
Formal Techniques for Software Engineering:
A Simple Imperative Programming language

Rocco De Nicola

IMT Institute for Advanced Studies, Lucca
rocco.denicola@imtlucca.it

April 2013

Lesson 3

R. De Nicola (IMT-Lucca) FoTSE@LMU 1 / 32

The While language

While is a very simple imperative programming language

Specifically devised for illustrating the different approaches to
program semantics

For While shall study:
BNF syntax
Operational Semantics

Natural semantics (or big-step semantics)
Structural Operational Semantics (or small-step semantics)

Denotational semantics

R. De Nicola (IMT-Lucca) FoTSE@LMU 2 / 32

The While language: syntax

Meta-variables and syntactic categories

n will range over numerals, Num
x will range over variables, Var
a will range over arithmetic expressions, Aexp
b will range over boolean expressions, Bexp
S will range over statements, Stm

Syntax

a ::= n | x | a1 + a2 | a1 ? a2 | a1− a2

b ::= true | false | a1 = a2 | a1 ≤ a2 | ¬ b | b1 ∧ b2

S ::= x := a | skip | S1 ; S2 | if b then S1 else S2

| while b do S

R. De Nicola (IMT-Lucca) FoTSE@LMU 3 / 32

Abstract syntax vs. concrete syntax
Abstract syntax

a ::= n | x | a1 + a2 | a1 ? a2 | a1− a2

b ::= true | false | a1 = a2 | a1 ≤ a2 | ¬ b | b1 ∧ b2

S ::= x := a | skip | S1 ; S2 | if b then S1 else S2

| while b do S

The structure of numerals and variables is assumed as given
A syntactic term could be generated by more than one syntax tree
Concrete syntax permits deriving unique trees but is definitely
more cumbersome than abstract syntax
to resolve ambiguities, we use:

brackets (. . .)
operator precedences (+ binds more than ?, . . . ,)

R. De Nicola (IMT-Lucca) FoTSE@LMU 4 / 32

Abstract syntax vs. concrete syntax
Abstract syntax

a ::= n | x | a1 + a2 | a1 ? a2 | a1− a2

b ::= true | false | a1 = a2 | a1 ≤ a2 | ¬ b | b1 ∧ b2

S ::= x := a | skip | S1 ; S2 | if b then S1 else S2

| while b do S

The structure of numerals and variables is assumed as given
A syntactic term could be generated by more than one syntax tree
Concrete syntax permits deriving unique trees but is definitely
more cumbersome than abstract syntax
to resolve ambiguities, we use:

brackets (. . .)
operator precedences (+ binds more than ?, . . . ,)

R. De Nicola (IMT-Lucca) FoTSE@LMU 4 / 32

Abstract syntax vs. concrete syntax

a ::= n | x | a1 + a2 | a1 ? a2 | a1− a2

b ::= true | false | a1 = a2 | a1 ≤ a2 | ¬ b | b1 ∧ b2

S ::= x := a | skip | S1 ; S2 | if b then S1 else S2
| while b do S

More than one syntax tree could correspond to a program:
z := x ; x := y ; y := z

R. De Nicola (IMT-Lucca) FoTSE@LMU 5 / 32

Semantics of While

The semantics of While is given by defining semantic relations for
each of the syntactic categories

For each syntactic category the semantics of its terms is defined
compositionally, i.e. there is a semantic clause:

for each basic elements of the syntactic category
for each construct for building composite elements

The semantics of composite elements is defined in terms of the
semantics of the direct components.

The operational and denotational approaches specify semantic
relations for the statements of While
The semantic functions for numerals and arithmetic or boolean
expressions are specified once and for all.

R. De Nicola (IMT-Lucca) FoTSE@LMU 6 / 32

Natural Numbers

In the rest of the lectures the structure of numerals will be left
unspecified
=⇒ the semantic function for numerals is unspecified too

An example of numerals definition
Numerals in the binary system:

n ::= 0 | 1 | n 0 | n 1

Semantics Function for numerals
Semantics of numerals is defined by function

N : Num→ Z

R. De Nicola (IMT-Lucca) FoTSE@LMU 7 / 32

Natural Numbers

In the rest of the lectures the structure of numerals will be left
unspecified
=⇒ the semantic function for numerals is unspecified too

An example of numerals definition
Numerals in the binary system:

n ::= 0 | 1 | n 0 | n 1

Semantics Function for numerals
Semantics of numerals is defined by function

N : Num→ Z

R. De Nicola (IMT-Lucca) FoTSE@LMU 7 / 32

Natural Numbers

In the rest of the lectures the structure of numerals will be left
unspecified
=⇒ the semantic function for numerals is unspecified too

