Formal Techniques for Software Engineering: A Simple Imperative Programming language

Rocco De Nicola

IMT Institute for Advanced Studies, Lucca rocco.denicola@imtlucca.it

April 2013

Lesson 3

R. De Nicola (IMT-Lucca)

The While language

• While is a very simple imperative programming language

 Specifically devised for illustrating the different approaches to program semantics

For While shall study:

- BNF syntax
- Operational Semantics
 - Natural semantics (or *big-step* semantics)
 - Structural Operational Semantics (or small-step semantics)
- Denotational semantics

The While language: syntax

Meta-variables and syntactic categories

- *n* will range over numerals, Num
- x will range over variables, Var
- a will range over arithmetic expressions, Aexp
- b will range over boolean expressions, Bexp
- S will range over statements, Stm

Syntax

$$a ::= n | x | a_1 + a_2 | a_1 \star a_2 | a_1 - a_2$$

b ::= true | false | $a_1 = a_2$ | $a_1 \leq a_2$ | $\neg b$ | $b_1 \wedge b_2$

$$S$$
 ::= x := a | skip | S_1 ; S_2 | if b then S_1 else S_2 | while b do S

Abstract syntax vs. concrete syntax

Abstract syntax

$$a ::= n | x | a_1 + a_2 | a_1 \star a_2 | a_1 - a_2$$

b ::= true | false | $a_1 = a_2$ | $a_1 \leq a_2$ | $\neg b$ | $b_1 \wedge b_2$

 $S ::= x := a \mid \text{skip} \mid S_1; S_2 \mid \text{if } b \text{ then } S_1 \text{ else } S_2 \mid$ $\mid \text{ while } b \text{ do } S$

- The structure of numerals and variables is assumed as given
- A syntactic term could be generated by more than one syntax tree
- Concrete syntax permits deriving unique trees but is definitely more cumbersome than abstract syntax
- to resolve ambiguities, we use:
 - brackets (...)
 - operator precedences (+ binds more than *, ...,

Abstract syntax vs. concrete syntax

Abstract syntax

$$a ::= n | x | a_1 + a_2 | a_1 \star a_2 | a_1 - a_2$$

b ::= true | false | $a_1 = a_2$ | $a_1 \leq a_2$ | $\neg b$ | $b_1 \wedge b_2$

- $S ::= x := a \mid \text{skip} \mid S_1; S_2 \mid \text{if } b \text{ then } S_1 \text{ else } S_2$ $\mid \text{ while } b \text{ do } S$
 - The structure of numerals and variables is assumed as given
 - A syntactic term could be generated by more than one syntax tree
 - Concrete syntax permits deriving unique trees but is definitely more cumbersome than abstract syntax
 - to resolve ambiguities, we use:
 - brackets (...)
 - operator precedences (+ binds more than $\star, \ldots,$)

Abstract syntax vs. concrete syntax

More than one syntax tree could correspond to a program:

Semantics of While

The semantics of **While** is given by defining semantic relations for each of the syntactic categories

For each syntactic category the semantics of its terms is defined **compositionally**, i.e. there is a semantic clause:

- for each basic elements of the syntactic category
- for each construct for building composite elements

The semantics of composite elements is defined in terms of the semantics of the direct components.

- The operational and denotational approaches specify semantic relations for the statements of While
- The semantic functions for numerals and arithmetic or boolean expressions are specified once and for all.

Natural Numbers

In the rest of the lectures the structure of numerals will be left unspecified

 \Longrightarrow the semantic function for numerals is unspecified too

An example of numerals definition

Numerals in the binary system:

 $n ::= 0 \mid 1 \mid n 0 \mid n 1$

Semantics Function for numerals

Semantics of numerals is defined by function

 $\mathcal{N} \, : \, Num \to Z$

Natural Numbers

In the rest of the lectures the structure of numerals will be left unspecified

 \Longrightarrow the semantic function for numerals is unspecified too

An example of numerals definition Numerals in the *binary* system:

Semantics Function for numerals

Semantics of numerals is defined by function

 $\mathcal{N} \, : \, Num \to Z$

In the rest of the lectures the structure of numerals will be left unspecified

 \implies the semantic function for numerals is unspecified too

An example of nume	era	als de	efini	tior	ı			
Numerals in the bina	ar_	y sys	tem	:				
n	ı	::=	0		1	<i>n</i> 0		<i>n</i> 1

