Formal Techniques for Software Engineering: Denotational Semantics

Rocco De Nicola

IMT Institute for Advanced Studies, Lucca
rocco.denicola@imtlucca.it

May 2013

Key motivations

Two main contributions of denotational semantics for programming languages:

- Compositionality
(2) Characterization of recursion

Key motivations

Two main contributions of denotational semantics for programming languages:

- Compositionality
(2) Characterization of recursion

Core ingredients

$$
X=f X
$$

CPOs fixpoints of functions

Functions Representation

Big Questions

- What is a function?
- How do we define a function?

The λ-calculus
We need a formal language for defining

- functions
- functions composition
- functions evaluation
λ-calculus was introduced in the thirties and permits describing all computable functions

λ-calculus (a quick and dirty intro to relevant notation)

A calculus of function composition
λ-abstraction $\lambda x . e$
composition $\quad f \circ g$
β-reduction
$\mathcal{C}[(\lambda x . d) e] \rightsquigarrow \mathcal{C}[d\{e \mapsto x\}]$
(e not a composition)

λ-calculus (a quick and dirty intro to relevant notation)

A calculus of function composition
λ-abstraction $\lambda x . e$
composition $\quad f \circ g$
β-reduction
$\mathcal{C}[(\lambda x . d) e] \rightsquigarrow \mathcal{C}[d\{e \mapsto x\}]$
(e not a composition)
E.g. :

$$
\operatorname{succ} \equiv \lambda x . x+1
$$

λ-calculus (a quick and dirty intro to relevant notation)

A calculus of function composition

λ-abstraction	$\lambda x . e$	x is a variable and e an expression
composition	$f \circ g$	\quad often denoted as $f g$
β-reduction	$\mathcal{C}[(\lambda x . d) e] \rightsquigarrow$	$\mathcal{C}[d\{e \mapsto x\}] \quad$ (e not a composition)

E.g. :

$$
\operatorname{succ} \equiv \lambda x . x+1 \quad \operatorname{succ} 3 \rightsquigarrow 3+1
$$

λ-calculus (a quick and dirty intro to relevant notation)

A calculus of function composition

λ-abstraction	$\lambda x . e$	x is a variable and e an expression
composition	$f \circ g$	\quad often denoted as $f g$
β-reduction	$\mathcal{C}[(\lambda x . d) e] \rightsquigarrow$	$\mathcal{C}[d\{e \mapsto x\}] \quad$ (e not a composition)

E.g. :

$$
\operatorname{succ} \equiv \lambda x \cdot x+1 \quad \operatorname{succ} 3 \rightsquigarrow 3+1 \quad \text { succ succ } \rightsquigarrow(\lambda x \cdot x+1)+1
$$

λ-calculus (a quick and dirty intro to relevant notation)

A calculus of function composition

λ-abstraction	$\lambda x . e$	x is a variable and e an expression
composition	$f \circ g$	\quad often denoted as $f g$
β-reduction	$\mathcal{C}[(\lambda x . d) e] \rightsquigarrow$	$\mathcal{C}[d\{e \mapsto x\}] \quad$ (e not a composition)

E.g. :

$$
\begin{array}{lll}
\text { succ } \equiv \lambda x \cdot x+1 & \text { succ } 3 \rightsquigarrow 3+1 \quad \text { succ succ } \rightsquigarrow(\lambda x \cdot x+1)+1 \\
\text { poly } \equiv \lambda x \cdot x^{2}-3 \cdot x+1 & \text { poly } 5 & 5^{2}-3 \cdot 5+1
\end{array}
$$

λ-calculus (a quick and dirty intro to relevant notation)

A calculus of function composition

λ-abstraction	$\lambda x . e$	x is a variable and e an expression
composition	$f \circ g$	\quad often denoted as $f g$
β-reduction	$\mathcal{C}[(\lambda x . d) e] \rightsquigarrow \mathcal{C}[d\{e \mapsto x\}] \quad$ (e not a composition)	

E.g. :

$$
\begin{array}{ll}
\text { succ } \equiv \lambda x \cdot x+1 & \text { succ } 3 \rightsquigarrow 3+1 \quad \text { succ succ } \rightsquigarrow(\lambda x \cdot x+1)+1 \\
\text { poly } \equiv \lambda x \cdot x^{2}-3 \cdot x+1 & \text { poly } 5 \rightsquigarrow 5^{2}-3 \cdot 5+1
\end{array}
$$

λ-calculus (a quick and dirty intro to relevant notation)

A calculus of function composition

λ-abstraction	$\lambda x . e$	x is a variable and e an expression
composition	$f \circ g$	\quad often denoted as $f g$
β-reduction	$\mathcal{C}[(\lambda x . d) e] \rightsquigarrow$	$\mathcal{C}[d\{e \mapsto x\}] \quad$ (e not a composition)

E.g. :

$$
\begin{array}{ll}
\text { succ } \equiv \lambda x \cdot x+1 & \text { succ } 3 \rightsquigarrow 3+1 \quad \text { succ succ } \rightsquigarrow(\lambda x \cdot x+1)+1 \\
\text { poly } \equiv \lambda x \cdot x^{2}-3 \cdot x+1 & \text { poly } 5 \rightsquigarrow 5^{2}-3 \cdot 5+1 \\
g \equiv \lambda x \cdot \lambda y \cdot x-y & g 34
\end{array}
$$

λ-calculus (a quick and dirty intro to relevant notation)

A calculus of function composition

λ-abstraction	$\lambda x . e$	x is a variable and e an expression
composition	$f \circ g$	\quad often denoted as $f g$
β-reduction	$\mathcal{C}[(\lambda x . d) e] \rightsquigarrow \mathcal{C}[d\{e \mapsto x\}] \quad$ (e not a composition)	

E.g. :

$$
\begin{array}{ll}
\text { succ } \equiv \lambda x \cdot x+1 & \text { succ } 3 \rightsquigarrow 3+1 \quad \text { succ succ } \rightsquigarrow(\lambda x \cdot x+1)+1 \\
\text { poly } \equiv \lambda x \cdot x^{2}-3 \cdot x+1 & \text { poly } 5 \rightsquigarrow 5^{2}-3 \cdot 5+1 \\
g \equiv \lambda x \cdot \lambda y \cdot x-y & g 34 \rightsquigarrow^{2} 3-4
\end{array}
$$

λ-calculus (a quick and dirty intro to relevant notation)

A calculus of function composition

λ-abstraction	$\lambda x . e$	x is a variable and e an expression
composition	$f \circ g$	\quad often denoted as $f g$
β-reduction	$\mathcal{C}[(\lambda x . d) e] \rightsquigarrow \mathcal{C}[d\{e \mapsto x\}] \quad$ (e not a composition)	

E.g. :

$$
\begin{array}{ll}
\text { succ } \equiv \lambda x \cdot x+1 & \text { succ } 3 \rightsquigarrow 3+1 \quad \text { succ succ } \rightsquigarrow(\lambda x \cdot x+1)+1 \\
\text { poly } \equiv \lambda x \cdot x^{2}-3 \cdot x+1 & \text { poly } 5 \rightsquigarrow 5^{2}-3 \cdot 5+1 \\
g \equiv \lambda x \cdot \lambda y \cdot x-y & g 34 \rightsquigarrow^{2} 3-4 \quad \text { g } 3 \rightsquigarrow \lambda y \cdot 3-y
\end{array}
$$

λ-calculus (a quick and dirty intro to relevant notation)

A calculus of function composition

λ-abstraction	$\lambda x . e$	x is a variable and e an expression
composition	$f \circ g$	\quad often denoted as $f g$
β-reduction	$\mathcal{C}[(\lambda x . d) e] \rightsquigarrow \mathcal{C}[d\{e \mapsto x\}] \quad$ (e not a composition)	

E.g. :

$$
\begin{array}{lll}
\text { succ } \equiv \lambda x \cdot x+1 & \text { succ } 3 \rightsquigarrow 3+1 & \text { succ succ } \rightsquigarrow(\lambda x \cdot x+1)+1 \\
\text { poly } \equiv \lambda x \cdot x^{2}-3 \cdot x+1 & \text { poly } 5 \rightsquigarrow 5^{2}-3 \cdot 5+1 \\
g \equiv \lambda x \cdot \lambda y \cdot x-y & g 34 \rightsquigarrow^{2} 3-4 & g 3 \rightsquigarrow \lambda y \cdot 3-y \\
h \equiv \lambda y \cdot \lambda x \cdot x-y & h 34)^{2}-3-3 &
\end{array}
$$

