
Formal Techniques for Software Engineering:

Models for Concurrency Semantics

Rocco De Nicola

IMT Institute for Advanced Studies, Lucca
rocco.denicola@imtlucca.it

June 2013

Lesson 6

R. De Nicola (IMT-Lucca) FoTSE@LMU 1 / 39

What is Concurrent Programming

Multiple processes (or threads) working together to achieve a common
goal.

A sequential program has a single thread of control.

A concurrent program has multiple threads of control allowing it
perform multiple computations in parallel and to control multiple
external activities which occur at the same time.

Communication

The concurrent threads exchange information via

indirect communication: the execution of concurrent processes
proceeds on one or more processors all of which access a shared
memory. Care is required to ensure exclusive access to shared variables

direct communication: concurrent processes are executed by running
them on separate processors, threads communicate by exchanging
messages.

R. De Nicola (IMT-Lucca) FoTSE@LMU 2 / 39

Why Concurrent Programming

1 Performance: To gain from multiprocessing hardware (parallelism)

2 Distribution: Some problems require a distributed solution, e.g. client
server systems on one machine and the database on a central server
machine.

3 Ease of programming: Some problems are more naturally solved by
concurrent programs.

4 Increased application throughput: an I/O call need only block one
thread

5 Increased application responsiveness: High priority threads for user
requests.

6 More appropriate structure: For programs which interact with the
environment, control multiple activities and handle multiple events

R. De Nicola (IMT-Lucca) FoTSE@LMU 3 / 39

Examples of multi-threaded programs

1 windowing systems on PCs

2 embedded real-time systems, electronics, cars, telecom

3 web servers, database servers...

4 operating system kernel

R. De Nicola (IMT-Lucca) FoTSE@LMU 4 / 39

Do I need to know about concurrent programming?

Concurrency is error prone

Therac - 25 computerised radiation therapy machine: Concurrent
programming errors contributed to accidents causing deaths and
serious injuries.

Mars Rover: Problems with interaction between concurrent tasks
caused periodic software resets reducing availability for exploration.

....

For sure you have experienced deadlock on your machine and pressed
restart (even if you have a Mac)

R. De Nicola (IMT-Lucca) FoTSE@LMU 5 / 39

Developing a Concurrent Solution to a Simple Problem

R. De Nicola (IMT-Lucca) FoTSE@LMU 6 / 39

A Simple Problem

Let f a (computationally expensive) function from integers to integers.

A positive zero for f is a positive integer n such that f (n) = 0

A negative zero for f is a negative integer z such that f (z) = 0

Our Goal

We want to write a program that terminates if and only if the total
function f has a positive or negative zero and proceeds indefinitely
otherwise.

A Brilliant Idea

To speed up we decide to run in parallel two programs: one looking for a
positive zero and the other for a negative zero

R. De Nicola (IMT-Lucca) FoTSE@LMU 7 / 39

A Simple Problem

Let f a (computationally expensive) function from integers to integers.

A positive zero for f is a positive integer n such that f (n) = 0

A negative zero for f is a negative integer z such that f (z) = 0

Our Goal

We want to write a program that terminates if and only if the total
function f has a positive or negative zero and proceeds indefinitely
otherwise.

A Brilliant Idea

To speed up we decide to run in parallel two programs: one looking for a
positive zero and the other for a negative zero

R. De Nicola (IMT-Lucca) FoTSE@LMU 7 / 39

A Simple Problem

Let f a (computationally expensive) function from integers to integers.

A positive zero for f is a positive integer n such that f (n) = 0

A negative zero for f is a negative integer z such that f (z) = 0

Our Goal

We want to write a program that terminates if and only if the total
function f has a positive or negative zero and proceeds indefinitely
otherwise.

A Brilliant Idea

To speed up we decide to run in parallel two programs: one looking for a
positive zero and the other for a negative zero

R. De Nicola (IMT-Lucca) FoTSE@LMU 7 / 39

Attempt 1

We write S1 that looks for a positive zero:

S1= found=false; n=0;

while(!found) { n++; found=(f(n)==0); }

R. De Nicola (IMT-Lucca) FoTSE@LMU 8 / 39

Attempt 1

We write S1 that looks for a positive zero:

S1= found=false; n=0;

while(!found) { n++; found=(f(n)==0); }

By cut-and-paste from S1 we write S2 that looks for a negative zero:

S2= found=false; z=0;

while(!found) { z--; found=(f(z)==0); }

R. De Nicola (IMT-Lucca) FoTSE@LMU 9 / 39

Attempt 1

We write S1 that looks for a positive zero:

S1= found=false; n=0;

while(!found) { n++; found=(f(n)==0); }

By cut-and-paste from S1 we write S2 that looks for a negative zero:

S2= found=false; z=0;

while(!found) { z--; found=(f(z)==0); }

And we run S1 and S2 in parallel:

S1 || S2

R. De Nicola (IMT-Lucca) FoTSE@LMU 10 / 39

Attempt 1

We write S1 that looks for a positive zero:

S1= found=false; n=0;

while(!found) { n++; found=(f(n)==0); }

By cut-and-paste from S1 we write S2 that looks for a negative zero:

S2= found=false; z=0;

while(!found) { z--; found=(f(z)==0); }

And we run S1 and S2 in parallel:

S1 || S2

Let f have a positive zero and not a negative one.
If S1 terminates before S2 starts, the latter sets found to false and looks
indefinitely for the nonexisting zero.

R. De Nicola (IMT-Lucca) FoTSE@LMU 11 / 39

Rethinking 1

The problem is due to the fact that found is initialised to false twice.

