1. The proof that w ∈ L(ME) proceeds by

induction on the length of w .

⊇ Given w ∈ L(ME), we prove by induction on the length of w that
w ∈ Traces(E).

R. De Nicola (IMT-Lucca) FoTSE@LMU 17 / 32

Regular expressions: operational semantics

Theorem
Let E be a regular expression and ME the associated automaton, then

Traces(E) = L(ME)

where L(ME) = {s ∈ A∗ : E s
=⇒E 1} (language accepted by ME)

Proof (sketch). Two cases:

⊆ If w ∈ Traces(E), then E w
=⇒ 1. The proof that w ∈ L(ME) proceeds by

induction on the length of w .

⊇ Given w ∈ L(ME), we prove by induction on the length of w that
w ∈ Traces(E).

R. De Nicola (IMT-Lucca) FoTSE@LMU 17 / 32

Regular expressions: denotational semantics

Denotational Semantics (What a program computes)

an input/output relation that denotes the effect of executing the program
semantic function

associate to each program a mathematical object, called denotation,
that represents its meaning

Operators on Languages

To define semantics interpretation function for regular expressions, we
need some operators on languages. If L, L1 and L2 are sets of strings:

L1 · L2 = {xy : x ∈ L1 e y ∈ L2}
L∗ =

⋃
n≥0 Ln where

L0 = {ε}
Ln+1 = L · Ln

We have: ∅ · L = L · ∅ = ∅ (Why?)
R. De Nicola (IMT-Lucca) FoTSE@LMU 18 / 32

Regular expressions: denotational semantics

Semantic function L for regular expressions

The denotational semantics is inductively defined by the rules and
associates an element of the Powerset of L∗ to each regular
expressions: L[[]] : R.E . → 2L∗

L[[0]] = ∅

L[[1]] = {ε}

L[[a]] = {a} (for a ∈ A)

L[[E + F]] = L[[E]] ∪ L[[F]]

L[[E ;F]] = L[[E]] · L[[F]]

L[[E∗]] = (L[[E]])∗

R. De Nicola (IMT-Lucca) FoTSE@LMU 19 / 32

Regular expressions: denotational semantics

Example

(a + b)∗ (a∗ + b∗)∗

They are syntactically different

Are they semantically equivalent?

We have to show that:

L[[(a + b)∗]] ⊆ L[[(a∗ + b∗)∗]]

vice versa

R. De Nicola (IMT-Lucca) FoTSE@LMU 20 / 32

Regular expressions: denotational semantics

Example

(a + b)∗ (a∗ + b∗)∗

They are syntactically different

L[[(a + b)∗]] ?
= L[[(a∗ + b∗)∗]]

We have to show that:

L[[(a + b)∗]] ⊆ L[[(a∗ + b∗)∗]]

vice versa

R. De Nicola (IMT-Lucca) FoTSE@LMU 20 / 32

Regular expressions: denotational semantics

Example

(a + b)∗ (a∗ + b∗)∗

They are syntactically different

L[[(a + b)∗]] ?
= L[[(a∗ + b∗)∗]]

We have to show that:

L[[(a + b)∗]] ⊆ L[[(a∗ + b∗)∗]]

vice versa

R. De Nicola (IMT-Lucca) FoTSE@LMU 20 / 32

Regular expressions: denotational semantics

L[[(a + b)∗]] ⊆ L[[(a∗ + b∗)∗]]

We have:

L[[(a + b)∗]] =
(
L[[(a + b)]]

)∗
=

(
L[[a]] ∪ L[[b]]

)∗
⊆

(
L[[a]]∗ ∪ L[[b]]∗

)∗
=

(
L[[a∗]] ∪ L[[b∗]]

)∗
=

(
L[[a∗ + b∗]]

)∗
= L[[(a∗ + b∗)∗]]

R. De Nicola (IMT-Lucca) FoTSE@LMU 21 / 32

Regular expressions: denotational semantics

L[[(a + b)∗]] ⊆ L[[(a∗ + b∗)∗]]

We have:

L[[(a + b)∗]] =
(
L[[(a + b)]]

)∗
=

(
L[[a]] ∪ L[[b]]

)∗
⊆

(
L[[a]]∗ ∪ L[[b]]∗

)∗
=

(
L[[a∗]] ∪ L[[b∗]]

)∗
=

(
L[[a∗ + b∗]]