λ-calculus (a quick and dirty intro to relevant notation)

A calculus of function composition

λ-abstraction	$\lambda x . e$	x is a variable and e an expression
composition	$f \circ g$	\quad often denoted as $f g$
β-reduction	$\mathcal{C}[(\lambda x . d) e] \rightsquigarrow \mathcal{C}[d\{e \mapsto x\}] \quad$ (e not a composition)	

E.g. :

$$
\begin{array}{lll}
\text { succ } \equiv \lambda x \cdot x+1 & \text { succ } 3 \rightsquigarrow 3+1 & \text { succ succ } \rightsquigarrow(\lambda x \cdot x+1)+1 \\
\text { poly } \equiv \lambda x \cdot x^{2}-3 \cdot x+1 & \text { poly } 5 \rightsquigarrow 5^{2}-3 \cdot 5+1 \\
g \equiv \lambda x \cdot \lambda y \cdot x-y & g 34 \rightsquigarrow^{2} 3-4 & g 3 \rightsquigarrow \lambda y \cdot 3-y \\
h \equiv \lambda y \cdot \lambda x \cdot x-y & h 34 \rightsquigarrow^{2} 4-3 &
\end{array}
$$

λ-calculus (a quick and dirty intro to relevant notation)

A calculus of function composition

λ-abstraction	$\lambda x . e$	x is a variable and e an expression
composition	$f \circ g$	\quad often denoted as $f g$
β-reduction	$\mathcal{C}[(\lambda x . d) e] \rightsquigarrow$	$\mathcal{C}[d\{e \mapsto x\}] \quad$ (e not a composition)

E.g. :

$$
\begin{array}{lll}
\text { succ } \equiv \lambda x \cdot x+1 & \text { succ } 3 \rightsquigarrow 3+1 & \text { succ succ } \rightsquigarrow(\lambda x \cdot x+1)+1 \\
\text { poly } \equiv \lambda x \cdot x^{2}-3 \cdot x+1 & \text { poly } 5 \rightsquigarrow 5^{2}-3 \cdot 5+1 \\
g \equiv \lambda x \cdot \lambda y \cdot x-y & g 34 \rightsquigarrow^{2} 3-4 & g 3 \rightsquigarrow \lambda y \cdot 3-y \\
h \equiv \lambda y \cdot \lambda x \cdot x-y & h 34 \rightsquigarrow^{2} 4-3 & h x \rightsquigarrow \lambda z \cdot z-x
\end{array}
$$

λ-calculus (a quick and dirty intro to relevant notation)

A calculus of function composition

λ-abstraction	$\lambda x . e$	x is a variable and e an expression
composition	$f \circ g$	\quad often denoted as $f g$
β-reduction	$\mathcal{C}[(\lambda x . d) e] \rightsquigarrow$	$\mathcal{C}[d\{e \mapsto x\}] \quad$ (e not a composition)

E.g. :

$$
\begin{array}{lll}
\text { succ } \equiv \lambda x . x+1 & \text { succ } 3 \rightsquigarrow 3+1 & \text { succ succ } \rightsquigarrow(\lambda x \cdot x+1)+1 \\
\text { poly } \equiv \lambda x \cdot x^{2}-3 \cdot x+1 & \text { poly } 5 \rightsquigarrow 5^{2}-3 \cdot 5+1 \\
g \equiv \lambda x . \lambda y \cdot x-y & g 34 \rightsquigarrow^{2} 3-4 & g 3 \rightsquigarrow \lambda y \cdot 3-y \\
h \equiv \lambda y \cdot \lambda x \cdot x-y & h 34 \rightsquigarrow^{2} 4-3 & h x \rightsquigarrow \lambda z \cdot z-x \\
(\lambda x . x x)(\lambda x \cdot x x) \rightsquigarrow(\lambda x \cdot x x)(\lambda x \cdot x x) \rightsquigarrow(\lambda x \cdot x x)(\lambda x . x x) \rightsquigarrow \ldots
\end{array}
$$

λ-calculus (a quick and dirty intro to relevant notation)

A calculus of function composition

λ-abstraction	$\lambda x . e$	x is a variable and e an expression
composition	$f \circ g$	\quad often denoted as $f g$
β-reduction	$\mathcal{C}[(\lambda x . d) e] \rightsquigarrow$	$\mathcal{C}[d\{e \mapsto x\}] \quad$ (e not a composition)

E.g. :

$$
\begin{array}{lll}
\text { succ } \equiv \lambda x \cdot x+1 & \text { succ } 3 \rightsquigarrow 3+1 & \text { succ succ } \rightsquigarrow(\lambda x \cdot x+1)+1 \\
\text { poly } \equiv \lambda x \cdot x^{2}-3 \cdot x+1 & \text { poly } 5 \rightsquigarrow 5^{2}-3 \cdot 5+1 \\
g \equiv \lambda x . \lambda y \cdot x-y & g 34 \rightsquigarrow^{2} 3-4 & g 3 \rightsquigarrow \lambda y \cdot 3-y \\
h \equiv \lambda y \cdot \lambda x \cdot x-y & h 34 \rightsquigarrow^{2} 4-3 & h x \rightsquigarrow \lambda z \cdot z-x \\
(\lambda x \cdot x x)(\lambda x \cdot x x) \rightsquigarrow(\lambda x \cdot x x)(\lambda x \cdot x x) \rightsquigarrow(\lambda x \cdot x x)(\lambda x \cdot x x) \rightsquigarrow \ldots
\end{array}
$$

non β-reducible expressions are canonical

λ-calculus

- $0 \equiv \lambda f . \lambda x . x$
- $1 \equiv \lambda f . \lambda x . f x$
- $2 \equiv \lambda f . \lambda x . f f x$
- $3 \equiv \lambda f . \lambda x . f f f x$
- ...
- succ $\equiv \lambda n . \lambda f . \lambda x . f(n f x)$
- plus $\equiv \lambda m \cdot \lambda n \cdot \lambda f \cdot \lambda x . m f(n f x) \equiv \lambda m \cdot \lambda n . m$ succ n
- true $\equiv \lambda x . \lambda y . x$
- false $\equiv \lambda x . \lambda y . y$
- and $\equiv \lambda p . \lambda q . p q p$
- or $\equiv \lambda p . \lambda q . p p q$
- not $\equiv \lambda p \cdot \lambda a \cdot \lambda b \cdot p b a$
- cond $\equiv \lambda p \cdot \lambda a \cdot \lambda b \cdot p a b$

An Example Computation

Conditional Statement
$\operatorname{cond}(x, y, z)= \begin{cases}y & \text { if } x=\mathbf{t t} \\ z & \text { if } x=\mathbf{f f}\end{cases}$
Conditional Statement in λ-calculus

- $\mathbf{t t} \equiv \lambda m$. λn. m
- $\mathbf{f f} \equiv \lambda m \cdot \lambda n . n$
- cond $\equiv \lambda a . \lambda b . \lambda c . a b c$

Computing cond (e, y, z)

- Assume $e \rightsquigarrow^{*}$ tt

$$
\begin{aligned}
\operatorname{cond}(e, y, z) & \rightsquigarrow^{*} \operatorname{cond}(\mathbf{t t}, y, z) \equiv(\lambda a . \lambda b . \lambda c . a b c)(\lambda m . \lambda n . m) y z \\
& \rightsquigarrow^{*}(\lambda m . \lambda n . m) y z \rightsquigarrow^{*} y
\end{aligned}
$$

- Check the case $e \rightsquigarrow^{*}$ ff

λ-calculus

Every λ-object is a function

- numbers, boolean constants, states
- arithmetic functions ($+, *, \ldots$)
- boolean predicates (\leq, \wedge, \ldots).
- ...

Recursively defined functions (functions using their own definition) are

λ-calculus

Every λ-object is a function

- numbers, boolean constants, states
- arithmetic functions $(+, *, \ldots)$
- boolean predicates (\leq, \wedge, \ldots).

Main Constructors
All computable functions can be

- defined by means of (more elementary)functions composition
- evaluated by means of β-reductions.