LESSON 1

USING SHARED VARIABLES MAY LEAD TO PROBLEM

R. De Nicola (IMT-Lucca) FoTSE@LMU 12 / 39

Attempt 2 (found is initialised only once)

The problem is due to the fact that found is initialised to false twice.

found=false; (R1 || R2)

where

R1= n=0; while(!found) { n++; found=(f(n)==0); }

R2= z=0; while(!found) { z--; found=(f(z)==0); }

If f has (again) only a positive zero assume that:

1 R2 is preempted when entering the while body (before z--)

2 R1 runs and finds a (positive) zero

3 R2 gets the CPU back

When R2 restarts it executes the while body and may set found to false.
The program then would not terminate because it would look for a non
existing negative zero.

R. De Nicola (IMT-Lucca) FoTSE@LMU 13 / 39

Attempt 2 (found is initialised only once)

The problem is due to the fact that found is initialised to false twice.

found=false; (R1 || R2)

where

R1= n=0; while(!found) { n++; found=(f(n)==0); }

R2= z=0; while(!found) { z--; found=(f(z)==0); }

If f has (again) only a positive zero assume that:

1 R2 is preempted when entering the while body (before z--)

2 R1 runs and finds a (positive) zero

3 R2 gets the CPU back

When R2 restarts it executes the while body and may set found to false.
The program then would not terminate because it would look for a non
existing negative zero.

R. De Nicola (IMT-Lucca) FoTSE@LMU 13 / 39

Rethinking 2

The problem is due to the fact that found is set to false after it has
already been assigned true.

LESSON 2

NO ASSUMPTION ABOUT THE MOMENT A PROGRAM IS
INTERRUPTED CAN BE MADE (It can only be programmed).

R. De Nicola (IMT-Lucca) FoTSE@LMU 14 / 39

Attempt 3 (“unnecessary” assignments are removed)

The problem is due to the fact that found is set to false after it has
already been assigned true.

found=false; (T1 || T2)

where

T1= n=0; while(!found) { n++; if (f(n)==0) found=true; }

T2= z=0; while(!found) { z--; if (f(z)==0) found=true; }

Let f have only a positive zero.
Assume that T2 gets the CPU to keep it until it terminates. Since this will
never happen, T1 will never get the chance to find its zero.

R. De Nicola (IMT-Lucca) FoTSE@LMU 15 / 39

Attempt 3 (“unnecessary” assignments are removed)

The problem is due to the fact that found is set to false after it has
already been assigned true.

found=false; (T1 || T2)

where

T1= n=0; while(!found) { n++; if (f(n)==0) found=true; }

T2= z=0; while(!found) { z--; if (f(z)==0) found=true; }

Let f have only a positive zero.
Assume that T2 gets the CPU to keep it until it terminates. Since this will
never happen, T1 will never get the chance to find its zero.

R. De Nicola (IMT-Lucca) FoTSE@LMU 15 / 39

Rethinking 3

The problem is due to non-fair scheduling policies.

LESSON 3

NO ASSUMPTION CAN BE MADE ON THE SCHEDULING POLICY OF
THE CPU.

R. De Nicola (IMT-Lucca) FoTSE@LMU 16 / 39

Attempt 4 (token passing fairness)

The problem is due to non-fair scheduling policies.

turn=1; found=false; (Q1 || Q2)

where

Q1= n=0; while(!found) {

wait turn==1 then {

turn=2; n++; if (f(n)==0) found=true; } }

Q2= z=0; while(!found) {

wait turn==2 then {

turn=1; z--; if (f(z)==0) found=true; } }

If Q1 finds a zero and stops when Q2 has already set turn to 1, Q2 would
be blocked by the wait command because the value of turn cannot be
changed.

R. De Nicola (IMT-Lucca) FoTSE@LMU 17 / 39

Attempt 4 (token passing fairness)

The problem is due to non-fair scheduling policies.

turn=1; found=false; (Q1 || Q2)

where

Q1= n=0; while(!found) {

wait turn==1 then {

turn=2; n++; if (f(n)==0) found=true; } }

Q2= z=0; while(!found) {

wait turn==2 then {

turn=1; z--; if (f(z)==0) found=true; } }

If Q1 finds a zero and stops when Q2 has already set turn to 1, Q2 would
be blocked by the wait command because the value of turn cannot be
changed.

R. De Nicola (IMT-Lucca) FoTSE@LMU 17 / 39

Rethinking 4

The program may not terminate, waiting for an impossible event.

LESSON 4

ON TERMINATION CARE IS NEEDED FOR ALL PROCESSES.

R. De Nicola (IMT-Lucca) FoTSE@LMU 18 / 39

Attempt 5 (pass the token before terminating)

The program may not terminate, waiting for an impossible event.

Is it a correct solution?

turn=1; found=false; ({P1; turn=2;} || {P2; turn=1;})

where

P1= n=0; while(!found) {

wait turn==1 then {

turn=2; n++;

if (f(n)==0) found=true; } }

P2= z=0; while(!found) {

wait turn==2 then {

turn=1; z--;