)∗
= L[[(a∗ + b∗)∗]]

R. De Nicola (IMT-Lucca) FoTSE@LMU 21 / 32

Regular expressions: denotational semantics

L[[(a∗ + b∗)∗]] ⊆ L[[(a + b)∗]]

We have to prove: (
L[[a]]∗ ∪ L[[b]]∗

)∗ ⊆ (L[[a]] ∪ L[[b]])∗
We exploit: (

L[[a]] ∪ L[[b]]
)∗

=
((
L[[a]] ∪ L[[b]]

)∗)∗
Thus, we have just to prove that:(

L[[a]]∗ ∪ L[[b]]∗
)∗ ⊆ ((L[[a]] ∪ L[[b]])∗)∗

Let s ∈
(
L[[a]]∗ ∪ L[[b]]∗

)∗. Therefore, for some n ≥ 0, we have s = s1s2 · · · sn
and either si ∈ L[[a]]∗ or si ∈ L[[b]]∗, for all 0 ≤ i ≤ n.

Thus, si ∈
(
L[[a]] ∪ L[[b]]

)∗, for all 0 ≤ i ≤ n, hence s ∈
((
L[[a]] ∪ L[[b]]

)∗)∗.
R. De Nicola (IMT-Lucca) FoTSE@LMU 22 / 32

Regular expressions: denotational semantics

L[[(a∗ + b∗)∗]] ⊆ L[[(a + b)∗]]

We have to prove: (
L[[a]]∗ ∪ L[[b]]∗

)∗ ⊆ (L[[a]] ∪ L[[b]])∗
We exploit: (

L[[a]] ∪ L[[b]]
)∗

=
((
L[[a]] ∪ L[[b]]

)∗)∗
Thus, we have just to prove that:(

L[[a]]∗ ∪ L[[b]]∗
)∗ ⊆ ((L[[a]] ∪ L[[b]])∗)∗

Let s ∈
(
L[[a]]∗ ∪ L[[b]]∗

)∗. Therefore, for some n ≥ 0, we have s = s1s2 · · · sn
and either si ∈ L[[a]]∗ or si ∈ L[[b]]∗, for all 0 ≤ i ≤ n.

Thus, si ∈
(
L[[a]] ∪ L[[b]]

)∗, for all 0 ≤ i ≤ n, hence s ∈
((
L[[a]] ∪ L[[b]]

)∗)∗.
R. De Nicola (IMT-Lucca) FoTSE@LMU 22 / 32

Regular expressions: denotational semantics

L[[(a∗ + b∗)∗]] ⊆ L[[(a + b)∗]]

We have to prove: (
L[[a]]∗ ∪ L[[b]]∗

)∗ ⊆ (L[[a]] ∪ L[[b]])∗
We exploit: (

L[[a]] ∪ L[[b]]
)∗

=
((
L[[a]] ∪ L[[b]]

)∗)∗
Thus, we have just to prove that:(

L[[a]]∗ ∪ L[[b]]∗
)∗ ⊆ ((L[[a]] ∪ L[[b]])∗)∗

Let s ∈
(
L[[a]]∗ ∪ L[[b]]∗

)∗. Therefore, for some n ≥ 0, we have s = s1s2 · · · sn
and either si ∈ L[[a]]∗ or si ∈ L[[b]]∗, for all 0 ≤ i ≤ n.

Thus, si ∈
(
L[[a]] ∪ L[[b]]

)∗, for all 0 ≤ i ≤ n, hence s ∈
((
L[[a]] ∪ L[[b]]

)∗)∗.
R. De Nicola (IMT-Lucca) FoTSE@LMU 22 / 32

Regular expressions: denotational semantics

L[[(a∗ + b∗)∗]] ⊆ L[[(a + b)∗]]

We have to prove: (
L[[a]]∗ ∪ L[[b]]∗

)∗ ⊆ (L[[a]] ∪ L[[b]])∗
We exploit: (

L[[a]] ∪ L[[b]]
)∗

=
((
L[[a]] ∪ L[[b]]

)∗)∗
Thus, we have just to prove that:(

L[[a]]∗ ∪ L[[b]]∗
)∗ ⊆ ((L[[a]] ∪ L[[b]])∗)∗

Let s ∈
(
L[[a]]∗ ∪ L[[b]]∗

)∗. Therefore, for some n ≥ 0, we have s = s1s2 · · · sn
and either si ∈ L[[a]]∗ or si ∈ L[[b]]∗, for all 0 ≤ i ≤ n.