λ-calculus

Every λ-object is a function

- numbers, boolean constants, states
- arithmetic functions ($+, *, \ldots$)
- boolean predicates (\leq, \wedge, \ldots).
- ...

Main Constructors

All computable functions can be

- defined by means of (more elementary)functions composition
- evaluated by means of β-reductions.

Recursion

Recursively defined functions (functions using their own definition) are dealt by means of so called fixed point theory.

Recap of basic assumptions

Syntactic categories

- Num, numerals
- Var, variables
- Aexp, arithmetic expressions
- Bexp, boolean expressions
- Stm, statements

Recap of basic assumptions

Syntactic categories

- Num, numerals
- Var, variables
- Aexp, arithmetic expressions
- Bexp, boolean expressions
- Stm, statements

Semantic Functions
We are assume availability of some (λ-defined) semantic functions:

- $\mathcal{N}: \mathbf{N u m} \rightarrow \mathbf{Z}$
$\bullet: \mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{Z} \quad$ (same for $-, *, \ldots$)
$\bullet \leq: \mathbf{Z} \times \mathbf{Z} \rightarrow\{\mathbf{t t}, \mathbf{f f}\} \quad$ (same for $=, \neq,<, \geq, \ldots$)

Recap of basic assumptions

Syntactic categories

- Num, numerals
- Var, variables
- Aexp, arithmetic expressions
- Bexp, boolean expressions
- Stm, statements

Semantic Functions

We are assume availability of some (λ-defined) semantic functions:

- $\mathcal{N}: \mathbf{N u m} \rightarrow \mathbf{Z}$
- $+: \mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{Z} \quad$ (same for $-, *, \ldots$)
$\bullet \leq: \mathbf{Z} \times \mathbf{Z} \rightarrow\{\mathbf{t t}, \mathbf{f f}\} \quad$ (same for $=, \neq,<, \geq, \ldots$)

State Function

- $s: \mathbf{V a r} \rightarrow \mathbf{Z}$

Compositionality - Example 1

Given a function

$$
\llbracket B \rrbracket: \text { State } \rightarrow\{\mathbf{t t}, \mathbf{f f}\}
$$

and two partial functions

$$
\llbracket C \rrbracket, \llbracket D \rrbracket: \text { State } \hookrightarrow \text { State }
$$

we define the function

$$
\llbracket \text { if } B \text { then } C \text { else } D \rrbracket: \text { State } \hookrightarrow \text { State }
$$

Compositionality - Example 1

Given a function

$$
\llbracket B \rrbracket: \text { State } \rightarrow\{\mathbf{t t}, \mathbf{f f}\}
$$

and two partial functions

$$
\llbracket C \rrbracket, \llbracket D \rrbracket: \text { State } \hookrightarrow \text { State }
$$

we define the function

$$
\llbracket \text { if } B \text { then } C \text { else } D \rrbracket: \text { State } \hookrightarrow \text { State }
$$

$$
\llbracket \text { if } B \text { then } C \text { else } D \rrbracket=\lambda s . \operatorname{cond}(\llbracket B \rrbracket s, \llbracket C \rrbracket s, \llbracket D \rrbracket s) \quad(s \in \text { State })
$$

where

$$
\operatorname{cond}(x, y, z)=\left\{\begin{array}{ll}
y & \text { if } x=\mathbf{t t} \\
z & \text { if } x=\mathbf{f f}
\end{array}\right. \text { is a function composing the }
$$

semantics of the sub-commands

Compositionality - Example 2

Sequential composition

Given partial functions $\llbracket C \rrbracket, \llbracket D \rrbracket:$ State \hookrightarrow State

$$
\llbracket C ; D \rrbracket=\llbracket D \rrbracket \circ \llbracket C \rrbracket=\lambda s . \llbracket D \rrbracket \llbracket C \rrbracket s
$$

$$
\begin{array}{ll}
{\left[\mathrm{comp}_{\mathrm{sos}}^{1}\right]} & \frac{\left\langle S_{1}, s\right\rangle \Rightarrow\left\langle S_{1}^{\prime}, s^{\prime}\right\rangle}{\left\langle S_{1} ; S_{2}, s\right\rangle \Rightarrow\left\langle S_{1}^{\prime} ; S_{2}, s^{\prime}\right\rangle} \\
{\left[\mathrm{comp}_{\mathrm{sos}}^{2}\right]} & \frac{\left\langle S_{1}, s\right\rangle \Rightarrow s^{\prime}}{\left\langle S_{1} ; S_{2}, s\right\rangle \Rightarrow\left\langle S_{2}, s^{\prime}\right\rangle} \\
{\left[\mathrm{comp}_{\mathrm{ns}}\right]} & \frac{\left\langle S_{1}, s\right\rangle \rightarrow s^{\prime},\left\langle S_{2}, s^{\prime}\right\rangle \rightarrow s^{\prime \prime}}{\left\langle S_{1} ; S_{2}, s\right\rangle \rightarrow s^{\prime \prime}}
\end{array}
$$

Compositionality - Example 2

Sequential composition

Given partial functions $\llbracket C \rrbracket, \llbracket D \rrbracket:$ State \hookrightarrow State

$$
\llbracket C ; D \rrbracket=\llbracket D \rrbracket \circ \llbracket C \rrbracket=\lambda s . \llbracket D \rrbracket \llbracket C \rrbracket s
$$

Comparing the denotational with the operational approach

Structural semantics

$$
\begin{array}{ll}
{\left[\mathrm{comp}_{\mathrm{sos}}^{1}\right]} & \frac{\left\langle S_{1}, s\right\rangle \Rightarrow\left\langle S_{1}^{\prime}, s^{\prime}\right\rangle}{\left\langle S_{1} ; S_{2}, s\right\rangle \Rightarrow\left\langle S_{1}^{\prime} ; S_{2}, s^{\prime}\right\rangle} \\
{\left[\mathrm{comp}_{\mathrm{sos}}^{2}\right]} & \frac{\left\langle S_{1}, s\right\rangle \Rightarrow s^{\prime}}{\left\langle S_{1} ; S_{2}, s\right\rangle \Rightarrow\left\langle S_{2}, s^{\prime}\right\rangle}
\end{array}
$$

Natural semantics

$$
\left[\text { comp }_{\mathrm{ns}}\right] \quad \frac{\left\langle S_{1}, s\right\rangle \rightarrow s^{\prime},\left\langle S_{2}, s^{\prime}\right\rangle \rightarrow s^{\prime \prime}}{\left\langle S_{1} ; S_{2}, s\right\rangle \rightarrow s^{\prime \prime}}
$$

Semantics of arithmetic expressions

$\mathcal{A}: \operatorname{Aexp} \rightarrow($ State $\rightarrow \mathbf{Z})$

By structural induction on the syntax of arithmetic expressions (equivalently, by case analysis on the outermost operator).

$$
\begin{aligned}
\mathcal{A} \llbracket n \rrbracket s & =\mathcal{N} \llbracket n \rrbracket \\
\mathcal{A} \llbracket x \rrbracket s & =s x \\
\mathcal{A} \llbracket a_{1}+a_{2} \rrbracket s & =\mathcal{A} \llbracket a_{1} \rrbracket s+\mathcal{A} \llbracket a_{2} \rrbracket s \\
\mathcal{A} \llbracket a_{1} \star a_{2} \rrbracket s & =\mathcal{A} \llbracket a_{1} \rrbracket s \cdot \mathcal{A} \llbracket a_{2} \rrbracket s \\
\mathcal{A} \llbracket a_{1}-a_{2} \rrbracket s & =\mathcal{A} \llbracket a_{1} \rrbracket s-\mathcal{A} \llbracket a_{2} \rrbracket s
\end{aligned}
$$

Semantics of arithmetic expressions

$\mathcal{A}: \operatorname{Aexp} \rightarrow($ State $\rightarrow \mathbf{Z})$

By structural induction on the syntax of arithmetic expressions (equivalently, by case analysis on the outermost operator).