Semantics Function for numerals

Semantics of numerals is defined by function

 $\mathcal{N}\,:\,Num\to Z$

In the rest of the lectures the structure of numerals will be left unspecified

 \implies the semantic function for numerals is unspecified too

An example of num	era	als de	efin	itio	n		
Numerals in the bin	nar <u>.</u>	y sys	terr	1:			
1	п	::=	0		1	<i>n</i> 0	<i>n</i> 1

Semantics Function for numerals

Semantics of numerals is defined by function

 $\mathcal{N} \, : \, Num \to Z$

Semantics of Binary Numerals

 $\mathcal{N}: Num \rightarrow \ Z$

• 0 and 1 are elements of Z

 $\bullet \ + \ and \ \cdot \ are \ arithmetic \ operations \ in \ \ Z \ .$

Expression variables and state

The semantics of an expression that contains variables depends on the values of such variables.

The State Function

The Function State = Var $\rightarrow Z$ associates to each variable its current value

Notation

Function State is written as collection of pairs of the form $x \mapsto n$:

$$[x\mapsto 5, y\mapsto 7, z\mapsto 0]$$

State Update

$$(s[y \mapsto v]) \; x = \left\{ egin{array}{cc} v & ext{if } x = y \ s \; x & ext{if } x
eq y \end{array}
ight.$$

R. De Nicola (IMT-Lucca)

Arithmetic expressions

The semantics of arithmetic expressions is defined by function

 \mathcal{A} : Aexp \rightarrow (State \rightarrow Z)

that takes its parameters one at a time:

- When an arithmetic expression a is provided, function $\mathcal{A}[\![a]\!]$ is obtained; i.e. a function State $\rightarrow \mathbb{Z}$
- The value of *a* is obtained when a state *s* is provided.

$$\mathcal{A}\llbracket n \rrbracket s = \mathcal{N}\llbracket n \rrbracket$$
$$\mathcal{A}\llbracket n \rrbracket s = s x$$
$$\mathcal{A}\llbracket a_1 + a_2 \rrbracket s = \mathcal{A}\llbracket a_1 \rrbracket s + \mathcal{A}\llbracket a_2 \rrbracket s$$
$$\mathcal{A}\llbracket a_1 \star a_2 \rrbracket s = \mathcal{A}\llbracket a_1 \rrbracket s \cdot \mathcal{A}\llbracket a_2 \rrbracket s$$
$$\mathcal{A}\llbracket a_1 \star a_2 \rrbracket s = \mathcal{A}\llbracket a_1 \rrbracket s \cdot \mathcal{A}\llbracket a_2 \rrbracket s$$
$$\mathcal{A}\llbracket a_1 - a_2 \rrbracket s = \mathcal{A}\llbracket a_1 \rrbracket s - \mathcal{A}\llbracket a_2 \rrbracket s$$

R. De Nicola (IMT-Lucca)

Boolean expressions

Semantics of boolean expressions is defined by function

 \mathcal{B} : Bexp \rightarrow (State \rightarrow {tt, ff})