An example of numerals definition
Numerals in the binary system:

n ::= 0 | 1 | n 0 | n 1

Semantics Function for numerals
Semantics of numerals is defined by function

N : Num→ Z

R. De Nicola (IMT-Lucca) FoTSE@LMU 7 / 32

Natural Numbers

In the rest of the lectures the structure of numerals will be left
unspecified
=⇒ the semantic function for numerals is unspecified too

An example of numerals definition
Numerals in the binary system:

n ::= 0 | 1 | n 0 | n 1

Semantics Function for numerals
Semantics of numerals is defined by function

N : Num→ Z

R. De Nicola (IMT-Lucca) FoTSE@LMU 7 / 32

Semantics of Binary Numerals

N : Num→ Z

0 and 1 are elements of Z
+ and · are arithmetic operations in Z .

R. De Nicola (IMT-Lucca) FoTSE@LMU 8 / 32

Expression variables and state

The semantics of an expression that contains variables depends on
the values of such variables.

The State Function

The Function State = Var → Z associates to each variable its
current value

Notation

Function State is written as collection of pairs of the form x 7→ n :

[x 7→ 5,y 7→ 7,z 7→ 0]

State Update

R. De Nicola (IMT-Lucca) FoTSE@LMU 9 / 32

Arithmetic expressions

The semantics of arithmetic expressions is defined by function

A : Aexp→ (State → Z)

that takes its parameters one at a time:
When an arithmetic expression a is provided, function A[[a]] is
obtained; i.e. a function State → Z
The value of a is obtained when a state s is provided.

R. De Nicola (IMT-Lucca) FoTSE@LMU 10 / 32

Boolean expressions

Semantics of boolean expressions is defined by function

B : Bexp→ (State → {tt, ff})

R. De Nicola (IMT-Lucca) FoTSE@LMU 11 / 32

Operational Semantics

The Operational semantics describes an abstraction of how a program
is executed on a machine and ignores

the use of registers
the actual address of variables
machine architectures
implementation strategies

Small-step vs. big-step semantics

Small-step describes how individual steps of computations take
place and hides many execution details
Big-step describes how the overall results of executions are
obtained and hides even more execution details

R. De Nicola (IMT-Lucca) FoTSE@LMU 12 / 32

Small-step vs. big-step semantics

Small-steps Semantics
Structural Operational Semantics (SOS) describes how individual
steps of computations take place:

Big-step Semantics

Natural Semantics describes how the overall results of executions are
obtained:

→

R. De Nicola (IMT-Lucca) FoTSE@LMU 13 / 32

Natural Semantics of While

Transition relation
The semantics defines the relationship between the initial and the final
state of an execution. For each statement S

〈 S , s 〉 → s ′

specifies the relationship between the initial state s and the final
state s ′

Note

The intuitive meaning of a step is that the execution of S from s
will terminate and the resulting state will be s ′

The rôle of a While statement is to change the state
Expressions only inspect the state
statements inspect and modify the state

R. De Nicola (IMT-Lucca) FoTSE@LMU 14 / 32

Natural Semantics: transition relation

R. De Nicola (IMT-Lucca) FoTSE@LMU 15 / 32

Natural Semantics: examples

Two exercises
Determine the progress of the two programs below

(z := x ; x := y) ; y := z with [x 7→ 5,y 7→ 7,z 7→ 0]

Factorial program (x!)
y := 1 ; while ¬(x = 1) do (y := y ? x ; x := x− 1) with [x 7→ 3]

according to the natural semantics for While.

R. De Nicola (IMT-Lucca) FoTSE@LMU 16 / 32

Natural Semantics: semantical equivalence

Example
Consider

while b do S and if b then (S ; while b do S) else skip

They are syntactically different
Are they semantically equivalent?

Semantical equivalence

Two statements S1 and S2 are semantically equivalent if for all
states s and s ′

〈S1 , s〉 → s′ if and only if 〈S2 , s〉 → s′

R. De Nicola (IMT-Lucca) FoTSE@LMU 17 / 32

Natural Semantics: semantical equivalence

Example
Consider

while b do S and if b then (S ; while b do S) else skip

They are syntactically different
Are they semantically equivalent?
Do we have: if 〈while b do S , s〉 → s′′ then
〈if b then (S ; while b do S) else skip , s〉 → s′′

and viceversa?