$$
\begin{aligned}
\mathcal{A} \llbracket n \rrbracket s & =\mathcal{N} \llbracket n \rrbracket \\
\mathcal{A} \llbracket x \rrbracket s & =s x \\
\mathcal{A} \llbracket a_{1}+a_{2} \rrbracket s & =\mathcal{A} \llbracket a_{1} \rrbracket s+\mathcal{A} \llbracket a_{2} \rrbracket s \\
\mathcal{A} \llbracket a_{1} \star a_{2} \rrbracket s & =\mathcal{A} \llbracket a_{1} \rrbracket s \cdot \mathcal{A} \llbracket a_{2} \rrbracket s \\
\mathcal{A} \llbracket a_{1}-a_{2} \rrbracket s & =\mathcal{A} \llbracket a_{1} \rrbracket s-\mathcal{A} \llbracket a_{2} \rrbracket s
\end{aligned}
$$

We could have used the λ-notation:

- $\mathcal{A} \llbracket n \rrbracket=\lambda s . \mathcal{N} \llbracket n \rrbracket$
- $\mathcal{A} \llbracket x \rrbracket=\lambda s . s(x)$

Semantics of boolean expressions

$$
\mathcal{B}: \mathbf{B e x p} \rightarrow(\text { State } \rightarrow\{\mathbf{t t}, \mathbf{f f}\})
$$

By structural induction on the syntax of boolean expressions.

$$
\begin{aligned}
\mathcal{B} \llbracket \mathrm{false} \mathrm{\rrbracket s} & =\mathrm{ff} \\
\mathcal{B} \llbracket a_{1}=a_{2} \rrbracket s & = \begin{cases}\mathbf{t t} & \text { if } \mathcal{A} \llbracket a_{1} \rrbracket s=\mathcal{A} \llbracket a_{2} \rrbracket s \\
\mathrm{ff} & \text { if } \mathcal{A} \llbracket a_{1} \rrbracket s \neq \mathcal{A} \llbracket a_{2} \rrbracket s\end{cases} \\
\mathcal{B} \llbracket a_{1} \leq a_{2} \rrbracket s & = \begin{cases}\mathbf{t t} & \text { if } \mathcal{A} \llbracket a_{1} \rrbracket s \leq \mathcal{A} \llbracket a_{2} \rrbracket s \\
\mathbf{f f} & \text { if } \mathcal{A} \llbracket a_{1} \rrbracket s>\mathcal{A} \llbracket a_{2} \rrbracket s\end{cases} \\
\mathcal{B} \llbracket \neg b \rrbracket s & = \begin{cases}\mathbf{t t} & \text { if } \mathcal{B} \llbracket b \rrbracket s=\mathbf{f f} \\
\mathbf{f f} & \text { if } \mathcal{B} \llbracket b \rrbracket s=\mathbf{t t}\end{cases} \\
\mathcal{B} \llbracket b_{1} \wedge b_{2} \rrbracket s & = \begin{cases}\mathbf{t t} & \text { if } \mathcal{B} \llbracket b_{1} \rrbracket s=\mathbf{t t} \text { and } \mathcal{B} \llbracket b_{2} \rrbracket s=\mathbf{t t} \\
\mathbf{f f} & \text { if } \mathcal{B} \llbracket b_{1} \rrbracket s=\mathbf{f f} \text { or } \mathcal{B} \llbracket b_{2} \rrbracket s=\mathbf{f f}\end{cases}
\end{aligned}
$$

Denotational Semantics of While

$$
\mathcal{S}_{d s}: \text { Prog } \rightarrow(\text { State } \hookrightarrow \text { State })
$$

$$
\begin{aligned}
& \mathcal{S}_{\mathrm{ds}} \llbracket x:=a \rrbracket s=s[x \mapsto \mathcal{A} \llbracket a \rrbracket s] \\
& \mathcal{S}_{\mathrm{ds}} \llbracket \text { skip } \rrbracket=\mathrm{id} \\
& \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} ; S_{2} \rrbracket=\mathcal{S}_{\mathrm{ds}} \llbracket S_{2} \rrbracket \circ \mathcal{S}_{\mathrm{d} \llbracket} \llbracket S_{1} \rrbracket \\
& \mathcal{S}_{\mathrm{ds}} \llbracket \text { if } b \text { then } S_{1} \text { else } S_{2} \rrbracket=\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket, \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} \rrbracket, \mathcal{S}_{\mathrm{ds}} \llbracket S_{2} \rrbracket\right) \\
& \mathcal{S}_{\mathrm{ds}} \llbracket \text { while } b \text { do } S \rrbracket=\text { FIX } F \\
& \quad \text { where } F g=\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket, g \circ \mathcal{S}_{\mathrm{ds}} \llbracket S \rrbracket \text {, id }\right) \\
& \quad
\end{aligned}
$$

$$
i d \equiv \lambda s . s
$$

Semantics of while-do: details

Given:

- a function
$\mathcal{A} \llbracket b \rrbracket:$ State $\rightarrow\{\mathbf{t t}, \mathbf{f f}\}$
- a partial function $\mathcal{S}_{d s} \llbracket C \rrbracket:$ State \hookrightarrow State

$$
\begin{array}{lr}
\text { we let: } & \mathcal{S}_{d s} \llbracket \text { while } b \text { do } C \rrbracket=f i x F_{b, C} \\
\text { where: } & F_{b, C}=\lambda w \cdot \lambda s . \operatorname{cond}(\llbracket b \rrbracket s, w \llbracket C \rrbracket s, s)
\end{array}
$$

Semantics of while-do: details

Given:

- a function
$\mathcal{A} \llbracket b \rrbracket:$ State $\rightarrow\{\mathbf{t t}, \mathbf{f f}\}$
- a partial function $\mathcal{S}_{d s} \llbracket C \rrbracket:$ State \hookrightarrow State
we let:
$\mathcal{S}_{d s} \llbracket$ while b do $C \rrbracket=f i x F_{b, C}$
where:

$$
F_{b, C}=\lambda w \cdot \lambda s \cdot \operatorname{cond}(\llbracket b \rrbracket s, w \llbracket C \rrbracket s, s)
$$

fix $F_{b, C}$
denotes a partial function $\llbracket W \rrbracket:$ State \hookrightarrow State such that:

$$
\llbracket W \rrbracket=F_{b, C} \llbracket W \rrbracket
$$

Questions:

- Does this equation have solutions?
- How many solutions does it have?
- Which one should we take?

Semantics of while-do: an example

$$
\mathcal{S}_{d s} \llbracket \text { while } x>0 \text { do }(y:=x * y ; x:=x-1) \rrbracket=\text { fix } F_{b, C}
$$

we take as given

State $=\{x, y\} \rightarrow \mathbf{Z}$
we look for a solution X to the equation

Note that X is a function in State \hookrightarrow State

How do we calculate the fixed point X ?

Semantics of while-do: an example

$$
\mathcal{S}_{d s} \llbracket \text { while } x>0 \text { do }(y:=x * y ; x:=x-1) \rrbracket=\text { fix } F_{b, C}
$$

we take as given

State $=\{x, y\} \rightarrow \mathbf{Z} \quad$ the content of the memory at locations x and y

Note that X is a function in State \hookrightarrow State

How do we calculate the fixed point X ?

Semantics of while-do: an example

$$
\mathcal{S}_{d s} \llbracket \text { while } x>0 \text { do }(y:=x * y ; x:=x-1) \rrbracket=f i x F_{b, C}
$$

we take as given

$$
\text { State }=\{x, y\} \rightarrow \mathbf{Z}
$$

we look for a solution X to the equation

$$
X=\lambda s \cdot \operatorname{cond}\left(\llbracket x>0 \rrbracket s, X \llbracket y:=x^{*} y ; x:=x-1 \rrbracket s, s\right)
$$

Note that X is a function in State \hookrightarrow State

How do we calculate the fixed point X ?

Semantics of while-do: an example

$$
\mathcal{S}_{d s} \llbracket \text { while } x>0 \text { do }(y:=x * y ; x:=x-1) \rrbracket=\text { fix } F_{b, C}
$$

we take as given

$$
\text { State }=\{x, y\} \rightarrow \mathbf{Z}
$$

we look for a solution X to the equation

$$
X=\lambda s \cdot \operatorname{cond}\left(\llbracket x>0 \rrbracket s, X \llbracket y:=x^{*} y ; x:=x-1 \rrbracket s, s\right)
$$

Note that X is a function in State \hookrightarrow State How do we calculate the fixed point X ?