$$egin{array}{rll} \mathcal{B}\llbracket ext{false}
rbracket s = ext{ff} \ \mathcal{B}\llbracket a_1 = a_2
rbracket s = & \left\{ egin{array}{rll} ext{tt} & ext{if } \mathcal{A}\llbracket a_1
rbracket s = \mathcal{A}\llbracket a_2
rbracket s \ ext{ff} & ext{if } \mathcal{A}\llbracket a_1
rbracket s = \mathcal{A}\llbracket a_2
rbracket s \ ext{ff} & ext{if } \mathcal{A}\llbracket a_1
rbracket s = \mathcal{A}\llbracket a_2
rbracket s \ ext{ff} & ext{if } \mathcal{A}\llbracket a_1
rbracket s = \mathcal{A}\llbracket a_2
rbracket s \ ext{ff} & ext{if } \mathcal{A}\llbracket a_1
rbracket s = \mathcal{A}\llbracket a_2
rbracket s \ ext{ff} & ext{if } \mathcal{A}\llbracket a_1
rbracket s = \mathcal{A}\llbracket a_2
rbracket s \ ext{ff} & ext{if } \mathcal{A}\llbracket a_1
rbracket s = \mathcal{A}\llbracket a_2
rbracket s \ ext{ff} & ext{if } \mathcal{A}\llbracket a_1
rbracket s = \mathcal{A}\llbracket a_2
rbracket s \ ext{ff} & ext{if } \mathcal{A}\llbracket a_1
rbracket s = \mathcal{A}\llbracket a_2
rbracket s \ ext{ff} & ext{if } \mathcal{A}\llbracket a_1
rbracket s = \mathcal{A}\llbracket a_2
rbracket s \ ext{ff} & ext{if } \mathcal{A}\llbracket a_1
rbracket s = \mathcal{A}\llbracket a_2
rbracket s \ ext{ff} & ext{if } \mathcal{A}\llbracket a_1
rbracket s = \mathcal{A}\llbracket a_2
rbracket s \ ext{ff} & ext{if } \mathcal{A}\llbracket a_1
rbracket s = \mathcal{A}\llbracket a_2
rbracket s \ ext{ff} & ext{if } \mathcal{B}\llbracket b_1
rbracket s = ext{ff} \ ext{ff} & ext{if } \mathcal{B}\llbracket s = ext{ff} \ ext{ff} & ext{if } \mathcal{B}\llbracket b_1
rbracket s = ext{ff} \ ext{ff} & ext{if } \mathcal{B}\llbracket b_1
rbracket s = ext{ff} \ ext{ff} & ext{if } \mathcal{B}\llbracket b_1
rbracket s = ext{ff} \ ext{ff} & ext{if } \mathcal{B}\llbracket b_1
rbracket s = ext{ff} \ ext{ff} & ext{if } \mathcal{B}\llbracket b_1
rbracket s = ext{ff} \ ext{ff} & ext{if } \mathcal{B}\llbracket b_1
rbracket s = ext{ff} \ ext{if } \mathcal{B}\llbracket b_1
rbracket s = ext{ff} \ ext{if } \mathcal{B}\llbracket b_1
rbracket s = ext{ff} \ ext{if } \mathcal{B}\llbracket b_1
rbracket s = ext{ff} \ ext{if } \mathcal{B}\llbracket b_1
rbracket s = ext{ff} \ ext{if } \mathcal{B}\llbracket b_1
rbracket s = ext{ff} \ ext{if } \mathcal{B}\llbracket b_1
rbracket s = ext{ff} \ ext{if } \mathcal{B}\llbracket b_1
rbracket s = ext{ff} \ ext{if } \mathcal{B}\llbracket b_1
rbracket s = ext{if } \mathbb{F} \ ext{if } \mathcal{B}\llbracket b_1
rbracket s = ext{if } \mathbb{F} \ ext{if } \mathcal{B}\llbracket rbracket s \ ext{if } \mathcal{B}
rbracket s \ ext{if$$

Operational Semantics

The Operational semantics describes an abstraction of how a program is executed on a machine and ignores

- the use of registers
- the actual address of variables
- machine architectures
- implementation strategies

Small-step vs. big-step semantics

- Small-step describes how *individual steps* of computations take place and hides many execution details
- Big-step describes how the *overall* results of executions are obtained and hides even more execution details

Small-step vs. big-step semantics

Small-steps Semantics

Structural Operational Semantics (SOS) describes how *individual steps* of computations take place:

$$\begin{array}{ll} \langle \mathbf{z} := \mathbf{x}; \ \mathbf{x} := \mathbf{y}; \ \mathbf{y} := \mathbf{z}, & [\mathbf{x} \mapsto \mathbf{5}, \ \mathbf{y} \mapsto \mathbf{7}, \ \mathbf{z} \mapsto \mathbf{0}] \rangle \\ \Rightarrow & \langle \mathbf{x} := \mathbf{y}; \ \mathbf{y} := \mathbf{z}, & [\mathbf{x} \mapsto \mathbf{5}, \ \mathbf{y} \mapsto \mathbf{7}, \ \mathbf{z} \mapsto \mathbf{5}] \rangle \\ \Rightarrow & \langle \mathbf{y} := \mathbf{z}, & [\mathbf{x} \mapsto \mathbf{7}, \ \mathbf{y} \mapsto \mathbf{7}, \ \mathbf{z} \mapsto \mathbf{5}] \rangle \\ \Rightarrow & & [\mathbf{x} \mapsto \mathbf{7}, \ \mathbf{y} \mapsto \mathbf{5}, \ \mathbf{z} \mapsto \mathbf{5}] \end{array}$$

Big-step Semantics

Natural Semantics describes how the *overall* results of executions are obtained:

$$\langle z{:=}x; \ x{:=}y; \ y{:=}z, \quad [x{\mapsto}\mathbf{5}, \ y{\mapsto}\mathbf{7}, \ z{\mapsto}\mathbf{0}]\rangle \ \rightarrow \ [x{\mapsto}\mathbf{7}, \ y{\mapsto}\mathbf{5}, \ z{\mapsto}\mathbf{5}]$$