if (f(z)==0) found=true; } }

R. De Nicola (IMT-Lucca) FoTSE@LMU 19 / 39

Sequential Programming vs Concurrent Programming

Classical Sequential Programming

1 Denotational semantics: the meaning of a program is a partial
function from states to states

2 Nontermination is bad!

3 In case of termination, the result is unique.

Concurrent - Interactive - Reactive Programming

1 Denotational semantics is very complicate due to nondeterminism

2 Nontermination might be good!

3 In case of termination, the result might not be unique.

R. De Nicola (IMT-Lucca) FoTSE@LMU 20 / 39

Sequential Programming vs Concurrent Programming

Classical Sequential Programming

1 Denotational semantics: the meaning of a program is a partial
function from states to states

2 Nontermination is bad!

3 In case of termination, the result is unique.

Concurrent - Interactive - Reactive Programming

1 Denotational semantics is very complicate due to nondeterminism

2 Nontermination might be good!

3 In case of termination, the result might not be unique.

R. De Nicola (IMT-Lucca) FoTSE@LMU 20 / 39

Sequential Programming vs Concurrent Programming

Classical Sequential Programming

1 Denotational semantics: the meaning of a program is a partial
function from states to states

2 Nontermination is bad!

3 In case of termination, the result is unique.

Concurrent - Interactive - Reactive Programming

1 Denotational semantics is very complicate due to nondeterminism

2 Nontermination might be good!

3 In case of termination, the result might not be unique.

R. De Nicola (IMT-Lucca) FoTSE@LMU 20 / 39

Sequential Programming vs Concurrent Programming

Classical Sequential Programming

1 Denotational semantics: the meaning of a program is a partial
function from states to states

2 Nontermination is bad!

3 In case of termination, the result is unique.

Concurrent - Interactive - Reactive Programming

1 Denotational semantics is very complicate due to nondeterminism

2 Nontermination might be good!

3 In case of termination, the result might not be unique.

R. De Nicola (IMT-Lucca) FoTSE@LMU 20 / 39

Sequential Programming vs Concurrent Programming

Classical Sequential Programming

1 Denotational semantics: the meaning of a program is a partial
function from states to states

2 Nontermination is bad!

3 In case of termination, the result is unique.

Concurrent - Interactive - Reactive Programming

1 Denotational semantics is very complicate due to nondeterminism

2 Nontermination might be good!

3 In case of termination, the result might not be unique.

R. De Nicola (IMT-Lucca) FoTSE@LMU 20 / 39

Sequential Programming vs Concurrent Programming

Classical Sequential Programming

1 Denotational semantics: the meaning of a program is a partial
function from states to states

2 Nontermination is bad!

3 In case of termination, the result is unique.

Concurrent - Interactive - Reactive Programming

1 Denotational semantics is very complicate due to nondeterminism

2 Nontermination might be good!

3 In case of termination, the result might not be unique.

R. De Nicola (IMT-Lucca) FoTSE@LMU 20 / 39

Programming Reactive System

The classical denotational approach is not sufficient for modelling systems
such as:

Operating systems

Communication protocols

Mobile phones

Vending machines

The above systems compute by reacting to stimuli from their environment
and are known as Reactive Systems. Their distinguishing features are:

Interaction (many parallel communicating processes)

Nondeterminism (results are not necessarily unique)

There may be no visible result (exchange of messages is used to
coordinate progress)

Nontermination is good (systems are expected to run continuously)

R. De Nicola (IMT-Lucca) FoTSE@LMU 21 / 39

Programming Reactive System

The classical denotational approach is not sufficient for modelling systems
such as:

Operating systems

Communication protocols

Mobile phones

Vending machines

The above systems compute by reacting to stimuli from their environment
and are known as Reactive Systems. Their distinguishing features are:

Interaction (many parallel communicating processes)

Nondeterminism (results are not necessarily unique)

There may be no visible result (exchange of messages is used to
coordinate progress)

Nontermination is good (systems are expected to run continuously)

R. De Nicola (IMT-Lucca) FoTSE@LMU 21 / 39

Programming Reactive System

The classical denotational approach is not sufficient for modelling systems
such as:

Operating systems

Communication protocols

Mobile phones

Vending machines

The above systems compute by reacting to stimuli from their environment
and are known as Reactive Systems. Their distinguishing features are:

Interaction (many parallel communicating processes)

Nondeterminism (results are not necessarily unique)

There may be no visible result (exchange of messages is used to
coordinate progress)

Nontermination is good (systems are expected to run continuously)

R. De Nicola (IMT-Lucca) FoTSE@LMU 21 / 39

Programming Reactive System

The classical denotational approach is not sufficient for modelling systems
such as:

Operating systems

Communication protocols

Mobile phones

Vending machines

The above systems compute by reacting to stimuli from their environment
and are known as Reactive Systems. Their distinguishing features are:

Interaction (many parallel communicating processes)

Nondeterminism (results are not necessarily unique)

There may be no visible result (exchange of messages is used to
coordinate progress)

Nontermination is good (systems are expected to run continuously)

R. De Nicola (IMT-Lucca) FoTSE@LMU 21 / 39

Programming Reactive System

The classical denotational approach is not sufficient for modelling systems
such as:

Operating systems

Communication protocols

Mobile phones

Vending machines

The above systems compute by reacting to stimuli from their environment
and are known as Reactive Systems. Their distinguishing features are:

Interaction (many parallel communicating processes)

Nondeterminism (results are not necessarily unique)

There may be no visible result (exchange of messages is used to
coordinate progress)

Nontermination is good (systems are expected to run continuously)

R. De Nicola (IMT-Lucca) FoTSE@LMU 21 / 39

Programming Reactive System

The classical denotational approach is not sufficient for modelling systems
such as:

Operating systems

Communication protocols

Mobile phones

Vending machines

The above systems compute by reacting to stimuli from their environment
and are known as Reactive Systems. Their distinguishing features are:

Interaction (many parallel communicating processes)

Nondeterminism (results are not necessarily unique)

There may be no visible result (exchange of messages is used to
coordinate progress)

Nontermination is good (systems are expected to run continuously)

R. De Nicola (IMT-Lucca) FoTSE@LMU 21 / 39

Programming Reactive System

The classical denotational approach is not sufficient for modelling systems
such as:

Operating systems

Communication protocols

Mobile phones

Vending machines

The above systems compute by reacting to stimuli from their environment
and are known as Reactive Systems. Their distinguishing features are:

Interaction (many parallel communicating processes)

Nondeterminism (results are not necessarily unique)

There may be no visible result (exchange of messages is used to
coordinate progress)

Nontermination is good (systems are expected to run continuously)

R. De Nicola (IMT-Lucca) FoTSE@LMU 21 / 39

Programming Reactive System

The classical denotational approach is not sufficient for modelling systems
such as:

Operating systems

Communication protocols

Mobile phones

Vending machines

The above systems compute by reacting to stimuli from their environment
and are known as Reactive Systems. Their distinguishing features are:

Interaction (many parallel communicating processes)

Nondeterminism (results are not necessarily unique)