Semantics of while-do: an example

$$
\mathcal{S}_{d s} \llbracket \text { while } x>0 \text { do }(y:=x * y ; x:=x-1) \rrbracket=\text { fix } F_{b, C}
$$

we take as given

$$
\text { State }=\{x, y\} \rightarrow \mathbf{Z}
$$

we look for a solution X to the equation

$$
X=\lambda s \cdot \operatorname{cond}\left(\llbracket x>0 \rrbracket s, X \llbracket y:=x^{*} y ; x:=x-1 \rrbracket s, s\right)
$$

Note that X is a function in State \hookrightarrow State

How do we calculate the fixed point X ?

Fixed Points

A recursive function

$f=\lambda x .(x=0) \rightarrow 1, f(x+1)$

- f indicates any function that yields 1 on argument 0 , but its value for the other arguments is no specified.
- to compute f on x, check whether $x=0$, if so put $f(x)=1$; otherwise evaluate f on $x+1$.
A possible solution
If \perp denotes absence of information then $g \equiv \lambda x .(x=0) \rightarrow 1, \perp$ could be the solution of the equation defining f

$$
\begin{aligned}
\lambda x .(x & =0) \rightarrow 1, \underbrace{(\lambda x \cdot(x=0) \rightarrow 1, \perp)}_{g}(x+1) \\
& =\lambda x .(x=0) \rightarrow 1,(x+1=0) \rightarrow 1, \perp \\
& =\lambda x .(x=0) \rightarrow 1, \perp \quad \text { for no } x \geq 0 \text { we have } x+1=0 \\
& \equiv g .
\end{aligned}
$$

Fixed Points

However, . . . each function of the form

$$
g_{k} \equiv \lambda x .(x=0) \rightarrow 1, k
$$

is a solution of the equation for f, whichever $k \in \mathbb{N}$ we take.

- Among all solutions, g corresponds to the results obtained from the computational interpretation of f.
- To evaluate f for a generic $x>0$, espand the body of f to discover that it is necessary to evaluate it on $x+1$, then on $x+2$, and so on
- g is less defined than each g_{k}; indeed g is defined only on 0 and for this value all g_{k} take the same value:

$$
\forall k \cdot g(0)=g_{k}(0)
$$

Fixed Points

Given a function $f: D \rightarrow D$, the fixed point of f is any element $d \in D$ such that $f d=d$.

Examples

- The solution of $x=2 x+1$ is -1 , i.e, the fixed point of the function: $f \equiv \lambda x .2 x+1$
- Function $\tau:(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow(\mathbb{N} \rightarrow \mathbb{N})$ takes a function as arguments and yields another function:

$$
\tau \equiv \lambda f .(\lambda x .(x=0) \rightarrow 1, f(x+1) .
$$

- Consider

$$
\tau_{\text {fact }}=\lambda f . \lambda x .(x=0) \rightarrow 1, x * f(x-1)
$$

If we let

$$
\text { fact }=\lambda x .(x=0) \rightarrow 1, x * f a c t(x-1)
$$

we have

$$
\tau_{\text {fact }}(\text { fact })=\text { fact }
$$

Fixed point

Ordering Functions

 let $f, g: D \rightarrow D^{\prime}$ be two functions.$$
f \sqsubseteq g \Leftrightarrow \forall x \text {. if } f(x) \text { is defined then } f(x)=g(x) \text {. }
$$

We then say that f approximates g or f is less defined than g
Minimal fixed points
The fixed point that is less defined than all the others (minimal fixed point) is the one that corresponds to the operational intuition behind functions specifications.

Finding fixed points

- $\Omega \equiv \lambda x$. \perp, is the function undefined everywhere and represents the worst approximation of every function.
- To calculate fixed points we make use of Ω :

$$
\tau \Omega=\lambda x .(x=0) \rightarrow 1, \Omega(x+1)=g .
$$

Fixed point

Ordering Functions

Solution g is obtained by applying τ to its approximands!
Consider $\tau_{\text {fact }}$, then Fact $_{1} \equiv \tau_{\text {fact }} \Omega$ is

- Fact $_{1} \equiv \tau_{\text {fact }} \Omega=\lambda x .(x=0) \rightarrow 1, x * \Omega(x-1)=\lambda x .(x=0) \rightarrow 1, \perp$ Fact $_{1}$ is not the fixed point of $\tau_{\text {fact }}$ but a function more defined than Ω. It is a better approximation than Ω of factorial function.
- The sequence

$$
\text { Fact }_{2} \equiv \tau_{\text {fact }} \text { Fact }_{1}, \text { Fact }_{3} \equiv \tau_{\text {fact }} \text { Fact }_{2}, \ldots
$$

is a chain of better and better approximations of factorial whose limit is the factorial function.

- The minimum fixed point of the specification of factorial function is obtained by a sequence of approximation steps.
- Each approximation is finitely represented and is, obviously, non recursive.

Semantics of while-do: an example - continued

$$
f=\lambda Z \cdot \lambda s \cdot \operatorname{cond}\left(\llbracket x>0 \rrbracket s, Z \llbracket y:=x^{*} y ; x:=x-1 \rrbracket s, s\right)
$$

We look for X such that $X=f X$ and we start from Ω

Semantics of while-do: an example - continued

$$
f=\lambda Z . \lambda s \cdot \operatorname{cond}\left(\llbracket x>0 \rrbracket s, Z \llbracket y:=x^{*} y ; x:=x-1 \rrbracket s, s\right)
$$

We look for X such that $X=f X$ and we start from Ω

$$
f^{1}=f \Omega= \begin{cases}(x, y) & \text { if } x \leq 0 \\ \perp & \text { if } x \geq 1\end{cases}
$$

Semantics of while-do: an example - continued

$$
f=\lambda Z . \lambda s \cdot \operatorname{cond}\left(\llbracket x>0 \rrbracket s, Z \llbracket y:=x^{*} y ; x:=x-1 \rrbracket s, s\right)
$$

We look for X such that $X=f X$ and we start from Ω

$$
\begin{gathered}
f^{1}=f \Omega= \begin{cases}(x, y) & \text { if } x \leq 0 \\
\perp & \text { if } x \geq 1\end{cases} \\
f^{2}= \begin{cases}(x, y) & \text { if } x \leq 0 \\
(0,1 * y) & \text { if } x=1 \\
\perp & \text { if } x \geq 2\end{cases}
\end{gathered}
$$

Semantics of while-do: an example - continued

$$
f=\lambda Z . \lambda s . \operatorname{cond}\left(\llbracket x>0 \rrbracket s, Z \llbracket y:=x^{*} y ; x:=x-1 \rrbracket s, s\right)
$$

We look for X such that $X=f X$ and we start from Ω

$$
\begin{gathered}
f^{1}=f \Omega= \begin{cases}(x, y) & \text { if } x \leq 0 \\
\perp & \text { if } x \geq 1\end{cases} \\
f^{2}= \begin{cases}(x, y) & \text { if } x \leq 0 \\
(0,1 * y) & \text { if } x=1 \\
\perp & \text { if } x \geq 2\end{cases} \\
f^{3}= \begin{cases}(x, y) & \text { if } x \leq 0 \\
(0,1 * y & \text { if } x=1 \\
(0,2 * y) & \text { if } x=2 \\
\perp & \text { if } x \geq 3\end{cases}
\end{gathered}
$$

Semantics of while-do: an example - continued

$$
f=\lambda Z \cdot \lambda s \cdot \operatorname{cond}(\llbracket x>0 \rrbracket s, Z \llbracket y:=x * y ; x:=x-1 \rrbracket s, s)
$$

We look for X such that $X=f X$ and we start from Ω

$$
\begin{aligned}
& f^{1}=f \Omega= \begin{cases}(x, y) & \text { if } x \leq 0 \\
\perp & \text { if } x \geq 1\end{cases} \\
& f^{2}=\left\{\begin{array}{l}
(x, y) \\
(0,1 * y) \\
\text { if } x \leq 0 \\
\perp
\end{array}\right. \\
& f^{3} x=2
\end{aligned} \quad f^{4}=\left\{\begin{array}{ll}
(x, y) & \text { if } x \leq 0 \\
(0,1 * y) & \text { if } x=1 \\
(0,2 * y) & \text { if } x=2 \\
(0,6 * y) & \text { if } x=3 \\
\perp & \text { if } x \geq 4
\end{array}\right\}
$$