Semantical equivalence

Two statements S1 and S2 are semantically equivalent if for all
states s and s ′

〈S1 , s〉 → s′ if and only if 〈S2 , s〉 → s′

R. De Nicola (IMT-Lucca) FoTSE@LMU 17 / 32

Natural Semantics: deterministic semantics

A natural semantics is deterministic if for all S , s , s ′ and s ′′

〈S , s〉 → s′ and 〈S , s〉 → s′′ imply s′ = s′′

Theorem
The natural semantics of While is deterministic

R. De Nicola (IMT-Lucca) FoTSE@LMU 18 / 32

Natural Semantics: deterministic semantics

A natural semantics is deterministic if for all S , s , s ′ and s ′′

〈S , s〉 → s′ and 〈S , s〉 → s′′ imply s′ = s′′

Theorem
The natural semantics of While is deterministic

R. De Nicola (IMT-Lucca) FoTSE@LMU 18 / 32

Natural Semantics: deterministic semantics

A natural semantics is deterministic if for all S , s , s ′ and s ′′

〈S , s〉 → s′ and 〈S , s〉 → s′′ imply s′ = s′′

Theorem
The natural semantics of While is deterministic

Proof technique: induction on the depth of the derivation trees

1 Prove that the property holds for all the simple derivation trees by
showing that it holds for the axioms of the transition rules

2 Prove that the property holds for all composite derivation trees: For each
rule assume that the property holds for its premises (induction
hypothesis) and prove that it also holds for the conclusion of the rule
provided that the conditions of the rule are satisfied

R. De Nicola (IMT-Lucca) FoTSE@LMU 18 / 32

Natural Semantics: deterministic semantics

A natural semantics is deterministic if for all S , s , s ′ and s ′′

〈S , s〉 → s′ and 〈S , s〉 → s′′ imply s′ = s′′

Theorem
The natural semantics of While is deterministic

Proof (sketch). Some cases:
[assns]

[compns]

R. De Nicola (IMT-Lucca) FoTSE@LMU 18 / 32

Natural Semantics: deterministic semantics

A natural semantics is deterministic if for all S , s , s ′ and s ′′

〈S , s〉 → s′ and 〈S , s〉 → s′′ imply s′ = s′′

Theorem
The natural semantics of While is deterministic

Remark

We cannot use structural induction on the statement S when proving
the theorem because the natural semantics of while b do S is
defined in terms of itself (rule [whilett]).Not well founded

R. De Nicola (IMT-Lucca) FoTSE@LMU 18 / 32

Natural Semantics: statements meaning

Meanings as functions

The meaning of While statements according to the natural semantics
is the (partial) function

Why is it a partial function?

Because, e.g., the statement

while true do skip

always loops.R. De Nicola (IMT-Lucca) FoTSE@LMU 19 / 32

Natural Semantics: statements meaning

Meanings as functions

The meaning of While statements according to the natural semantics
is the (partial) function

Why is it a partial function?

Because, e.g., the statement

while true do skip

always loops.R. De Nicola (IMT-Lucca) FoTSE@LMU 19 / 32

Structural Operational Semantics (SOS)

The emphasis of SOS semantics is on the individual steps of the
execution

the execution of assignments
the execution of tests

Transition relation

〈 S , s 〉 ⇒ γ expresses the first step of the execution of S from
state s and there are two possible outcomes:

γ = 〈 S ′, s ′〉, i.e. an intermediate configuration

γ = s ′, i.e. it is a final state

A derivation sequence of a statement is either
a finite sequence of transitions, or
an infinite sequence of transitions

R. De Nicola (IMT-Lucca) FoTSE@LMU 20 / 32

Structural Operational Semantics: transition relation

R. De Nicola (IMT-Lucca) FoTSE@LMU 21 / 32

Structural Operational Semantics: examples

Two exercises
Determine the progress of the two programs below

(z := x ; x := y) ; y := z with [x 7→ 5,y 7→ 7,z 7→ 0]

Factorial program (x!)
y := 1 ; while ¬(x = 1) do (y := y ? x ; x := x− 1) with [x 7→ 3]

according to the SOS semantics for While.