There may be no visible result (exchange of messages is used to
coordinate progress)

Nontermination is good (systems are expected to run continuously)

R. De Nicola (IMT-Lucca) FoTSE@LMU 21 / 39

Programming Reactive System

The classical denotational approach is not sufficient for modelling systems
such as:

Operating systems

Communication protocols

Mobile phones

Vending machines

The above systems compute by reacting to stimuli from their environment
and are known as Reactive Systems. Their distinguishing features are:

Interaction (many parallel communicating processes)

Nondeterminism (results are not necessarily unique)

There may be no visible result (exchange of messages is used to
coordinate progress)

Nontermination is good (systems are expected to run continuously)

R. De Nicola (IMT-Lucca) FoTSE@LMU 21 / 39

Programming Reactive System

The classical denotational approach is not sufficient for modelling systems
such as:

Operating systems

Communication protocols

Mobile phones

Vending machines

The above systems compute by reacting to stimuli from their environment
and are known as Reactive Systems. Their distinguishing features are:

Interaction (many parallel communicating processes)

Nondeterminism (results are not necessarily unique)

There may be no visible result (exchange of messages is used to
coordinate progress)

Nontermination is good (systems are expected to run continuously)

R. De Nicola (IMT-Lucca) FoTSE@LMU 21 / 39

Analysis of Reactive Systems

Even short parallel programs may be hard to analyze, thus we need to face
few questions:

1 How can we develop (design) a system that “works”?

2 How do we analyze (verify) such a system?

We need appropriate theories and formal methods and tools, otherwise we
will experience again:

1 Intels Pentium-II bug in floating-point division unit

2 Ariane-5 crash due to a conversion of 64-bit real to 16-bit integer

3 Mars Pathfinder problems

R. De Nicola (IMT-Lucca) FoTSE@LMU 22 / 39

Analysis of Reactive Systems

Even short parallel programs may be hard to analyze, thus we need to face
few questions:

1 How can we develop (design) a system that “works”?

2 How do we analyze (verify) such a system?

We need appropriate theories and formal methods and tools, otherwise we
will experience again:

1 Intels Pentium-II bug in floating-point division unit

2 Ariane-5 crash due to a conversion of 64-bit real to 16-bit integer

3 Mars Pathfinder problems

R. De Nicola (IMT-Lucca) FoTSE@LMU 22 / 39

Analysis of Reactive Systems

Even short parallel programs may be hard to analyze, thus we need to face
few questions:

1 How can we develop (design) a system that “works”?

2 How do we analyze (verify) such a system?

We need appropriate theories and formal methods and tools, otherwise we
will experience again:

1 Intels Pentium-II bug in floating-point division unit

2 Ariane-5 crash due to a conversion of 64-bit real to 16-bit integer

3 Mars Pathfinder problems

R. De Nicola (IMT-Lucca) FoTSE@LMU 22 / 39

Analysis of Reactive Systems

Even short parallel programs may be hard to analyze, thus we need to face
few questions:

1 How can we develop (design) a system that “works”?

2 How do we analyze (verify) such a system?

We need appropriate theories and formal methods and tools, otherwise we
will experience again:

1 Intels Pentium-II bug in floating-point division unit

2 Ariane-5 crash due to a conversion of 64-bit real to 16-bit integer

3 Mars Pathfinder problems

R. De Nicola (IMT-Lucca) FoTSE@LMU 22 / 39

Analysis of Reactive Systems

Even short parallel programs may be hard to analyze, thus we need to face
few questions:

1 How can we develop (design) a system that “works”?

2 How do we analyze (verify) such a system?

We need appropriate theories and formal methods and tools, otherwise we
will experience again:

1 Intels Pentium-II bug in floating-point division unit

2 Ariane-5 crash due to a conversion of 64-bit real to 16-bit integer

3 Mars Pathfinder problems

R. De Nicola (IMT-Lucca) FoTSE@LMU 22 / 39

Analysis of Reactive Systems

Even short parallel programs may be hard to analyze, thus we need to face
few questions:

1 How can we develop (design) a system that “works”?

2 How do we analyze (verify) such a system?

We need appropriate theories and formal methods and tools, otherwise we
will experience again:

1 Intels Pentium-II bug in floating-point division unit

2 Ariane-5 crash due to a conversion of 64-bit real to 16-bit integer

3 Mars Pathfinder problems

R. De Nicola (IMT-Lucca) FoTSE@LMU 22 / 39

Formal Methods for Reactive Systems

To deal with reactive systems and guarantee their correct behavior in all
possible environment, we need:

1 To study mathematical models for the formal description and analysis
of concurrent programs.

2 To devise formal languages for the specification of the possible
behaviour of parallel and reactive systems.

3 To develop verification tools and implementation techniques
underlying them.

R. De Nicola (IMT-Lucca) FoTSE@LMU 23 / 39

Formal Methods for Reactive Systems

To deal with reactive systems and guarantee their correct behavior in all
possible environment, we need:

1 To study mathematical models for the formal description and analysis
of concurrent programs.

2 To devise formal languages for the specification of the possible
behaviour of parallel and reactive systems.

3 To develop verification tools and implementation techniques
underlying them.

R. De Nicola (IMT-Lucca) FoTSE@LMU 23 / 39

Formal Methods for Reactive Systems

To deal with reactive systems and guarantee their correct behavior in all
possible environment, we need:

1 To study mathematical models for the formal description and analysis
of concurrent programs.

2 To devise formal languages for the specification of the possible
behaviour of parallel and reactive systems.

3 To develop verification tools and implementation techniques
underlying them.

R. De Nicola (IMT-Lucca) FoTSE@LMU 23 / 39

This part of the course

We shall see different theories of special kind of reactive systems and their
applications.

The theories aim at supporting: Design, Specification and Verification
(possibly automatic and compositional) of reactive systems.

Important Questions:

What is the most abstract view of a reactive system (process)?