Natural Semantics of While

Transition relation

The semantics defines the relationship between the *initial* and the *final* state of an execution. For each statement *S*

$$\langle S , s \rangle
ightarrow s'$$

specifies the relationship between the initial state s and the final state s'

Note

- The intuitive meaning of a step is that the execution of *S* from *s* will terminate and the resulting state will be *s'*
- The rôle of a While statement is to change the state
 - Expressions only inspect the state
 - statements inspect and modify the state

Natural Semantics: transition relation

$[ass_{ns}]$	$\langle x:=a,s angle ightarrow s[x\mapsto \mathcal{A}[\![a]\!]s]$
$[\mathrm{skip}_{\mathrm{ns}}]$	$\langle \texttt{skip}, s angle o s$
$\left[\mathrm{comp_{ns}}\right]$	$\frac{\langle S_1, s \rangle \to s', \langle S_2, s' \rangle \to s''}{\langle S_1; S_2, s \rangle \to s''}$
$[\mathrm{if}^{\mathrm{tt}}_{\mathrm{ns}}]$	$\frac{\langle S_1,s\rangle \to s'}{\langle \texttt{if} b \texttt{then} S_1 \texttt{else} S_2,s\rangle \to s'} \;\;\texttt{if} \mathcal{B}[\![b]\!]s = \texttt{tt}$
$[\mathrm{if}_{\mathrm{ns}}^{\mathrm{ff}}]$	$\frac{\langle S_2,s\rangle \to s'}{\langle \texttt{if} b \texttt{then} S_1 \texttt{else} S_2,s\rangle \to s'} \ \text{ if } \mathcal{B}[\![b]\!]s = \texttt{ff}$
$[\text{while}_{\text{ns}}^{\text{tt}}]$	$\frac{\langle S, s \rangle \to s', \langle \texttt{while} \ b \ \texttt{do} \ S, s' \rangle \to s''}{\langle \texttt{while} \ b \ \texttt{do} \ S, s \rangle \to s''} \ \text{ if } \mathcal{B}[\![b]\!]s = \texttt{tt}$
$[\mathrm{while}_{\mathrm{ns}}^{\mathrm{ff}}]$	$\langle extsf{while} \; b \; extsf{do} \; S, \; s angle o s \; extsf{if} \; \mathcal{B}[\![b]\!]s = extsf{ff}$

Two exercises

Determine the progress of the two programs below

•
$$(z := x; x := y); y := z$$
 with $[x \mapsto 5, y \mapsto 7, z \mapsto 0]$

Factorial program (x!)
 y := 1; while ¬(x = 1) do (y := y ★ x; x := x - 1) with [x → 3]
 according to the natural semantics for While.

Natural Semantics: semantical equivalence

Example

Consider

while $b \operatorname{do} S$ and if $b \operatorname{then} (S ; \operatorname{while} b \operatorname{do} S)$ else skip

They are syntactically different

• Are they semantically equivalent?

Semantical equivalence

Two statements S_1 and S_2 are **semantically equivalent** if for all states *s* and *s'*

$$\langle S_1, s \rangle \to s'$$
 if and only if $\langle S_2, s \rangle \to s'$

Natural Semantics: semantical equivalence

Example

Consider

while $b \operatorname{do} S$ and if $b \operatorname{then} (S ; \operatorname{while} b \operatorname{do} S)$ else skip

- They are syntactically different
- Are they semantically equivalent?
- Do we have: if $\langle while \ b \ do \ S, s \rangle \to s''$ then $\langle if \ b \ then \ (S; while \ b \ do \ S) \ else \ skip, s \rangle \to s''$

and viceversa?

Semantical equivalence

Two statements S_1 and S_2 are **semantically equivalent** if for all states s and s'

$$\langle S_1, s \rangle \to s'$$
 if and only if $\langle S_2, s \rangle \to s'$

A natural semantics is deterministic if for all S, s, s' and s''

$$\langle S, s \rangle \to s' \text{ and } \langle S, s \rangle \to s'' \text{ imply } s' = s''$$

Theorem

The natural semantics of **While** is deterministic

A natural semantics is deterministic if for all S, s, s' and s''

$$\langle S, s \rangle \to s' \text{ and } \langle S, s \rangle \to s'' \text{ imply } s' = s''$$

Theorem

The natural semantics of While is deterministic

A natural semantics is deterministic if for all S, s, s' and s''