Semantics of while-do: an example - continued

$$
f=\lambda Z \cdot \lambda s \cdot \operatorname{cond}(\llbracket x>0 \rrbracket s, Z \llbracket y:=x * y ; x:=x-1 \rrbracket s, s)
$$

We look for X such that $X=f X$ and we start from Ω

$$
\begin{aligned}
& f^{1}=f \Omega= \begin{cases}(x, y) & \text { if } x \leq 0 \\
\perp & \text { if } x \geq 1\end{cases} \\
& f^{2}= \begin{cases}(x, y) & \text { if } x \leq 0 \\
(0,1 * y) & \text { if } x=1 \\
\perp & \text { if } x \geq 2\end{cases} \\
& f^{3}= \begin{cases}(x, y) & \text { if } x \leq 0 \\
(0,1 * y) & \text { if } x=1 \\
(0,2 * y) & \text { if } x=2 \\
\perp & \text { if } x \geq 3\end{cases} \\
& f^{4}= \begin{cases}(x, y) & \text { if } x \leq 0 \\
(0,1 * y) & \text { if } x=1 \\
(0,2 * y) & \text { if } x=2 \\
(0,6 * y) & \text { if } x=3 \\
\perp & \text { if } x \geq 4 \\
\vdots & \end{cases}
\end{aligned}
$$

Semantics of while-do: an example - continued

$$
f=\lambda Z \cdot \lambda s \cdot \operatorname{cond}(\llbracket x>0 \rrbracket s, Z \llbracket y:=x * y ; x:=x-1 \rrbracket s, s)
$$

We look for X such that $X=f X$ and we start from Ω

$$
\begin{aligned}
& f^{1}=f \Omega= \begin{cases}(x, y) & \text { if } x \leq 0 \\
\perp & \text { if } x \geq 1\end{cases} \\
& f^{2}=\left\{\begin{array}{l}
(x, y) \\
\text { if } x \leq 0 \\
(0,1 * y) \\
\hline
\end{array}\right. \\
& \text { if } x=1
\end{aligned} \quad f^{4}=\left\{\begin{array}{ll}
(x, y) & \text { if } x \leq 0 \\
(0,1 * y) & \text { if } x=1 \\
(0,2 * y) & \text { if } x=2 \\
(0,6 * y) & \text { if } x=3 \\
\perp & \text { if } x \geq 4
\end{array}\right\}
$$

Semantics of while-do: an example - continued

$$
f=\lambda Z . \lambda s \cdot \operatorname{cond}\left(\llbracket x>0 \rrbracket s, Z \llbracket y:=x^{*} y ; x:=x-1 \rrbracket s, s\right)
$$

We look for X such that $X=f X$ and we start from Ω

$$
\begin{aligned}
& \begin{array}{c}
f^{1}=f \Omega= \begin{cases}(x, y) & \text { if } x \leq 0 \\
\perp & \text { if } x \geq 1\end{cases} \\
f^{2}=\left\{\begin{array}{l}
(x, y) \\
\text { if } x \leq 0 \\
(0,1 * y) \\
\perp \\
\hline
\end{array} \text { if } x=1\right.
\end{array} \quad f^{4}=\left\{\begin{array}{cc}
(x, y) & \text { if } x \leq 0 \\
(0,1 * y) & \text { if } x=1 \\
(0,2 * y) & \text { if } x=2 \\
(0,6 * y) & \text { if } x=3 \\
\perp & \text { if } x \geq 4
\end{array}\right\} \begin{array}{c}
\vdots \\
f^{3}=\left\{\begin{array}{ll}
(x, y) & \text { if } x \leq 0 \\
(0,1 * y & \text { if } x=1 \\
(0,2 * y) & \text { if } x=2 \\
\perp & \text { if } x \geq 3
\end{array} \quad f^{n+1}= \begin{cases}(x, y) & \text { if } x \leq 0 \\
(0, x!* y) & \text { if } 1 \leq x \leq n \\
\perp & \text { if } x \geq n+1\end{cases} \right.
\end{array} \\
& \Omega \sqsubseteq f^{1} \sqsubseteq f^{2} \sqsubseteq f^{3} \sqsubseteq \ldots \sqsubseteq f^{n} \sqsubseteq \ldots
\end{aligned}
$$

Semantics of while-do: an example - continued

$$
f=\lambda Z \cdot \lambda s \cdot \operatorname{cond}\left(\llbracket x>0 \rrbracket s, Z \llbracket y:=x^{*} y ; x:=x-1 \rrbracket s, s\right)
$$

We look for X such that $X=f X$ and we start from Ω

Semantics of while-do: an example - continued

$$
f=\lambda Z . \lambda s \cdot \operatorname{cond}\left(\llbracket x>0 \rrbracket s, Z \llbracket y:=x^{*} y ; x:=x-1 \rrbracket s, s\right)
$$

We look for X such that $X=f X$ and we start from Ω

$$
f^{\omega}=\bigsqcup_{i \in \mathbb{N}} f^{i}= \begin{cases}(x, y) & \text { if } x \leq 0 \\ (0, x!* y) & \text { if } x \geq 1\end{cases}
$$

We have that

Semantics of while-do: an example - continued

$$
f=\lambda Z \cdot \lambda s \cdot \operatorname{cond}\left(\llbracket x>0 \rrbracket s, Z \llbracket y:=x^{*} y ; x:=x-1 \rrbracket s, s\right)
$$

We look for X such that $X=f X$ and we start from Ω

$$
f^{\omega}=\bigsqcup_{i \in \mathbb{N}} f^{i}= \begin{cases}(x, y) & \text { if } x \leq 0 \\ (0, x!* y) & \text { if } x \geq 1\end{cases}
$$

We have that

$$
f^{\omega}=f f^{\omega}
$$

Semantics of while-do: an example - continued

$$
f=\lambda Z . \lambda s \cdot \operatorname{cond}\left(\llbracket x>0 \rrbracket s, Z \llbracket y:=x^{*} y ; x:=x-1 \rrbracket s, s\right)
$$

We look for X such that $X=f X$ and we start from Ω

$$
f^{\omega}=\bigsqcup_{i \in \mathbb{N}} f^{i}= \begin{cases}(x, y) & \text { if } x \leq 0 \\ (0, x!* y) & \text { if } x \geq 1\end{cases}
$$

We have that

$$
f^{\omega}=f f^{\omega}
$$

and, wrt every other fixpoint w :

$$
w=f w \quad \Rightarrow \quad f^{\omega} \sqsubseteq w
$$

Defining the Semantics of Fixpoints

$\langle D, \preccurlyeq\rangle$ is a po-set if \preccurlyeq is a partial order
e.g. \langle State \hookrightarrow State,$\sqsubseteq\rangle$ is a poset

A chain $C=d_{0} \preccurlyeq d_{1} \preccurlyeq d_{2} \preccurlyeq \ldots$ is a totally ordered subset of D

Defining the Semantics of Fixpoints

$\langle D, \preccurlyeq\rangle$ is a po-set if \preccurlyeq is a partial order
e.g. \langle State \hookrightarrow State,$\sqsubseteq\rangle$ is a poset

A chain $C=d_{0} \preccurlyeq d_{1} \preccurlyeq d_{2} \preccurlyeq \ldots$ is a totally ordered subset of D
$\operatorname{lub}(C)=\bigsqcup_{i \geq 0} d_{i}$ satisfies:

- $\forall i \geq 0 \quad d_{i} \preccurlyeq \operatorname{lub}(C)$
- $\forall i \geq 0 \quad d_{i} \preccurlyeq U \quad$ implies $\quad \operatorname{lub}(C) \preccurlyeq U$

Defining the Semantics of Fixpoints

$\langle D, \preccurlyeq\rangle$ is a po-set if \preccurlyeq is a partial order
e.g. \langle State \hookrightarrow State,$\sqsubseteq\rangle$ is a poset

A chain $C=d_{0} \preccurlyeq d_{1} \preccurlyeq d_{2} \preccurlyeq \ldots$ is a totally ordered subset of D
$\operatorname{lub}(C)=\bigsqcup_{i \geq 0} d_{i}$ satisfies:

- $\forall i \geq 0 \quad d_{i} \preccurlyeq \operatorname{lub}(C)$
- $\forall i \geq 0 \quad d_{i} \preccurlyeq U \quad$ implies $\quad \operatorname{lub}(C) \preccurlyeq U$
$\langle D, \preccurlyeq\rangle$ is a complete po-set (CPO) if
- $\perp \in D$ and $\perp \preccurlyeq d$ for every $d \in D$
- $\operatorname{lub}(C) \in D$ for every chain C

Defining the Semantics of Fixpoints

$\langle D, \preccurlyeq\rangle$ is a po-set if \preccurlyeq is a partial order

e.g. \langle State \hookrightarrow State,$\sqsubseteq\rangle$ is a poset

A chain $C=d_{0} \preccurlyeq d_{1} \preccurlyeq d_{2} \preccurlyeq \ldots$ is a totally ordered subset of D
$\operatorname{lub}(C)=\bigsqcup_{i \geq 0} d_{i}$ satisfies:

- $\forall i \geq 0 \quad d_{i} \preccurlyeq \operatorname{lub}(C)$
- $\forall i \geq 0 \quad d_{i} \preccurlyeq U \quad$ implies $\quad \operatorname{lub}(C) \preccurlyeq U$
$\langle D, \preccurlyeq\rangle$ is a complete po-set (CPO) if
- $\perp \in D$ and $\perp \preccurlyeq d$ for every $d \in D$
- $\operatorname{lub}(C) \in D$ for every chain C

Computations as Chains

We restrict to (possibly infinite) chains, and their lub
$\langle D, \preccurlyeq\rangle \quad$ a CPO as an information domain (with refinement)
$f: D \rightarrow D$ an information transformer

Computations as Chains

We restrict to (possibly infinite) chains, and their lub
$\langle D, \preccurlyeq\rangle \quad$ a CPO as an information domain (with refinement)
$f: D \rightarrow D$ an information transformer
f monotone: $\quad a \preccurlyeq b \Rightarrow f(a) \preccurlyeq f(b) \quad$ (information preserving)
continuous \subset monotone

Computations as Chains

We restrict to (possibly infinite) chains, and their lub
$\langle D, \preccurlyeq\rangle \quad$ a CPO as an information domain (with refinement)
$f: D \rightarrow D$ an information transformer
f monotone: $\quad a \preccurlyeq b \Rightarrow f(a) \preccurlyeq f(b)$
(information preserving)
f continuous:
(1) $\operatorname{lub}(f C) \in D$
(2) $f(\operatorname{lub}(C))=\operatorname{lub}(f C)$
for every chain C for every chain C
(limit preserving)
continuous \subsetneq monotone

Computations as Chains

We restrict to (possibly infinite) chains, and their lub
$\langle D, \preccurlyeq\rangle \quad$ a CPO as an information domain (with refinement)
$f: D \rightarrow D$ an information transformer
f monotone: $\quad a \preccurlyeq b \Rightarrow f(a) \preccurlyeq f(b)$
(information preserving)
f continuous:
(1) $\operatorname{lub}(f C) \in D$
(2) $f(\operatorname{lub}(C))=\operatorname{lub}(f C)$
for every chain C for every chain C
(limit preserving)
continuous \subsetneq monotone
f, g continuous $\Rightarrow f \circ g$ continuous

Fixpoints as Limits of Chains

Theorem (Tarski Fixpoint Theorem)
$\langle D, \preccurlyeq\rangle$ CPO
A continuous function $f: D \rightarrow D$

1. has a fixpoint
2. has a minimal fixpoint (denoted fix f)
3. fixf $=\operatorname{lub}\left\{f^{i} \perp \mid i \in \mathbb{N}\right\}$ where

$$
\begin{aligned}
& f^{0} x=x \\
& f^{i+1} x=f\left(f^{i} x\right)
\end{aligned}
$$

A constructive result of fixpoint existence

Fixpoints as Limits of Chains

Theorem (Tarski Fixpoint Theorem)
$\langle D, \preccurlyeq\rangle$ CPO
A continuous function $f: D \rightarrow D$

1. has a fixpoint
2. has a minimal fixpoint (denoted fixf)
3. fix $f=\operatorname{lub}\left\{f^{i} \perp \mid i \in \mathbb{N}\right\}$ where

$$
\begin{aligned}
& f^{0} x=x \\
& f^{i+1} x=f\left(f^{i} x\right)
\end{aligned}
$$

A constructive result of fixpoint existence

Fixpoints as Limits of Chains

Theorem (Tarski Fixpoint Theorem)
$\langle D, \preccurlyeq\rangle$ CPO
A continuous function $f: D \rightarrow D$

1. has a fixpoint
2. has a minimal fixpoint (denoted fix f)
3. fix $f=\operatorname{lub}\left\{f^{i} \perp \mid i \in \mathbb{N}\right\}$ where

$$
\begin{aligned}
& f^{0} x=x \\
& f^{i+1} x=f\left(f^{i} x\right)
\end{aligned}
$$

A constructive result of fixpoint existence
As a consequence, we can denote fix f also as $\bigsqcup_{i \in \mathbb{N}} f^{i}$

Well-Definedness of Denotational Semantics

$$
\begin{aligned}
& \mathcal{S}_{\mathrm{d} \llbracket} \llbracket x:=a \rrbracket s=s\lceil x \mapsto \mathcal{A}\lceil a \rrbracket s] \\
& \mathcal{S}_{\mathrm{ds}} \llbracket \mathrm{skip} \rrbracket=\mathrm{id} \\
& \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} ; S_{2} \rrbracket=\mathcal{S}_{\mathrm{ds}} \llbracket S_{2} \rrbracket \circ \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} \rrbracket \\
& \mathcal{S}_{\mathrm{ds}} \llbracket \text { if } b \text { then } S_{1} \text { else } S_{2} \rrbracket=\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket, \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} \rrbracket, \mathcal{S}_{\mathrm{ds}} \llbracket S_{2} \rrbracket\right) \\
& \mathcal{S}_{\mathrm{ds}} \llbracket \text { while } b \text { do } S \rrbracket=\text { FIX } F \\
& \quad \text { where } F g=\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket, g \circ \mathcal{S}_{\mathrm{ds}} \llbracket S \rrbracket, \text { id }\right) \\
& \quad
\end{aligned}
$$

Well-Definedness of Denotational Semantics

$$
\begin{aligned}
& \mathcal{S}_{\mathrm{d} \llbracket} \llbracket x:=a \rrbracket s=s\lceil x \mapsto \mathcal{A}\lceil a \rrbracket s] \\
& \mathcal{S}_{\mathrm{ds}} \llbracket \mathrm{skip} \rrbracket=\mathrm{id} \\
& \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} ; S_{2} \rrbracket=\mathcal{S}_{\mathrm{ds}} \llbracket S_{2} \rrbracket \circ \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} \rrbracket \\
& \mathcal{S}_{\mathrm{ds}} \llbracket \text { if } b \text { then } S_{1} \text { else } S_{2} \rrbracket=\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket, \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} \rrbracket, \mathcal{S}_{\mathrm{ds}} \llbracket S_{2} \rrbracket\right) \\
& \mathcal{S}_{\mathrm{ds}} \llbracket \text { while } b \text { do } S \rrbracket=\text { FIX } F \\
& \quad \text { where } F g=\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket, g \circ \mathcal{S}_{\mathrm{ds}} \llbracket S \rrbracket, \text { id }\right) \\
& \quad
\end{aligned}
$$

1. \langle State \hookrightarrow State,$\sqsubseteq\rangle$ is a CPO

Well-Definedness of Denotational Semantics

$$
\begin{aligned}
& \mathcal{S}_{\mathrm{d} \llbracket} \llbracket x:=a \rrbracket s=s\lceil x \mapsto \mathcal{A}\lceil a \rrbracket s] \\
& \mathcal{S}_{\mathrm{ds}} \llbracket \mathrm{skip} \rrbracket=\mathrm{id} \\
& \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} ; S_{2} \rrbracket=\mathcal{S}_{\mathrm{ds}} \llbracket S_{2} \rrbracket \circ \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} \rrbracket \\
& \mathcal{S}_{\mathrm{ds}} \llbracket \text { if } b \text { then } S_{1} \text { else } S_{2} \rrbracket=\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket, \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} \rrbracket, \mathcal{S}_{\mathrm{ds}} \llbracket S_{2} \rrbracket\right) \\
& \mathcal{S}_{\mathrm{ds}} \llbracket \text { while } b \text { do } S \rrbracket=\text { FIX } F \\
& \quad \text { where } F g=\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket, g \circ \mathcal{S}_{\mathrm{ds}} \llbracket S \rrbracket, \text { id }\right) \\
& \quad
\end{aligned}
$$