Does it capture their relevant properties?

Is it compositional?

R. De Nicola (IMT-Lucca) FoTSE@LMU 24 / 39

This part of the course

We shall see different theories of special kind of reactive systems and their
applications.

The theories aim at supporting: Design, Specification and Verification
(possibly automatic and compositional) of reactive systems.

Important Questions:

What is the most abstract view of a reactive system (process)?

Does it capture their relevant properties?

Is it compositional?

R. De Nicola (IMT-Lucca) FoTSE@LMU 24 / 39

This part of the course

We shall see different theories of special kind of reactive systems and their
applications.

The theories aim at supporting: Design, Specification and Verification
(possibly automatic and compositional) of reactive systems.

Important Questions:

What is the most abstract view of a reactive system (process)?

Does it capture their relevant properties?

Is it compositional?

R. De Nicola (IMT-Lucca) FoTSE@LMU 24 / 39

Our Approach

The chosen abstraction for reactive systems is the notion of
processes.

Systems evolution is based on process transformation: A process
performs an action and becomes another process.

Everything is (or can be viewed as) a process. Buffers, shared
memory, tuple spaces, senders, receivers, . . . are all processes.

Labelled Transition Systems (LTS) describe process behaviour, and
permit modelling directly systems interaction.

R. De Nicola (IMT-Lucca) FoTSE@LMU 25 / 39

Outline of the lectures

1 Labelled Transition Systems as Concurrency Models

2 Operators for Interaction, Nondeterminism and Concurrency

3 Process Calculi and their semantics

4 A Calculus of Communicating Systems

5 Modal and Temporal Logics

6 Tools for Systems Specification and Verification

R. De Nicola (IMT-Lucca) FoTSE@LMU 26 / 39

Outline of the lectures

1 Labelled Transition Systems as Concurrency Models

2 Operators for Interaction, Nondeterminism and Concurrency

3 Process Calculi and their semantics

4 A Calculus of Communicating Systems

5 Modal and Temporal Logics

6 Tools for Systems Specification and Verification

R. De Nicola (IMT-Lucca) FoTSE@LMU 26 / 39

Outline of the lectures

1 Labelled Transition Systems as Concurrency Models

2 Operators for Interaction, Nondeterminism and Concurrency

3 Process Calculi and their semantics

4 A Calculus of Communicating Systems

5 Modal and Temporal Logics

6 Tools for Systems Specification and Verification

R. De Nicola (IMT-Lucca) FoTSE@LMU 26 / 39

Outline of the lectures

1 Labelled Transition Systems as Concurrency Models

2 Operators for Interaction, Nondeterminism and Concurrency

3 Process Calculi and their semantics

4 A Calculus of Communicating Systems

5 Modal and Temporal Logics

6 Tools for Systems Specification and Verification

R. De Nicola (IMT-Lucca) FoTSE@LMU 26 / 39

Outline of the lectures

1 Labelled Transition Systems as Concurrency Models

2 Operators for Interaction, Nondeterminism and Concurrency

3 Process Calculi and their semantics

4 A Calculus of Communicating Systems

5 Modal and Temporal Logics

6 Tools for Systems Specification and Verification

R. De Nicola (IMT-Lucca) FoTSE@LMU 26 / 39

Outline of the lectures

1 Labelled Transition Systems as Concurrency Models

2 Operators for Interaction, Nondeterminism and Concurrency

3 Process Calculi and their semantics

4 A Calculus of Communicating Systems

5 Modal and Temporal Logics

6 Tools for Systems Specification and Verification

R. De Nicola (IMT-Lucca) FoTSE@LMU 26 / 39

Bibliography

Apt K.R., Olderog E.-R., Verification of Sequential and Concurrent

Programs, Springer-Verlag, 1997.
I took from here the first example of these lectures.

Fokkink Wan, Introduction to Process Algebra, Springer, 2000.
A gentle introduction to ACP.

Milner R., Communication and Concurrency, Prentice Hall, 1989.
The classical book on CCS and Bisimulation.

Roscoe A.W., The Theory and Practice of Concurrency, Prentice Hall,
1998.
A good book on TCSP and the failure Model.

Bowman H. and Gomez R., Concurrency Theory: Calculi and

Automata for Modelling Untimed and Timed Concurrent Systems,
Springer, 2006.
A new book on concurrency theory based on LOTOS.

R. De Nicola (IMT-Lucca) FoTSE@LMU 27 / 39

Bibliography ctd.

Baeten J.C.M. and Weijland W.P., Process Algebra, Cambridge
University Press, 1990.
The first book on ACP and Branching Bisimulation.

Hennessy M., Algebraic theory of processes, Springer-Verlag, 2001.
A simple introduction to Algebraic, Denotational and Operational
Semantics of processes based on Testing Equivalence.

Van Glabbeek R.J., The Linear Time - Branching Time Spectrum I*.

The Semantics of Concrete, Sequential Processes, Handbook on
Process Algebras, North Holland, 2001.
A good overview of behavioral equivalences over LTS.

Sangiorgi D. and Walker D., PI-Calculus: A Theory of Mobile

Processes, Cambridge University Press, 2001.
THE book on π-calculus.

For Klaim see: http://music.dsi.unifi.it
R. De Nicola (IMT-Lucca) FoTSE@LMU 28 / 39

http://music.dsi.unifi.it

Operational Semantics for Concurrent Processes

Systems behaviour is described by associating to each program a
behaviour represented as a transition graph.

Two main models (or variants thereof) have been used:

Kripke Structures

State Labelled Graphs: States are labelled with the properties that are
considered relevant (e.g. the value of - the relation between - some
variables)

Labelled Transition Systems

Transition Labelled Graph: Transition between states are labelled with the
action that induces the transition from one state to another.

In this lectures, we shall mainly rely on Labelled Transition Systems and
actions will play an important role

R. De Nicola (IMT-Lucca) FoTSE@LMU 29 / 39

Operational Semantics for Concurrent Processes

Systems behaviour is described by associating to each program a
behaviour represented as a transition graph.