 $\langle S, s \rangle \to s' \text{ and } \langle S, s \rangle \to s'' \text{ imply } s' = s''$

Theorem

The natural semantics of While is deterministic

Proof technique: induction on the depth of the derivation trees

- Prove that the property holds for all the simple derivation trees by showing that it holds for the **axioms** of the transition rules
- Prove that the property holds for all composite derivation trees: For each rule assume that the property holds for its premises (*induction hypothesis*) and prove that it also holds for the conclusion of the rule provided that the conditions of the rule are satisfied

A natural semantics is deterministic if for all S, s, s' and s''

$$\langle S, s \rangle \to s' \text{ and } \langle S, s \rangle \to s'' \text{ imply } s' = s''$$

Theorem

The natural semantics of While is deterministic

Proof (sketch). Some cases:

- [ass_{ns}]
- [comp_{ns}]

A natural semantics is deterministic if for all S, s, s' and s''

$$\langle S, s \rangle \to s' \text{ and } \langle S, s \rangle \to s'' \text{ imply } s' = s''$$

Theorem

The natural semantics of While is deterministic

Remark

We cannot use structural induction on the statement *S* when proving the theorem because the natural semantics of while b do S is defined in terms of itself (rule [while_{tt}]).Not well founded

Natural Semantics: statements meaning

Meanings as functions

The **meaning** of **While** statements according to the natural semantics is the (partial) function

$$egin{aligned} &\mathcal{S}_{ ext{ns}}\colon \mathbf{Stm}
ightarrow (\mathbf{State} \hookrightarrow \mathbf{State}) \ &\mathcal{S}_{ ext{ns}} \llbracket S
rbracket s = \left\{ egin{aligned} &s' & ext{if } \langle S, \, s
angle
ightarrow s' \ & ext{undef} & ext{otherwise} \end{aligned}
ight.$$

Why is it a partial function?

Because, e.g., the statement

while true do skip

Natural Semantics: statements meaning

Meanings as functions

The **meaning** of **While** statements according to the natural semantics is the (partial) function

$$egin{aligned} &\mathcal{S}_{ ext{ns}}\colon \mathbf{Stm} o (\mathbf{State} \hookrightarrow \mathbf{State}) \ &\mathcal{S}_{ ext{ns}} \llbracket S
rbracket s = \left\{ egin{aligned} &s' & ext{if } \langle S, \, s
angle o s' \ & ext{undef} & ext{otherwise} \end{aligned}
ight.$$

Why is it a partial function?

Because, e.g., the statement

while true do skip

Structural Operational Semantics (SOS)

The emphasis of SOS semantics is on the individual steps of the execution

- the execution of assignments
- the execution of tests

Transition relation

 $\langle S, s \rangle \Rightarrow \gamma$ expresses the *first step* of the execution of *S* from state *s* and there are two possible outcomes:

•
$$\gamma = \langle S', s' \rangle$$
, i.e. an *intermediate* configuration

• $\gamma = s'$, i.e. it is a *final* state

A derivation sequence of a statement is either

- a finite sequence of transitions, or
- an infinite sequence of transitions

Structural Operational Semantics: transition relation

$[ass_{sos}]$	$\langle x := a, s \rangle \Rightarrow s[x \mapsto \mathcal{A}\llbracket a \rrbracket s]$
$[\mathrm{skip}_{\mathrm{sos}}]$	$\langle \texttt{skip}, s angle \Rightarrow s$
$[\mathrm{comp}_{\mathrm{sos}}^1]$	$\frac{\langle S_1, s \rangle \Rightarrow \langle S'_1, s' \rangle}{\langle S_1; S_2, s \rangle \Rightarrow \langle S'_1; S_2, s' \rangle}$
$[\mathrm{comp}_{\mathrm{sos}}^2]$	$\frac{\langle S_1, s \rangle \Rightarrow s'}{\langle S_1; S_2, s \rangle \Rightarrow \langle S_2, s' \rangle}$
$[\mathrm{if}_{\mathrm{sos}}^{\mathrm{tt}}]$	$\langle \texttt{if} \ b \ \texttt{then} \ S_1 \ \texttt{else} \ S_2, \ s \rangle \Rightarrow \langle S_1, \ s \rangle \ \texttt{if} \ \mathcal{B}[\![b]\!]s = \texttt{tt}$
$[\mathrm{if}^{\mathrm{ff}}_{\mathrm{sos}}]$	$\langle \texttt{if} \ b \ \texttt{then} \ S_1 \ \texttt{else} \ S_2, \ s angle \Rightarrow \langle S_2, \ s angle \ \texttt{if} \ \mathcal{B}\llbracket b \rrbracket s = \texttt{ff}$
$[\text{while}_{\text{sos}}]$	$\langle \texttt{while} \ b \ \texttt{do} \ S, \ s \rangle \Rightarrow$
	$\langle \texttt{if} \ b \ \texttt{then} \ (S; \texttt{while} \ b \ \texttt{do} \ S) \ \texttt{else} \ \texttt{skip}, \ s angle$