Thus, si ∈
(
L[[a]] ∪ L[[b]]

)∗, for all 0 ≤ i ≤ n, hence s ∈
((
L[[a]] ∪ L[[b]]

)∗)∗.
R. De Nicola (IMT-Lucca) FoTSE@LMU 22 / 32

Regular expressions: denotational semantics

L[[(a∗ + b∗)∗]] ⊆ L[[(a + b)∗]]

We have to prove: (
L[[a]]∗ ∪ L[[b]]∗

)∗ ⊆ (L[[a]] ∪ L[[b]])∗
We exploit: (

L[[a]] ∪ L[[b]]
)∗

=
((
L[[a]] ∪ L[[b]]

)∗)∗
Thus, we have just to prove that:(

L[[a]]∗ ∪ L[[b]]∗
)∗ ⊆ ((L[[a]] ∪ L[[b]])∗)∗

Let s ∈
(
L[[a]]∗ ∪ L[[b]]∗

)∗. Therefore, for some n ≥ 0, we have s = s1s2 · · · sn
and either si ∈ L[[a]]∗ or si ∈ L[[b]]∗, for all 0 ≤ i ≤ n.

Thus, si ∈
(
L[[a]] ∪ L[[b]]

)∗, for all 0 ≤ i ≤ n, hence s ∈
((
L[[a]] ∪ L[[b]]

)∗)∗.
R. De Nicola (IMT-Lucca) FoTSE@LMU 22 / 32

Equivalence result

Theorem (operational and denotational semantics are equivalent)
Let E be a regular expression, it holds that:

w ∈ Traces(E) ⇐⇒ w ∈ L[[E]]

Proof. Two cases:

⇒ By induction on the structure of E .

⇐ By induction on the structure of E .

Property

Let E and F regular expressions and s a string.

E ;F s
=⇒ 1 implies ∃ x , y s.t. s = xy and E x

=⇒ 1, F
y

=⇒ 1

R. De Nicola (IMT-Lucca) FoTSE@LMU 23 / 32

Equivalence result

Theorem (operational and denotational semantics are equivalent)
Let E be a regular expression, it holds that:

w ∈ Traces(E) ⇐⇒ w ∈ L[[E]]

Proof. Two cases:

⇒ By induction on the structure of E .

⇐ By induction on the structure of E .

Property

Let E and F regular expressions and s a string.

E ;F s
=⇒ 1 implies ∃ x , y s.t. s = xy and E x

=⇒ 1, F
y

=⇒ 1

R. De Nicola (IMT-Lucca) FoTSE@LMU 23 / 32

Equivalence result

Theorem (operational and denotational semantics are equivalent)
Let E be a regular expression, it holds that:

w ∈ Traces(E) ⇐⇒ w ∈ L[[E]]

Proof. Two cases:

⇒ By induction on the structure of E .

⇐ By induction on the structure of E .

Property

Let E and F regular expressions and s a string.

E ;F s
=⇒ 1 implies ∃ x , y s.t. s = xy and E x

=⇒ 1, F
y

=⇒ 1

R. De Nicola (IMT-Lucca) FoTSE@LMU 23 / 32

Regular expressions’ semantics: equivalence result

Proof (⇒). By induction on the structure of E .
E ≡ 0 Trivial, because Traces(0) = ∅ = L[[0]].
E ≡ 1 Trivial, because Traces(1) = {ε} = L[[1]].
E ≡ a Trivial, because Traces(a) = {a} = L[[a]].

E ≡ E1 + E2 If w ∈ Traces(E1 + E2), then ∃ µ ∈ A ∪ {ε} and w ′ ∈ A∗

with w = µw ′ e

E1 + E2
µ−→ F w ′

=⇒ 1

where

E1
µ−→ F w ′

=⇒ 1 or E2
µ−→ F w ′

=⇒ 1

By inductive hypothesis

w ∈ L[[E1]] or w ∈ L[[E2]]

Thus, w ∈ L[[E1]] ∪ L[[E2]] = L[[E1 + E2]].
R. De Nicola (IMT-Lucca) FoTSE@LMU 24 / 32

Equivalence result

E ≡ E1;E2 If w ∈ Traces(E1;E2), by the previous property, ∃ x , y s.t.