R. De Nicola (IMT-Lucca) FoTSE@LMU 22 / 32

Structural Operational Semantics: proof by induction

Proof technique: induction on the length of the derivation sequences

For SOS, it is useful to conduct proofs by induction on the lengths of
the considered finite derivation sequences

1 Prove that the property holds for all derivation sequences of length
0

2 Prove that the property holds for all finite derivation sequences:
Assume that the property holds for all derivation sequences of
length at most k (induction hypothesis) and show that it holds for
derivation sequences of length k + 1

Lemma

If 〈 S1 ; S2 , s 〉 ⇒k s ′′, then ∃ s ′, k1, k2 such that

k = k1 + k2 and 〈 S1 , s 〉 ⇒k1 s ′ and 〈 S2 , s ′〉 ⇒k2 s ′′

Proof (sketch). By induction on the length of the derivation sequence
〈 S1 ; S2 , s 〉 ⇒k s ′′ (i.e., by induction on the number k).

R. De Nicola (IMT-Lucca) FoTSE@LMU 23 / 32

Structural Operational Semantics: proof by induction

Proof technique: induction on the length of the derivation sequences

For SOS, it is useful to conduct proofs by induction on the lengths of
the considered finite derivation sequences

1 Prove that the property holds for all derivation sequences of length
0

2 Prove that the property holds for all finite derivation sequences:
Assume that the property holds for all derivation sequences of
length at most k (induction hypothesis) and show that it holds for
derivation sequences of length k + 1

Lemma

If 〈 S1 ; S2 , s 〉 ⇒k s ′′, then ∃ s ′, k1, k2 such that

k = k1 + k2 and 〈 S1 , s 〉 ⇒k1 s ′ and 〈 S2 , s ′〉 ⇒k2 s ′′

Proof (sketch). By induction on the length of the derivation sequence
〈 S1 ; S2 , s 〉 ⇒k s ′′ (i.e., by induction on the number k).

R. De Nicola (IMT-Lucca) FoTSE@LMU 23 / 32

Structural Operational Semantics: proof by induction

Proof technique: induction on the length of the derivation sequences

For SOS, it is useful to conduct proofs by induction on the lengths of
the considered finite derivation sequences

1 Prove that the property holds for all derivation sequences of length
0

2 Prove that the property holds for all finite derivation sequences:
Assume that the property holds for all derivation sequences of
length at most k (induction hypothesis) and show that it holds for
derivation sequences of length k + 1

Lemma

If 〈 S1 ; S2 , s 〉 ⇒k s ′′, then ∃ s ′, k1, k2 such that

k = k1 + k2 and 〈 S1 , s 〉 ⇒k1 s ′ and 〈 S2 , s ′〉 ⇒k2 s ′′

Proof (sketch). By induction on the length of the derivation sequence
〈 S1 ; S2 , s 〉 ⇒k s ′′ (i.e., by induction on the number k).

R. De Nicola (IMT-Lucca) FoTSE@LMU 23 / 32

Structural Operational Semantics: deterministic
semantics

Definition

A structural operational semantics is deterministic if for all S , s , γ
and γ′ we have:

〈S , s〉 ⇒ γ and 〈S , s〉 ⇒ γ′ imply γ = γ′

Theorem
The structural operational semantics of While is deterministic

R. De Nicola (IMT-Lucca) FoTSE@LMU 24 / 32

Structural Operational Semantics: deterministic
semantics

Definition

A structural operational semantics is deterministic if for all S , s , γ
and γ′ we have:

〈S , s〉 ⇒ γ and 〈S , s〉 ⇒ γ′ imply γ = γ′

Theorem
The structural operational semantics of While is deterministic

R. De Nicola (IMT-Lucca) FoTSE@LMU 24 / 32

SOS: Semantic Equivalence

Semantical equivalence

S1 and S2 are semantically equivalent if for all states s
〈S1 , s〉 ⇒∗ γ iff 〈S2 , s〉 ⇒∗ γ where γ is either stuck or terminal

there is an infinite derivation sequence from 〈S1 , s〉
iff there is an infinite derivation sequence from 〈S2 , s〉

Example

while b do S if b then (S ; while b do S) else skip

They are syntactically different

Are they semantically equivalent?

R. De Nicola (IMT-Lucca) FoTSE@LMU 25 / 32

SOS: Semantic Equivalence

Semantical equivalence

S1 and S2 are semantically equivalent if for all states s
〈S1 , s〉 ⇒∗ γ iff 〈S2 , s〉 ⇒∗ γ where γ is either stuck or terminal

there is an infinite derivation sequence from 〈S1 , s〉
iff there is an infinite derivation sequence from 〈S2 , s〉

Example

while b do S if b then (S ; while b do S) else skip

They are syntactically different

Are they semantically equivalent?