Structural Operational Semantics: examples

Two exercises

Determine the progress of the two programs below

•
$$(z := x; x := y); y := z$$
 with $[x \mapsto 5, y \mapsto 7, z \mapsto 0]$

Factorial program (x!) y := 1; while ¬(x = 1) do (y := y ★ x; x := x - 1) with [x → 3] according to the SOS semantics for While.

Structural Operational Semantics: proof by induction

Proof technique: induction on the length of the derivation sequences

For SOS, it is useful to conduct proofs by induction on the lengths of the considered finite derivation sequences

- Prove that the property holds for all derivation sequences of length
 0
- Prove that the property holds for all finite derivation sequences: Assume that the property holds for all derivation sequences of length at most k (*induction hypothesis*) and show that it holds for derivation sequences of length k + 1

Lemma

If $\langle S_1 ; S_2 , s \rangle \Rightarrow^k s''$, then $\exists s', k_1, k_2$ such that

 $k = k_1 + k_2$ and $\langle S_1, s \rangle \Rightarrow^{k_1} s'$ and $\langle S_2, s' \rangle \Rightarrow^{k_2} s''$ **Proof (sketch).** By induction on the length of the derivation sequence $\langle S_1; S_2, s \rangle \Rightarrow^k s''$ (i.e., by induction on the number *k*).

Structural Operational Semantics: proof by induction

Proof technique: induction on the length of the derivation sequences

For SOS, it is useful to conduct proofs by induction on the lengths of the considered finite derivation sequences

- Prove that the property holds for all derivation sequences of length
 0
- Prove that the property holds for all finite derivation sequences: Assume that the property holds for all derivation sequences of length at most k (*induction hypothesis*) and show that it holds for derivation sequences of length k + 1

Lemma

If
$$\langle S_1 ; S_2 , s \rangle \Rightarrow^k s''$$
, then $\exists s', k_1, k_2$ such that

 $k = k_1 + k_2$ and $\langle S_1, s \rangle \Rightarrow^{k_1} s'$ and $\langle S_2, s' \rangle \Rightarrow^{k_2} s''$ **Proof (sketch).** By induction on the length of the derivation sequence $S_1 ; S_2, s \rangle \Rightarrow^k s''$ (i.e., by induction on the number *k*).

Structural Operational Semantics: proof by induction

Proof technique: induction on the length of the derivation sequences

For SOS, it is useful to conduct proofs by induction on the lengths of the considered finite derivation sequences

- Prove that the property holds for all derivation sequences of length
 0
- Prove that the property holds for all finite derivation sequences: Assume that the property holds for all derivation sequences of length at most k (*induction hypothesis*) and show that it holds for derivation sequences of length k + 1

Lemma

If
$$\langle S_1 ; S_2 , s \rangle \Rightarrow^k s''$$
, then $\exists s', k_1, k_2$ such that

 $k = k_1 + k_2$ and $\langle S_1, s \rangle \Rightarrow^{k_1} s'$ and $\langle S_2, s' \rangle \Rightarrow^{k_2} s''$ **Proof (sketch).** By induction on the length of the derivation sequence $\langle S_1; S_2, s \rangle \Rightarrow^k s''$ (i.e., by induction on the number *k*).

Structural Operational Semantics: deterministic semantics

Definition

A structural operational semantics is deterministic if for all S, s, γ and γ' we have:

$$\langle S, s \rangle \Rightarrow \gamma \text{ and } \langle S, s \rangle \Rightarrow \gamma' \text{ imply } \gamma = \gamma'$$

Theorem

The structural operational semantics of **While** is deterministic

Structural Operational Semantics: deterministic semantics

Definition

A structural operational semantics is deterministic if for all S, s, γ and γ' we have:

$$\langle S, s \rangle \Rightarrow \gamma \text{ and } \langle S, s \rangle \Rightarrow \gamma' \text{ imply } \gamma = \gamma'$$

Theorem

The structural operational semantics of While is deterministic

SOS: Semantic Equivalence

Semantical equivalence

- S_1 and S_2 are **semantically equivalent** if for all states s
 - $\langle S_1, s \rangle \Rightarrow^* \gamma$ iff $\langle S_2, s \rangle \Rightarrow^* \gamma$ where γ is either stuck or terminal
 - there is an infinite derivation sequence from $\langle S_1, s \rangle$ *iff* there is an infinite derivation sequence from $\langle S_2, s \rangle$

Example

while b do S \qquad if b then (S ; while b do S) else skip

- They are syntactically different
- Are they semantically equivalent?