E1
x

=⇒ 1 and E2
y

=⇒ 1

with w = xy . By inductive hypothesis, we have

x ∈ L[[E1]] and y ∈ L[[E2]],

and, hence, w ∈ L[[E1]] · L[[E2]] = L[[E1;E2]].

E ≡ E∗1 Let S(E∗1 ,w) be the number of application of (Star2) in
E∗1

w
=⇒ 1.

We demonstrate by induction on n = S(E∗1 ,w) that

w ∈ Ln[[E1]]. (Ln[[E1]] stands for (L[[E1]])
n)

...
R. De Nicola (IMT-Lucca) FoTSE@LMU 25 / 32

Equivalence result

E ≡ E∗1 ...
If S(E∗1 ,w) = 0, no (Star2) but (Star1) used, thus w = ε.
By definition, ε ∈ L0[[E1]] = {ε}.
If S(E∗1 ,w) = n + 1, then ∃ x , y s.t. w = xy and

E∗1
x

=⇒ E∗1
y

=⇒ E∗1
ε−→ 1

with S(E∗1 , x) = n.
By (local) induction hypothesis x ∈ Ln[[E1]]. Since
S(E∗1 , y) = 1, (Star2) is applied only once in E∗1

y
=⇒ E∗1 ,

thus ∃µ ∈ A∪{ε} and y ′ ∈ A∗ s.t. y = µy ′, E1
µ−→ E ′ and

E∗1
µ−→ E ′;E∗1

y ′
=⇒ E∗1 .

Since E ′;E∗1
y ′
=⇒ E∗1 does not use (Star2), we have

E ′
y ′
=⇒ 1 and, hence, E1

µy ′
==⇒ 1. By (structural) inductive

hypotesis, y ∈ L[[E1]]. Using x ∈ Ln[[E1]], we conclude.
R. De Nicola (IMT-Lucca) FoTSE@LMU 26 / 32

Equivalence result

Proof (⇐). By induction on the structure of E .

For the sake of simplicity, we only consider the case:
E ≡ E∗1 If w ∈ L[[E∗1]], then ∃n s.t. w ∈ Ln[[E1]].

Then, ∃ x1, . . . , xn ∈ L[[E1]] s.t. w = x1 · · · xn.

By inductive hypothesis, xi ∈ Traces(E1), that is E1
xi=⇒ 1.

By repeatedly applying (Star2), we obtain E∗1
x1=⇒ 1;E∗1 .

Since 1;E∗1
ε−→ E∗1 , by (Seq2), and E∗1

ε−→ 1, by(Star1),
we have

E∗1
x1=⇒ 1;E∗1

x2=⇒ 1;E∗1 · · ·
xn=⇒ 1;E∗1

ε−→ 1

and, therefore, E∗1
w

=⇒ 1.

R. De Nicola (IMT-Lucca) FoTSE@LMU 27 / 32

Regular expressions: axiomatic semantics

Axiomatic Semantics (What a program modifies)

it relates observable properties before and after program execution

in stateful languages, e.g., if the initial state of a program fulfils the
precondition and the program terminates, then the final state is
guaranteed to fulfil the postcondition

it consists of a set of axioms and inference rules that define a relation

Axiomatic semantics of regular expressions
no state in regular expressions
the observed property is the capability of equivalent expressions
to represent the same regular language
axioms and rules define an equivalence relation E = F that
partition the set of all expressions

R. De Nicola (IMT-Lucca) FoTSE@LMU 28 / 32

Regular expressions: axiomatic semantics

Axiomatic Semantics (What a program modifies)

it relates observable properties before and after program execution

in stateful languages, e.g., if the initial state of a program fulfils the
precondition and the program terminates, then the final state is
guaranteed to fulfil the postcondition

it consists of a set of axioms and inference rules that define a relation

Axiomatic semantics of regular expressions
no state in regular expressions
the observed property is the capability of equivalent expressions
to represent the same regular language
axioms and rules define an equivalence relation E = F that
partition the set of all expressions

R. De Nicola (IMT-Lucca) FoTSE@LMU 28 / 32

Regular expressions: axiomatic semantics

Axioms for E = F

E + (F + G) = (E + F) + G
E + F = F + E
E + 0 = E

(assoc +)
(comm +)
(unit +)

 (monoid+)