R. De Nicola (IMT-Lucca) FoTSE@LMU 25 / 32

SOS: statements meaning

Meanings as functions

The meaning of While statements according to the SOS semantics is
the (partial) function

R. De Nicola (IMT-Lucca) FoTSE@LMU 26 / 32

Operational Semantics: equivalence result

Theorem (Equivalence between nat. sem. and SOS)

For every statement S , we have

Sns[[S]] = Ssos[[S]]

This result expresses two properties:
If the execution of S from some state terminates in one of the
semantics, then it also terminates in the other and the resulting
states will be equal
If the execution of S from some state loops in one of the
semantics, then it will also loop in the other

R. De Nicola (IMT-Lucca) FoTSE@LMU 27 / 32

Operational Semantics: equivalence result (proof)

Lemma 1

For every statement S and states s and s ′, we have
〈S , s〉 → s′ implies 〈S , s〉 ⇒∗ s′

Proof (sketch). The proof proceeds by induction on the shape of the
derivation tree for 〈S , s〉 → s′

Lemma 2

For every statement S and states s and s ′, and number k , we
have 〈S , s〉 ⇒k s′ implies 〈S , s〉 → s′

Proof (sketch). The proof proceeds by induction on k

The equivalence of the two semantics follows directly from Lemma 1
and 2.

R. De Nicola (IMT-Lucca) FoTSE@LMU 28 / 32

Operational Semantics: equivalence result (proof)

Lemma 1

For every statement S and states s and s ′, we have
〈S , s〉 → s′ implies 〈S , s〉 ⇒∗ s′

Proof (sketch). The proof proceeds by induction on the shape of the
derivation tree for 〈S , s〉 → s′

Lemma 2

For every statement S and states s and s ′, and number k , we
have 〈S , s〉 ⇒k s′ implies 〈S , s〉 → s′

Proof (sketch). The proof proceeds by induction on k

The equivalence of the two semantics follows directly from Lemma 1
and 2.

R. De Nicola (IMT-Lucca) FoTSE@LMU 28 / 32

Operational Semantics: equivalence result (proof)

Lemma 1

For every statement S and states s and s ′, we have
〈S , s〉 → s′ implies 〈S , s〉 ⇒∗ s′

Proof (sketch). The proof proceeds by induction on the shape of the
derivation tree for 〈S , s〉 → s′

Lemma 2

For every statement S and states s and s ′, and number k , we
have 〈S , s〉 ⇒k s′ implies 〈S , s〉 → s′

Proof (sketch). The proof proceeds by induction on k

The equivalence of the two semantics follows directly from Lemma 1
and 2.

R. De Nicola (IMT-Lucca) FoTSE@LMU 28 / 32

Operational Semantics: equivalence result (proof)

Lemma 1

For every statement S and states s and s ′, we have
〈S , s〉 → s′ implies 〈S , s〉 ⇒∗ s′

Proof (sketch). The proof proceeds by induction on the shape of the
derivation tree for 〈S , s〉 → s′

Lemma 2

For every statement S and states s and s ′, and number k , we
have 〈S , s〉 ⇒k s′ implies 〈S , s〉 → s′

Proof (sketch). The proof proceeds by induction on k

The equivalence of the two semantics follows directly from Lemma 1
and 2.

R. De Nicola (IMT-Lucca) FoTSE@LMU 28 / 32

Operational Semantics: equivalence result (proof)

Lemma 1

For every statement S and states s and s ′, we have
〈S , s〉 → s′ implies 〈S , s〉 ⇒∗ s′

Proof (sketch). The proof proceeds by induction on the shape of the
derivation tree for 〈S , s〉 → s′

Lemma 2

For every statement S and states s and s ′, and number k , we
have 〈S , s〉 ⇒k s′ implies 〈S , s〉 → s′

Proof (sketch). The proof proceeds by induction on k

The equivalence of the two semantics follows directly from Lemma 1
and 2.

R. De Nicola (IMT-Lucca) FoTSE@LMU 28 / 32

Operational Semantics: Natural vs. SOS

Now we know that the two semantics are equivalent; we can ask

which one is better?

It is is largely a matter of taste

For some language constructs, it could be easy to specify the
semantics in one style but difficult or even impossible in the other

There are situations where equivalent semantics can be specified
in the two styles but where one of the semantics is to be preferred
because of a particular application

R. De Nicola (IMT-Lucca) FoTSE@LMU 29 / 32

Operational Semantics: Natural vs. SOS

Now we know that the two semantics are equivalent; we can ask

which one is better?