1. \langle State \hookrightarrow State,$\sqsubseteq\rangle$ is a CPO
2. cond is continuous
3. fix is always applied to continuous functions

Well-Definedness of Denotational Semantics

$$
\begin{aligned}
& \mathcal{S}_{\mathrm{d} \llbracket} \llbracket x:=a \rrbracket s=s\lceil x \mapsto \mathcal{A}\lceil a \rrbracket s] \\
& \mathcal{S}_{\mathrm{ds}} \llbracket \mathrm{skip} \rrbracket=\text { id } \\
& \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} ; S_{2} \rrbracket=\mathcal{S}_{\mathrm{ds}} \llbracket S_{2} \rrbracket \circ \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} \rrbracket \\
& \mathcal{S}_{\mathrm{ds}} \llbracket \text { if } b \text { then } S_{1} \text { else } S_{2} \rrbracket=\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket, \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} \rrbracket, \mathcal{S}_{\mathrm{ds}} \llbracket S_{2} \rrbracket\right) \\
& \mathcal{S}_{\mathrm{ds}} \llbracket \text { while } b \text { do } S \rrbracket=\text { FIX } F \\
& \quad \text { where } F g=\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket, g \circ \mathcal{S}_{\mathrm{ds}} \llbracket S \rrbracket, \text { id }\right)
\end{aligned}
$$

1. \langle State \hookrightarrow State,$\sqsubseteq\rangle$ is a CPO
2. cond is continuous
3. o preserves continuity

Well-Definedness of Denotational Semantics

$$
\begin{aligned}
& \mathcal{S}_{\mathrm{d} \llbracket} \llbracket x:=a \rrbracket s=s\lceil x \mapsto \mathcal{A}\lceil a \rrbracket s] \\
& \mathcal{S}_{\mathrm{ds}} \llbracket \mathrm{skip} \rrbracket=\text { id } \\
& \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} ; S_{2} \rrbracket=\mathcal{S}_{\mathrm{ds}} \llbracket S_{2} \rrbracket \circ \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} \rrbracket \\
& \mathcal{S}_{\mathrm{ds}} \llbracket \text { if } b \text { then } S_{1} \text { else } S_{2} \rrbracket=\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket, \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} \rrbracket, \mathcal{S}_{\mathrm{ds}} \llbracket S_{2} \rrbracket\right) \\
& \mathcal{S}_{\mathrm{ds}} \llbracket \text { while } b \text { do } S \rrbracket=\text { FIX } F \\
& \quad \text { where } F g=\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket, g \circ \mathcal{S}_{\mathrm{ds}} \llbracket S \rrbracket, \text { id }\right)
\end{aligned}
$$

1. \langle State \hookrightarrow State,$\sqsubseteq\rangle$ is a CPO
2. cond is continuous
3. o preserves continuity
4. fix is always applied to continuous functions

Well-Definedness of Denotational Semantics

$$
\begin{aligned}
& \mathcal{S}_{\mathrm{d} \llbracket} \llbracket x:=a \rrbracket s=s\lceil x \mapsto \mathcal{A}\lceil a \rrbracket s] \\
& \mathcal{S}_{\mathrm{ds}} \llbracket \mathrm{skip} \rrbracket=\text { id } \\
& \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} ; S_{2} \rrbracket=\mathcal{S}_{\mathrm{ds}} \llbracket S_{2} \rrbracket \circ \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} \rrbracket \\
& \mathcal{S}_{\mathrm{ds}} \llbracket \text { if } b \text { then } S_{1} \text { else } S_{2} \rrbracket=\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket, \mathcal{S}_{\mathrm{ds}} \llbracket S_{1} \rrbracket, \mathcal{S}_{\mathrm{ds}} \llbracket S_{2} \rrbracket\right) \\
& \mathcal{S}_{\mathrm{ds}} \llbracket \text { while } b \text { do } S \rrbracket=\text { FIX } F \\
& \quad \text { where } F g=\operatorname{cond}\left(\mathcal{B} \llbracket b \rrbracket, g \circ \mathcal{S}_{\mathrm{ds}} \llbracket S \rrbracket, \text { id }\right)
\end{aligned}
$$

1. \langle State \hookrightarrow State,$\sqsubseteq\rangle$ is a CPO
2. cond is continuous
3. o preserves continuity
4. $f i x$ is always applied to continuous functions

$$
\mathcal{S}_{d s} \llbracket P \rrbracket \text { exists } \quad \text { for every } P \in \mathbf{S t m}
$$

Equivalence of Semantics

Recap:

$$
\mathcal{S}_{\mathrm{sos}} \llbracket S \rrbracket s= \begin{cases}s^{\prime} & \text { if }\langle S, s\rangle \Rightarrow^{*} s^{\prime} \\ \underline{\text { undef }} & \text { otherwise }\end{cases}
$$

To show: $\quad \mathcal{S}_{\text {sos }} \llbracket P \rrbracket=\mathcal{S}_{d s} \llbracket P \rrbracket$

A stronger invariant:

(check other dir.)

Equivalence of Semantics

Recap:

$$
\mathcal{S}_{\text {sos }} \llbracket S \rrbracket s= \begin{cases}s^{\prime} & \text { if }\langle S, s\rangle \Rightarrow^{*} s^{\prime} \\ \underline{\text { undef }} & \text { otherwise }\end{cases}
$$

To show: $\quad \mathcal{S}_{\text {sos }} \llbracket P \rrbracket=\mathcal{S}_{d s} \llbracket P \rrbracket$

$$
\langle P, s\rangle \Rightarrow^{*} s^{\prime} \text { implies } \mathcal{S}_{d s} \llbracket P \rrbracket s=s^{\prime}
$$

Equivalence of Semantics

Recap:

$$
\mathcal{S}_{\text {sos }} \llbracket S \rrbracket s= \begin{cases}s^{\prime} & \text { if }\langle S, s\rangle \Rightarrow^{*} s^{\prime} \\ \underline{\text { undef }} & \text { otherwise }\end{cases}
$$

To show: $\quad \mathcal{S}_{\text {sos }} \llbracket P \rrbracket=\mathcal{S}_{d s} \llbracket P \rrbracket$

$$
\langle P, s\rangle \Rightarrow^{*} s^{\prime} \text { implies } \mathcal{S}_{d s} \llbracket P \rrbracket s=s^{\prime}
$$

(check other dir.)

A stronger invariant:
(a form of \sqsubseteq)

Equivalence of Semantics

Recap:

$$
\mathcal{S}_{\mathrm{sos}} \llbracket S \rrbracket s= \begin{cases}s^{\prime} & \text { if }\langle S, s\rangle \Rightarrow^{*} s^{\prime} \\ \underline{\text { undef }} & \text { otherwise }\end{cases}
$$

To show: $\quad \mathcal{S}_{\text {sos }} \llbracket P \rrbracket=\mathcal{S}_{d s} \llbracket P \rrbracket$

$$
\langle P, s\rangle \Rightarrow^{*} s^{\prime} \text { implies } \mathcal{S}_{d s} \llbracket P \rrbracket s=s^{\prime}
$$

(check other dir.)

A stronger invariant:
(a form of \sqsubseteq)

$$
\begin{array}{lll}
\langle P, s\rangle \Rightarrow s^{\prime} & \text { implies } & \mathcal{S}_{d s} \llbracket P \rrbracket s=s^{\prime} \\
\langle P, s\rangle \Rightarrow\left\langle P^{\prime}, s^{\prime}\right\rangle & \text { implies } & \mathcal{S}_{d s} \llbracket P \rrbracket s=\mathcal{S}_{d s} \llbracket P^{\prime} \rrbracket s^{\prime}
\end{array}
$$

By structural induction, then by induction on the length of \Rightarrow^{*}

