Formal Techniques for Software Engineering: Process Algebra Operators

Rocco De Nicola

IMT Institute for Advanced Studies, Lucca rocco.denicola@imtlucca.it

June 2013

Operators for Processes Modelling

Processes are composed via a number of basic operators
(1) Basic Processes
(2) Action Prefixing
(3) Sequentialization
(Choice
(6) Parallel Composition \& Interaction
(- Abstraction (Interaction delimiters)
(3) Infinite Behaviours

The General Idea

Some Key Questions

(1) Why is structure important?
(2) Which ops to write processes?
(3) Which ops to compose them in parallel?
(9) How to define ops?
(0) How to evaluate convenience / expressiveness?

Semantics

Given a process signature (i.e. the syntax for writing process expressions), different approaches are available to endow processes with meaning:
(1) Operational semantics: processes are seen as some sort of abstract machines defined by structural induction; traditionally, Milner's CCS emphasized the use of this method.
(2) Denotational semantics: processes are mapped to mathematical objects of a suitable domain by some interpretation function $\llbracket \cdot \rrbracket$; traditionally, Hoare's CSP emphasized the use of this method.
(3) Algebraic semantics: processes are equated by stating a set of laws (axioms), whence the name process algebra; traditionally, Bergstra-Klop's ACP emphasized the use of this method.

Operational Semantics

To each process expression, an LTS is associated by relying on structural induction to define the meaning of each operator.

Inference Systems

An inference system is a set of inference rule of the form:

$$
\frac{p_{1}, \cdots, p_{n}}{q}
$$

Transition Rules

For each operator op, we have a number of rules alike the one below, where $\left\{i_{1}, \cdots, i_{m}\right\} \subseteq\{1, \cdots, n\}$ and $E_{i}^{\prime}=E_{i}$ when $i \notin\left\{i_{1}, \cdots, i_{m}\right\}$.

$$
\frac{E_{i_{1}} \xrightarrow{\alpha_{1}} E_{i_{1}}^{\prime} \cdots E_{i_{m}} \xrightarrow{\alpha_{m}} E_{i_{m}}^{\prime}}{\operatorname{op}\left(E_{1}, \cdots, E_{n}\right) \xrightarrow{\alpha} C\left[E_{1}^{\prime}, \cdots, E_{n}^{\prime}\right]}
$$

The Elegance of Operational Semantics

Abstract machine
Few SOS rules define all the automata that can ever be specified with the chosen operators (processes as states, transitions as transitions). The set of rules is fixed once and for all. Given any process, the rules are used to derive its transitions.

The Elegance of Operational Semantics

Abstract machine

Few SOS rules define all the automata that can ever be specified with the chosen operators (processes as states, transitions as transitions).
The set of rules is fixed once and for all. Given any process, the rules are used to derive its transitions.

Structural induction

The LTS of complex systems are defined in terms of the behavior of their components.

The Elegance of Operational Semantics

Abstract machine

Few SOS rules define all the automata that can ever be specified with the chosen operators (processes as states, transitions as transitions).
The set of rules is fixed once and for all. Given any process, the rules are used to derive its transitions.

Structural induction

The LTS of complex systems are defined in terms of the behavior of their components.

A remark
The LTS is the least one satisfying the inference rules.

The Elegance of Operational Semantics

Abstract machine

Few SOS rules define all the automata that can ever be specified with the chosen operators (processes as states, transitions as transitions).
The set of rules is fixed once and for all. Given any process, the rules are used to derive its transitions.

Structural induction

The LTS of complex systems are defined in terms of the behavior of their components.

A remark
The LTS is the least one satisfying the inference rules.

Rule induction

A property is true for the whole LTS if whenever it holds for the premises of each rule, it holds also for the conclusion.

Atomic Actions

An elementary action of a system represents the atomic (non-interruptible) abstract step of a computation that is performed by a system to move from one state to the other.

Actions represent various activities of concurrent systems:
(1) Sending a message
(2) Receiving a message
(3) Updating values
(1) Synchronizing with other processes
©
We have two main types of atomic actions:

- Visible Actions

Atomic Actions

An elementary action of a system represents the atomic (non-interruptible) abstract step of a computation that is performed by a system to move from one state to the other.