Two main models (or variants thereof) have been used:

Kripke Structures

State Labelled Graphs: States are labelled with the properties that are
considered relevant (e.g. the value of - the relation between - some
variables)

Labelled Transition Systems

Transition Labelled Graph: Transition between states are labelled with the
action that induces the transition from one state to another.

In this lectures, we shall mainly rely on Labelled Transition Systems and
actions will play an important role

R. De Nicola (IMT-Lucca) FoTSE@LMU 29 / 39

Operational Semantics for Concurrent Processes

Systems behaviour is described by associating to each program a
behaviour represented as a transition graph.

Two main models (or variants thereof) have been used:

Kripke Structures

State Labelled Graphs: States are labelled with the properties that are
considered relevant (e.g. the value of - the relation between - some
variables)

Labelled Transition Systems

Transition Labelled Graph: Transition between states are labelled with the
action that induces the transition from one state to another.

In this lectures, we shall mainly rely on Labelled Transition Systems and
actions will play an important role

R. De Nicola (IMT-Lucca) FoTSE@LMU 29 / 39

Operational Semantics for Concurrent Processes

Systems behaviour is described by associating to each program a
behaviour represented as a transition graph.

Two main models (or variants thereof) have been used:

Kripke Structures

State Labelled Graphs: States are labelled with the properties that are
considered relevant (e.g. the value of - the relation between - some
variables)

Labelled Transition Systems

Transition Labelled Graph: Transition between states are labelled with the
action that induces the transition from one state to another.

In this lectures, we shall mainly rely on Labelled Transition Systems and
actions will play an important role

R. De Nicola (IMT-Lucca) FoTSE@LMU 29 / 39

Finite State Automata

Definition

A finite state automaton M is a 5-tuple
M = (Q,A,→, q0,F) where

Q is a finite set of states

A is the alphabet

→ ⊆ Q × (A ∪ {ε})× Q is the transition relation

q0 ∈ Q is a special state called initial state,

F ⊆ Q is the set of (final states)

spento acceso

rotto

on

off

bang bang

Figure: Finite state automaton

R. De Nicola (IMT-Lucca) FoTSE@LMU 30 / 39

Finite State Automata

Definition

A finite state automaton M is a 5-tuple
M = (Q,A,→, q0,F) where

Q is a finite set of states

A is the alphabet

→ ⊆ Q × (A ∪ {ε})× Q is the transition relation

q0 ∈ Q is a special state called initial state,

F ⊆ Q is the set of (final states)

spento acceso

rotto

on

off

bang bang

Figure: Finite state automaton

R. De Nicola (IMT-Lucca) FoTSE@LMU 30 / 39

Labelled Transition Systems
Definition

A Labelled Transition System S is a 4-tuple S = (Q,A,→, q0) where :

Q is a set of states

A is a finite set of actions

→ ⊆ Q × A× Q is a ternary relation called transition relation it is
often written q

a
−→ q′ instead of (q, a, q′) ∈→

q0 ∈ Q is a special state called initial state.

q0

q1

q2

q3 q4
play

wo
rk

wo
rk

play

τ

If initial states are not relevant (or known) LTSs are triples (Q,A,→) . . .

R. De Nicola (IMT-Lucca) FoTSE@LMU 31 / 39

Labelled Transition Systems
Definition

A Labelled Transition System S is a 4-tuple S = (Q,A,→, q0) where :

Q is a set of states

A is a finite set of actions

→ ⊆ Q × A× Q is a ternary relation called transition relation it is
often written q

a
−→ q′ instead of (q, a, q′) ∈→

q0 ∈ Q is a special state called initial state.

q0

q1

q2

q3 q4
play

wo
rk

wo
rk

play

τ

If initial states are not relevant (or known) LTSs are triples (Q,A,→) . . .

R. De Nicola (IMT-Lucca) FoTSE@LMU 31 / 39

Labelled Transition Systems
Definition

A Labelled Transition System S is a 4-tuple S = (Q,A,→, q0) where :

Q is a set of states

A is a finite set of actions

→ ⊆ Q × A× Q is a ternary relation called transition relation it is
often written q

a
−→ q′ instead of (q, a, q′) ∈→

q0 ∈ Q is a special state called initial state.

q0

q1

q2

q3 q4
play

wo
rk

wo
rk

play

τ

If initial states are not relevant (or known) LTSs are triples (Q,A,→) . . .

R. De Nicola (IMT-Lucca) FoTSE@LMU 31 / 39

A Simple Example

Example (Bill-Ben)

S = (Q,A,→) where:

Q = { q0, q1, q2, q3, q4 }

A = { play , work , τ }

→=
{(q0, play , q1), (q0,work , q2), (q1,work , q3), (q2, play , q3), (q3, τ, q4)}

q0

q1

q2

q3 q4
play

wo
rk

wo
rk

play

τ

R. De Nicola (IMT-Lucca) FoTSE@LMU 32 / 39

Internal and External Actions

An elementary action of a system represents the atomic (non-interruptible)
abstract step of a computation that is performed by a system to move
from one state to the other.

Actions represent various activities of concurrent systems:

1 Sending a message

2 Receiving a message

3 Updating values

4 Synchronizing with other processes

5 . . .

Visible Actions

Internal Actions

R. De Nicola (IMT-Lucca) FoTSE@LMU 33 / 39

Internal and External Actions

An elementary action of a system represents the atomic (non-interruptible)
abstract step of a computation that is performed by a system to move
from one state to the other.

Actions represent various activities of concurrent systems:

1 Sending a message

2 Receiving a message

3 Updating values

4 Synchronizing with other processes

5 . . .

Visible Actions

Internal Actions

R. De Nicola (IMT-Lucca) FoTSE@LMU 33 / 39

Internal and External Actions

An elementary action of a system represents the atomic (non-interruptible)
abstract step of a computation that is performed by a system to move
from one state to the other.