It is is largely a matter of taste

For some language constructs, it could be easy to specify the
semantics in one style but difficult or even impossible in the other

There are situations where equivalent semantics can be specified
in the two styles but where one of the semantics is to be preferred
because of a particular application

R. De Nicola (IMT-Lucca) FoTSE@LMU 29 / 32

Operational Semantics: Natural vs. SOS

Now we know that the two semantics are equivalent; we can ask

which one is better?

It is is largely a matter of taste

For some language constructs, it could be easy to specify the
semantics in one style but difficult or even impossible in the other

There are situations where equivalent semantics can be specified
in the two styles but where one of the semantics is to be preferred
because of a particular application

R. De Nicola (IMT-Lucca) FoTSE@LMU 29 / 32

Operational Semantics: Natural vs. SOS

Consider While +abort

abort

The statement abort stops the execution of the complete program

⇒ no rule is added to the two semantics

Natural Semantics versus Structural Operational Semantics

In the natural semantics, we cannot distinguish between looping
(while true do skip) and abnormal termination (abort)

In a SOS, looping is reflected by infinite derivation sequences and
abnormal termination by finite ones ending in a stuck configuration

Workaround
Model abnormal termination by normal termination, but in a special
error configuration.

R. De Nicola (IMT-Lucca) FoTSE@LMU 30 / 32

Operational Semantics: Natural vs. SOS

Consider While +abort

abort

The statement abort stops the execution of the complete program

⇒ no rule is added to the two semantics

Natural Semantics versus Structural Operational Semantics

In the natural semantics, we cannot distinguish between looping
(while true do skip) and abnormal termination (abort)

In a SOS, looping is reflected by infinite derivation sequences and
abnormal termination by finite ones ending in a stuck configuration

Workaround
Model abnormal termination by normal termination, but in a special
error configuration.

R. De Nicola (IMT-Lucca) FoTSE@LMU 30 / 32

Operational Semantics: Natural vs. SOS

Consider While +abort

abort

The statement abort stops the execution of the complete program

⇒ no rule is added to the two semantics

Natural Semantics versus Structural Operational Semantics

In the natural semantics, we cannot distinguish between looping
(while true do skip) and abnormal termination (abort)

In a SOS, looping is reflected by infinite derivation sequences and
abnormal termination by finite ones ending in a stuck configuration

Workaround
Model abnormal termination by normal termination, but in a special
error configuration.

R. De Nicola (IMT-Lucca) FoTSE@LMU 30 / 32

Operational Semantics: Natural vs. SOS

Consider While +or

Non-determinism

The statement S1 or S2 can non-deterministically choose to execute
either S1 or S2

Natural Semantics versus Structural Operational Semantics

In the natural semantics, non-determinism suppresses looping, if
possible (e.g., (while true do skip) or (x := 2 ; x := x+ 2))

In a SOS, non-determinism does not suppress looping

R. De Nicola (IMT-Lucca) FoTSE@LMU 31 / 32

Operational Semantics: Natural vs. SOS

Consider While +or

Non-determinism

The statement S1 or S2 can non-deterministically choose to execute
either S1 or S2

Natural Semantics versus Structural Operational Semantics

In the natural semantics, non-determinism suppresses looping, if
possible (e.g., (while true do skip) or (x := 2 ; x := x+ 2))

In a SOS, non-determinism does not suppress looping

R. De Nicola (IMT-Lucca) FoTSE@LMU 31 / 32

Operational Semantics: Natural vs. SOS

Consider While +par

Parallelism

The statement S1 par S2 can interleave the execution of S1 and S2

Natural Semantics versus Structural Operational Semantics

In the natural semantics, we cannot express interleaving of computations
(indeed, the execution of the immediate constituents is an atomic entity)

In a SOS, we can easily express interleaving (indeed, we concentrate on
the small steps of the computation)

R. De Nicola (IMT-Lucca) FoTSE@LMU 32 / 32

Operational Semantics: Natural vs. SOS

Consider While +par

Parallelism

The statement S1 par S2 can interleave the execution of S1 and S2

Natural Semantics versus Structural Operational Semantics

In the natural semantics, we cannot express interleaving of computations
(indeed, the execution of the immediate constituents is an atomic entity)

In a SOS, we can easily express interleaving (indeed, we concentrate on
the small steps of the computation)

R. De Nicola (IMT-Lucca) FoTSE@LMU 32 / 32