Actions represent various activities of concurrent systems:
(1) Sending a message
(2) Receiving a message
(3) Updating values
(1) Synchronizing with other processes
©
We have two main types of atomic actions:

- Visible Actions
- Internal Actions

Playful digression

10 kinds of persons
There are only 10 kinds of persons in the whole world

Playful digression

10 kinds of persons

There are only 10 kinds of persons in the whole world

- Those who understand binary notation
- Those who don't

Graphical notation: black-boxes and flowgraphs

Basic Processes

Inactive Process

Is usually denoted by

- nil
- 0
- stop

The semantics of this process is characterized by the fact that there is no rule to define its transition: it has no transition.

Basic Processes

Inactive Process

Is usually denoted by

- nil
- 0
- stop

The semantics of this process is characterized by the fact that there is no rule to define its transition: it has no transition.

A broken vending machine
nil

Does not accept coins and does not give any drink.

Basic Processes ctd

Termination

Termination is sometimes denoted by

- skip
- 1
- exit
- $\sqrt{ }$
that can only perform the special action $\sqrt{ }$ ("tick") to indicate termination and become nil

$$
\text { exit } \xrightarrow{\checkmark} \text { stop }
$$

Basic Processes ctd

Termination

Termination is sometimes denoted by

- skip
- 1
- exit
- $\sqrt{ }$
that can only perform the special action $\sqrt{ }$ ("tick") to indicate termination and become nil

$$
\text { exit } \xrightarrow{\checkmark} \text { stop }
$$

A gentle broken vending machine
exit

Does not accept coins, does not gives drinks but says that everything is ok.

Basic Processes ctd

Action as basic processes
Some calculi consider actions as basic processes.

$$
a \xrightarrow{a} \text { stop }
$$

A dishonest vending machine: Accepts a coin and stops.

coin

Basic Processes ctd

Action as basic processes

Some calculi consider actions as basic processes.

$$
a \xrightarrow{a} \text { stop }
$$

A dishonest vending machine: Accepts a coin and stops.

coin

An alternative
When termination ticks are needed, a slightly different variant can be used:

$$
\overline{a \xrightarrow{a} \sqrt{ }}
$$

Another dishonest vending machine: Accepts a coin and says it's ok.
coin

Action Prefixing

Prefixing

For each action μ there is a unary operator

- μ.
- $\mu \rightarrow$.
that builds from process E a new process μ. E that performs action μ and then behaves like E.

$$
\overline{\mu . E \xrightarrow{\mu} E}
$$

Action Prefixing

Prefixing

For each action μ there is a unary operator

- μ.
- $\mu \rightarrow$.
that builds from process E a new process μ. E that performs action μ and then behaves like E.

$$
\overline{\mu . E \xrightarrow{\mu} E}
$$

A "one shot" vending machine

$$
\text { coin } \rightarrow \text { choc } \rightarrow \text { stop }
$$

Accepts a coin and gives a chocolate, then stops.

coin \rightarrow choc \rightarrow stop as LTS

Sequential Composition

Sequentialization

The binary operator for sequential composition is denoted by

- _ ;
- _ \gg -
- _• -

If E ed F are processes, process $E ; F$ executes E and then behaves like F

$$
\frac{E \xrightarrow{\mu} E^{\prime}}{E ; F \xrightarrow{\mu} E^{\prime} ; F}(\mu \neq \sqrt{ }) \quad \frac{E \xrightarrow{\sqrt{l}} E^{\prime}}{E ; F \xrightarrow{\tau} F}
$$

Sequential Composition

Sequentialization

The binary operator for sequential composition is denoted by

- _ ;
- \gg -
- _ -

If E ed F are processes, process $E ; F$ executes E and then behaves like F

$$
\frac{E \xrightarrow{\mu} E^{\prime}}{E ; F \xrightarrow{\mu} E^{\prime} ; F}(\mu \neq \sqrt{ }) \quad \frac{E \xrightarrow{\checkmark} E^{\prime}}{E ; F \xrightarrow{\tau} F}
$$

Another "one shot" vending machine
coin; choc

coin; choc as LTS

Question Time

Given the syntax $P::=0|\sqrt{ }| a \mid P \cdot P$ define proper SOS rules to generate an LTS such that, e.g.