E ; (F ;G) = (E ;F) ;G
1 ;E = E

(assoc ;)
(unit ;)

}
(monoid ;)

E ; (F + G) = E ;F + E ;G
(E + F) ;G = E ;G + F ;G
0 ;E = 0

(distribL)
(distribR)
(absorb 0)

 (modulo +, ;)

E + E = E
}

(idemp +)

E∗ = 1 + E∗ ;E
E∗ = (1 + E)∗

0∗ = 1

(unfolding)
(absorb *)
(00)

 (rules *)

R. De Nicola (IMT-Lucca) FoTSE@LMU 29 / 32

Regular expressions: axiomatic semantics

Rules for E = F

Rule 1 (Substitution):

E = F G = H

G′ = H G′ = G

where G′ is obtained from G by replacing
an occurrence of E by F

Rule 2 (Equation solution):

E = E ;F + G

E = G ;F∗
if F does not produce ε

R. De Nicola (IMT-Lucca) FoTSE@LMU 30 / 32

Regular expressions: axiomatic semantics

The axioms are sound w.r.t. the observed property,
i.e. = equates expressions representing the same language

E.g., given 0 ;E = 0, we have:

L[[0 ;E]] = L[[0]] · L[[E]] = ∅ · L[[E]] = ∅ = L[[0]]

Applying the axiomatic approach could be more laborious
E.g., proving E 0 = 0 requires the following inference:

(absorb 0)
0 ; 0∗ = 0

(absorb 0)
0 = 0 ; 0 E ; 0 = E ; 0

(rule 1)
E ; 0 ; 0 = E ; 0

(unit +)
E ; 0 + 0 = E ; 0

(rule 1)
E ; 0 ; 0 + 0 = E ; 0

(rule 2)
E ; 0 = 0 ; 0∗

(rule 1)
E ; 0 = 0

R. De Nicola (IMT-Lucca) FoTSE@LMU 31 / 32

Regular expressions: axiomatic semantics

The axioms are sound w.r.t. the observed property,
i.e. = equates expressions representing the same language

E.g., given 0 ;E = 0, we have:

L[[0 ;E]] = L[[0]] · L[[E]] = ∅ · L[[E]] = ∅ = L[[0]]

Applying the axiomatic approach could be more laborious
E.g., proving E 0 = 0 requires the following inference:

(absorb 0)
0 ; 0∗ = 0

(absorb 0)
0 = 0 ; 0 E ; 0 = E ; 0

(rule 1)
E ; 0 ; 0 = E ; 0

(unit +)
E ; 0 + 0 = E ; 0

(rule 1)
E ; 0 ; 0 + 0 = E ; 0

(rule 2)
E ; 0 = 0 ; 0∗

(rule 1)
E ; 0 = 0

R. De Nicola (IMT-Lucca) FoTSE@LMU 31 / 32

Regular expressions’ semantics: equivalence result

Theorem (axiomatic and denotational semantics are equivalent)
Let E and F be regular expressions, it holds that:

E = F ⇐⇒ L[[E]] = L[[F]]

Proof (sketch). Two cases:

⇒ (Soundness) Easy to prove

⇐ (Completeness) Require a bit of work (e.g., expression normalization)

Corollary

The three semantics for regular expressions are equivalent

R. De Nicola (IMT-Lucca) FoTSE@LMU 32 / 32

Regular expressions’ semantics: equivalence result

Theorem (axiomatic and denotational semantics are equivalent)
Let E and F be regular expressions, it holds that:

E = F ⇐⇒ L[[E]] = L[[F]]

Proof (sketch). Two cases:

⇒ (Soundness) Easy to prove

⇐ (Completeness) Require a bit of work (e.g., expression normalization)

Corollary

The three semantics for regular expressions are equivalent

R. De Nicola (IMT-Lucca) FoTSE@LMU 32 / 32

Regular expressions’ semantics: equivalence result

Theorem (axiomatic and denotational semantics are equivalent)
Let E and F be regular expressions, it holds that:

E = F ⇐⇒ L[[E]] = L[[F]]

Proof (sketch). Two cases:

⇒ (Soundness) Easy to prove

⇐ (Completeness) Require a bit of work (e.g., expression normalization)

Corollary

The three semantics for regular expressions are equivalent

R. De Nicola (IMT-Lucca) FoTSE@LMU 32 / 32