Actions represent various activities of concurrent systems:

1 Sending a message

2 Receiving a message

3 Updating values

4 Synchronizing with other processes

5 . . .

Visible Actions

Internal Actions

R. De Nicola (IMT-Lucca) FoTSE@LMU 33 / 39

Internal and External Actions

An elementary action of a system represents the atomic (non-interruptible)
abstract step of a computation that is performed by a system to move
from one state to the other.

Actions represent various activities of concurrent systems:

1 Sending a message

2 Receiving a message

3 Updating values

4 Synchronizing with other processes

5 . . .

Visible Actions

Internal Actions

R. De Nicola (IMT-Lucca) FoTSE@LMU 33 / 39

Internal and External Actions

An elementary action of a system represents the atomic (non-interruptible)
abstract step of a computation that is performed by a system to move
from one state to the other.

Actions represent various activities of concurrent systems:

1 Sending a message

2 Receiving a message

3 Updating values

4 Synchronizing with other processes

5 . . .

Visible Actions

Internal Actions

R. De Nicola (IMT-Lucca) FoTSE@LMU 33 / 39

Internal and External Actions

An elementary action of a system represents the atomic (non-interruptible)
abstract step of a computation that is performed by a system to move
from one state to the other.

Actions represent various activities of concurrent systems:

1 Sending a message

2 Receiving a message

3 Updating values

4 Synchronizing with other processes

5 . . .

We have two main types of atomic actions:

Visible Actions

Internal Actions

R. De Nicola (IMT-Lucca) FoTSE@LMU 33 / 39

Internal and External Actions

An elementary action of a system represents the atomic (non-interruptible)
abstract step of a computation that is performed by a system to move
from one state to the other.

Actions represent various activities of concurrent systems:

1 Sending a message

2 Receiving a message

3 Updating values

4 Synchronizing with other processes

5 . . .

We have two main types of atomic actions:

Visible Actions

Internal Actions

R. De Nicola (IMT-Lucca) FoTSE@LMU 33 / 39

Internal and External Actions

An elementary action of a system represents the atomic (non-interruptible)
abstract step of a computation that is performed by a system to move
from one state to the other.

Actions represent various activities of concurrent systems:

1 Sending a message

2 Receiving a message

3 Updating values

4 Synchronizing with other processes

5 . . .

We have two main types of atomic actions:

Visible Actions

Internal Actions

R. De Nicola (IMT-Lucca) FoTSE@LMU 33 / 39

Why operators for describing systems

How can we describe very large automata or LTSs?

As a table?

Rows and columns are labelled by states, entries are either empty or
marked with a set of actions.

As a listing of triples?

→= {(q0, a, q1), (q0, a, q2), (q1, b, q3), (q1, c , q4), (q2, τ, q3), (q2, τ, q4)}.

As a more compact listing of triples?

→=
{

(q0, a, {q1, q2}), (q1, b, q3), (q1, c , q4), (q2, τ, {q3, q4})
}

.

As XML?

<lts><ar><st>q0</st><lab>a</lab><st>q1</st></ar>...</lts>.

R. De Nicola (IMT-Lucca) FoTSE@LMU 34 / 39

Why operators for describing systems

How can we describe very large automata or LTSs?

As a table?

Rows and columns are labelled by states, entries are either empty or
marked with a set of actions.

As a listing of triples?

→= {(q0, a, q1), (q0, a, q2), (q1, b, q3), (q1, c , q4), (q2, τ, q3), (q2, τ, q4)}.

As a more compact listing of triples?

→=
{

(q0, a, {q1, q2}), (q1, b, q3), (q1, c , q4), (q2, τ, {q3, q4})
}

.

As XML?

<lts><ar><st>q0</st><lab>a</lab><st>q1</st></ar>...</lts>.

R. De Nicola (IMT-Lucca) FoTSE@LMU 34 / 39

Why operators for describing systems

How can we describe very large automata or LTSs?

As a table?

Rows and columns are labelled by states, entries are either empty or
marked with a set of actions.

As a listing of triples?

→= {(q0, a, q1), (q0, a, q2), (q1, b, q3), (q1, c , q4), (q2, τ, q3), (q2, τ, q4)}.

As a more compact listing of triples?

→=
{

(q0, a, {q1, q2}), (q1, b, q3), (q1, c , q4), (q2, τ, {q3, q4})
}

.

As XML?

<lts><ar><st>q0</st><lab>a</lab><st>q1</st></ar>...</lts>.

R. De Nicola (IMT-Lucca) FoTSE@LMU 34 / 39

Why operators for describing systems

How can we describe very large automata or LTSs?

As a table?

Rows and columns are labelled by states, entries are either empty or
marked with a set of actions.

As a listing of triples?

→= {(q0, a, q1), (q0, a, q2), (q1, b, q3), (q1, c , q4), (q2, τ, q3), (q2, τ, q4)}.

As a more compact listing of triples?

→=
{

(q0, a, {q1, q2}), (q1, b, q3), (q1, c , q4), (q2, τ, {q3, q4})
}

.

As XML?

<lts><ar><st>q0</st><lab>a</lab><st>q1</st></ar>...</lts>.

R. De Nicola (IMT-Lucca) FoTSE@LMU 34 / 39

Why operators for describing systems

How can we describe very large automata or LTSs?

As a table?

Rows and columns are labelled by states, entries are either empty or
marked with a set of actions.

As a listing of triples?

→= {(q0, a, q1), (q0, a, q2), (q1, b, q3), (q1, c , q4), (q2, τ, q3), (q2, τ, q4)}.

As a more compact listing of triples?

→=
{

(q0, a, {q1, q2}), (q1, b, q3), (q1, c , q4), (q2, τ, {q3, q4})
}

.

As XML?

<lts><ar><st>q0</st><lab>a</lab><st>q1</st></ar>...</lts>.