SOS: Semantic Equivalence

Semantical equivalence

- S_1 and S_2 are semantically equivalent if for all states s
 - $\langle S_1, s \rangle \Rightarrow^* \gamma$ iff $\langle S_2, s \rangle \Rightarrow^* \gamma$ where γ is either stuck or terminal
 - there is an infinite derivation sequence from $\langle S_1, s \rangle$ *iff* there is an infinite derivation sequence from $\langle S_2, s \rangle$

Example

while $b \operatorname{do} S$ if $b \operatorname{then} (S; \operatorname{while} b \operatorname{do} S)$ else skip

- They are syntactically different
- Are they semantically equivalent?

SOS: statements meaning

Meanings as functions

The **meaning** of **While** statements according to the SOS semantics is the (partial) function

$$\mathcal{S}_{sos}$$
: Stm \rightarrow (State \hookrightarrow State)

$$\mathcal{S}_{\rm sos}[\![S]\!]s = \begin{cases} s' & \text{if } \langle S, s \rangle \Rightarrow^* s' \\ \underline{\text{undef}} & \text{otherwise} \end{cases}$$

Theorem (Equivalence between nat. sem. and SOS)

For every statement S, we have

$$S_{ns} \llbracket S \rrbracket = S_{sos} \llbracket S \rrbracket$$

This result expresses two properties:

- If the execution of *S* from some state terminates in one of the semantics, then it also terminates in the other and the resulting states will be equal
- If the execution of *S* from some state loops in one of the semantics, then it will also loop in the other

Lemma 1

For every statement *S* and states *s* and *s'*, we have $\langle S, s \rangle \rightarrow s'$ implies $\langle S, s \rangle \Rightarrow^* s'$

Proof (sketch). The proof proceeds by induction on the shape of the derivation tree for $\langle S, s \rangle \rightarrow s'$

Lemma 2

For every statement *S* and states *s* and *s'*, and number *k*, we have $\langle S, s \rangle \Rightarrow^k s'$ implies $\langle S, s \rangle \rightarrow s'$

Proof (sketch). The proof proceeds by induction on *k*

The equivalence of the two semantics follows directly from Lemma 1 and 2.

R. De Nicola (IMT-Lucca)

Lemma 1

For every statement S and states s and s', we have

$$\langle S, s \rangle \to s' \quad \text{implies} \quad \langle S, s \rangle \Rightarrow^* s'$$

Proof (sketch). The proof proceeds by induction on the shape of the derivation tree for $(S, s) \rightarrow s'$

Lemma 2

For every statement *S* and states *s* and *s'*, and number *k*, we have $\langle S, s \rangle \Rightarrow^k s'$ implies $\langle S, s \rangle \rightarrow s'$

Proof (sketch). The proof proceeds by induction on *k*

The equivalence of the two semantics follows directly from Lemma 1 and 2.

R. De Nicola (IMT-Lucca)

Lemma 1

For every statement S and states s and s', we have

$$\langle S, s \rangle \to s' \quad \text{implies} \quad \langle S, s \rangle \Rightarrow^* s'$$

Proof (sketch). The proof proceeds by induction on the shape of the derivation tree for $(S, s) \rightarrow s'$

Lemma 2

For every statement *S* and states *s* and *s'*, and number *k*, we have $\langle S, s \rangle \Rightarrow^{k} s'$ implies $\langle S, s \rangle \rightarrow s'$

Proof (sketch). The proof proceeds by induction on k

The equivalence of the two semantics follows directly from Lemma 1 and 2.

R. De Nicola (IMT-Lucca)

Lemma 1

For every statement S and states s and s', we have

$$\langle S, s \rangle \to s' \quad \text{implies} \quad \langle S, s \rangle \Rightarrow^* s'$$

Proof (sketch). The proof proceeds by induction on the shape of the derivation tree for $(S, s) \rightarrow s'$

Lemma 2

For every statement *S* and states *s* and *s'*, and number *k*, we have $\langle S, s \rangle \Rightarrow^{k} s'$ implies $\langle S, s \rangle \rightarrow s'$

Proof (sketch). The proof proceeds by induction on k

The equivalence of the two semantics follows directly from Lemma 1 and 2.