R. De Nicola (IMT-Lucca) FoTSE@LMU 34 / 39

Why operators for describing systems - ctd

Linguistic aspects are important!

The previous solutions are ok for machines . . . not for humans.

Are prefix and sum operators sufficient?

They are ok to describe small finite systems:

p = a.b.(c + d)

q = a.(b.c + b.d)

r = a.b.c + a.c .d

But additional operators are needed

to design systems in a structured way (e.g. p|q)

to model systems interaction

to abstract from details

to represent infinite systems

R. De Nicola (IMT-Lucca) FoTSE@LMU 35 / 39

Why operators for describing systems - ctd

Linguistic aspects are important!

The previous solutions are ok for machines . . . not for humans.

Are prefix and sum operators sufficient?

They are ok to describe small finite systems:

p = a.b.(c + d)

q = a.(b.c + b.d)

r = a.b.c + a.c .d

But additional operators are needed

to design systems in a structured way (e.g. p|q)

to model systems interaction

to abstract from details

to represent infinite systems

R. De Nicola (IMT-Lucca) FoTSE@LMU 35 / 39

Why operators for describing systems - ctd

Linguistic aspects are important!

The previous solutions are ok for machines . . . not for humans.

Are prefix and sum operators sufficient?

They are ok to describe small finite systems:

p = a.b.(c + d)

q = a.(b.c + b.d)

r = a.b.c + a.c .d

But additional operators are needed

to design systems in a structured way (e.g. p|q)

to model systems interaction

to abstract from details

to represent infinite systems

R. De Nicola (IMT-Lucca) FoTSE@LMU 35 / 39

Operational Semantics

To each process built using the above operators we associate an LTS by
relying on structural induction to define the meaning of each operator.

Definition (Inference Systems)

An inference system is a set of inference rules of the form

p1, · · · , pn

q

In our case for a generic operator op we shall have one or more rules like:

Ei1

α1−→ E ′

i1
· · · Eim

αm−−→ E ′

im

op(E1, · · · ,En)
α
−→ op(E ′

1, · · · ,E
′

n)
where {i1, · · · , im} ⊆ {1, · · · , n}.

Note that the states of the LTS are named with processes/expressions

R. De Nicola (IMT-Lucca) FoTSE@LMU 36 / 39

The Elegance of Operational Semantics

Automata as terms

Few SOS rules define all the automata that can ever be specified with the
chosen operators. Given any term, the rules are used to derive the
corresponding automaton. The set of rules is fixed once and for all.

Structural induction

The interaction of complex systems is defined in terms of the behavior of
their components.

A remark

The LTS is the least one satisfying the inference rules.

Rule induction

A property is true for the whole LTS if whenever it holds for the premises
of each rule, it holds also for the conclusion.

R. De Nicola (IMT-Lucca) FoTSE@LMU 37 / 39

The Elegance of Operational Semantics

Automata as terms

Few SOS rules define all the automata that can ever be specified with the
chosen operators. Given any term, the rules are used to derive the
corresponding automaton. The set of rules is fixed once and for all.

Structural induction

The interaction of complex systems is defined in terms of the behavior of
their components.

A remark

The LTS is the least one satisfying the inference rules.

Rule induction

A property is true for the whole LTS if whenever it holds for the premises
of each rule, it holds also for the conclusion.

R. De Nicola (IMT-Lucca) FoTSE@LMU 37 / 39

The Elegance of Operational Semantics

Automata as terms

Few SOS rules define all the automata that can ever be specified with the
chosen operators. Given any term, the rules are used to derive the
corresponding automaton. The set of rules is fixed once and for all.

Structural induction

The interaction of complex systems is defined in terms of the behavior of
their components.

A remark

The LTS is the least one satisfying the inference rules.

Rule induction

A property is true for the whole LTS if whenever it holds for the premises
of each rule, it holds also for the conclusion.

R. De Nicola (IMT-Lucca) FoTSE@LMU 37 / 39

The Elegance of Operational Semantics

Automata as terms

Few SOS rules define all the automata that can ever be specified with the
chosen operators. Given any term, the rules are used to derive the
corresponding automaton. The set of rules is fixed once and for all.

Structural induction

The interaction of complex systems is defined in terms of the behavior of
their components.

A remark

The LTS is the least one satisfying the inference rules.

Rule induction

A property is true for the whole LTS if whenever it holds for the premises
of each rule, it holds also for the conclusion.

R. De Nicola (IMT-Lucca) FoTSE@LMU 37 / 39

Presentations of Labelled Transition Systems

Process Algebra as denotations of LTS

LTS are represented by terms of process algebras.

Terms are interpreted via operational semantics as LTS.

Process Algebra Basic Principles

1 Define a few elementary (atomic) processes modelling the simplest
process behaviour;

2 Define appropriate composition operations to build more complex
process behaviour from (existing) simpler ones.

R. De Nicola (IMT-Lucca) FoTSE@LMU 38 / 39

Regular Expressions as Process Algebras
Syntax of Regular Expressions

E ::= 0 | 1 | a | E +E | E ·E | E ∗ with a ∈ A and −below − µ ∈ A∪{ε}

Operational Semantics of Regular Expressions

(Tic)
1

ε
−→ 1

(Atom)
a

a
−→ 1

(Sum1)
e

µ

−→ e′

e + f
µ

−→ e′
(Sum2)

f
µ

−→ f ′

e + f
µ

−→ f ′

(Seq1)
e

µ

−→ e′

e · f
µ

−→ e′ · f
(Seq2)

e
ε

−→ 1

e · f
ε

−→ f

(Star1)
e∗

ε
−→ 1

(Star2)
e

µ

−→ e′

e∗
µ

−→ e′ · e∗

Table: We assume a ∈ A and µ ∈ A ∪ {ε}.

R. De Nicola (IMT-Lucca) FoTSE@LMU 39 / 39