Lemma 1

For every statement S and states s and s', we have

$$\langle S, s \rangle \to s' \quad \text{implies} \quad \langle S, s \rangle \Rightarrow^* s'$$

Proof (sketch). The proof proceeds by induction on the shape of the derivation tree for $(S, s) \rightarrow s'$

Lemma 2

For every statement *S* and states *s* and *s'*, and number *k*, we have $\langle S, s \rangle \Rightarrow^{k} s'$ implies $\langle S, s \rangle \rightarrow s'$

Proof (sketch). The proof proceeds by induction on k

The equivalence of the two semantics follows directly from Lemma 1 and 2.

Now we know that the two semantics are equivalent; we can ask

which one is better?

- It is is largely a matter of taste
- For some language constructs, it could be easy to specify the semantics in one style but difficult or even impossible in the other
- There are situations where equivalent semantics can be specified in the two styles but where one of the semantics is to be preferred because of a particular application

Now we know that the two semantics are equivalent; we can ask which one is better?

- It is is largely a matter of taste
- For some language constructs, it could be easy to specify the semantics in one style but difficult or even impossible in the other
- There are situations where equivalent semantics can be specified in the two styles but where one of the semantics is to be preferred because of a particular application

Now we know that the two semantics are equivalent; we can ask

which one is better?

- It is a largely a matter of taste
- For some language constructs, it could be easy to specify the semantics in one style but difficult or even impossible in the other
- There are situations where equivalent semantics can be specified in the two styles but where one of the semantics is to be preferred because of a particular application

• Consider While + abort

abort

The statement abort stops the execution of the complete program

 \Rightarrow no rule is added to the two semantics

Natural Semantics versus Structural Operational Semantics

- In the natural semantics, we cannot distinguish between *looping* (while true do skip) and *abnormal termination* (abort)
- In a SOS, looping is reflected by infinite derivation sequences and abnormal termination by finite ones ending in a stuck configuration

Workaround

Model abnormal termination by normal termination, but in a special error configuration.

• Consider While + abort

abort

The statement abort stops the execution of the complete program

 \Rightarrow no rule is added to the two semantics

Natural Semantics versus Structural Operational Semantics

- In the natural semantics, we cannot distinguish between *looping* (while true do skip) and *abnormal termination* (abort)
- In a SOS, *looping* is reflected by infinite derivation sequences and *abnormal termination* by finite ones ending in a stuck configuration

Workaround

Model abnormal termination by normal termination, but in a special error configuration.

• Consider While + abort

abort

The statement abort stops the execution of the complete program

 \Rightarrow no rule is added to the two semantics

Natural Semantics versus Structural Operational Semantics

- In the natural semantics, we cannot distinguish between *looping* (while true do skip) and *abnormal termination* (abort)
- In a SOS, *looping* is reflected by infinite derivation sequences and *abnormal termination* by finite ones ending in a stuck configuration

Workaround

Model abnormal termination by normal termination, but in a special error configuration.

• Consider While + or

Non-determinism

The statement S_1 or S_2 can non-deterministically choose to execute either S_1 or S_2

- In the natural semantics, non-determinism suppresses looping, if possible (e.g., (while true do skip) or (x := 2; x := x + 2))
- In a SOS, non-determinism does not suppress looping

• Consider While + or

Non-determinism

The statement S_1 or S_2 can non-deterministically choose to execute either S_1 or S_2

- In the natural semantics, *non-determinism suppresses looping*, if possible (e.g., (while true do skip) or (x := 2; x := x + 2))
- In a SOS, non-determinism does not suppress looping

• Consider While + par

Parallelism

The statement S_1 par S_2 can interleave the execution of S_1 and S_2

- In the natural semantics, we cannot express interleaving of computations (indeed, the execution of the immediate constituents is an *atomic* entity)
- In a SOS, we can easily express interleaving (indeed, we concentrate on the small steps of the computation)

• Consider While + par

Parallelism

The statement S_1 par S_2 can interleave the execution of S_1 and S_2

- In the natural semantics, we cannot express interleaving of computations (indeed, the execution of the immediate constituents is an *atomic* entity)
- In a SOS, we can easily express interleaving (indeed, we concentrate on the small steps of the computation)