$0 \cdot$ choc

Choice - 1

Nondeterministic Choice

$$
\frac{E \xrightarrow{\mu} E^{\prime}}{E+F \xrightarrow{\mu} E^{\prime}} \quad \frac{F \xrightarrow{\mu} F^{\prime}}{E+F \xrightarrow{\mu} F^{\prime}}
$$

Choice - 1

Nondeterministic Choice

$$
\frac{E \xrightarrow{\mu} E^{\prime}}{E+F \xrightarrow{\mu} E^{\prime}} \quad \frac{F \xrightarrow{\mu} F^{\prime}}{E+F \xrightarrow{\mu} F^{\prime}}
$$

User's Choice

$$
\text { coin } \rightarrow(\text { choc } \rightarrow \text { stop }+ \text { water } \rightarrow \text { stop })
$$

Choice - 1

Nondeterministic Choice

$$
\frac{E \xrightarrow{\mu} E^{\prime}}{E+F \xrightarrow{\mu} E^{\prime}} \quad \frac{F \xrightarrow{\mu} F^{\prime}}{E+F \xrightarrow{\mu} F^{\prime}}
$$

User's Choice

$$
\text { coin } \rightarrow(\text { choc } \rightarrow \text { stop }+ \text { water } \rightarrow \text { stop })
$$

Machine's Choice

$$
\text { coin } \rightarrow \text { choc } \rightarrow \text { stop }+ \text { coin } \rightarrow \text { water } \rightarrow \text { stop }
$$

User's Choice vs Machine's Choice

Choice - 2

Internal Choice

$$
\overline{E \oplus F \xrightarrow{\tau} E} \quad \overline{E \oplus F \xrightarrow{\tau} F}
$$

Choice - 2

Internal Choice

$$
\overline{E \oplus F \xrightarrow{\tau} E} \quad \overline{E \oplus F \xrightarrow{\tau} F}
$$

Machine's Choice

$$
\text { coin } \rightarrow(\text { choc } \rightarrow \text { stop } \oplus \text { water } \rightarrow \text { stop })
$$

Machine's Choice, Again

Choice - 3

External Choice

$$
\begin{array}{ll}
\frac{E \xrightarrow{\alpha} E^{\prime}}{E \square F \xrightarrow{\alpha} E^{\prime}}(\alpha \neq \tau) & \frac{F \xrightarrow{\alpha} F^{\prime}}{E \square F \xrightarrow{\alpha} F^{\prime}}(\alpha \neq \tau) \\
\frac{E \xrightarrow{\tau} E^{\prime}}{E \square F \xrightarrow{\tau} E^{\prime} \square F} & \frac{F \xrightarrow{\tau} F^{\prime}}{E \square F \xrightarrow{\tau} E \square F^{\prime}}
\end{array}
$$

Choice - 3

External Choice

$$
\begin{array}{ll}
\frac{E \xrightarrow{\alpha} E^{\prime}}{E \square F \xrightarrow{\alpha} E^{\prime}}(\alpha \neq \tau) & \frac{F \xrightarrow{\alpha} F^{\prime}}{E \square F \xrightarrow{\alpha} F^{\prime}}(\alpha \neq \tau) \\
\frac{E \xrightarrow{\tau} E^{\prime}}{E \square F \xrightarrow{\tau} E^{\prime} \square F} & \frac{F \xrightarrow{\tau} F^{\prime}}{E \square F \xrightarrow{\tau} E \square F^{\prime}}
\end{array}
$$

Whose Choice?

$$
\text { coin } \rightarrow((\text { choc } \rightarrow \text { stop } \oplus \text { water } \rightarrow \text { stop }) \square \text { water } \rightarrow \text { stop })
$$

Different Transitions

External Choice

$$
\begin{gathered}
\text { coin } \rightarrow((\text { choc } \rightarrow \text { stop } \oplus \underset{\text { sater }}{\text { watop })} \square \text { stop } \rightarrow \text { stop }) \\
(\text { choc } \rightarrow \text { stop } \oplus \text { water } \xrightarrow[\rightarrow]{\text { coin }} \text { stop }) \square \text { water } \rightarrow \text { stop } \\
(\text { choc } \rightarrow \text { stop } \square \text { water } \rightarrow \text { stop })
\end{gathered}
$$

Different Transitions

External Choice

$$
\begin{gathered}
\text { coin } \rightarrow((\text { choc } \rightarrow \text { stop } \oplus \underset{\text { sater }}{\text { watop })} \square \underset{\text { stop })}{\text { coin }} \rightarrow \text { water }) \\
\text { (choc } \rightarrow \text { stop } \oplus \text { water } \rightarrow \text { stop }) \square \text { water } \rightarrow \text { stop } \\
\quad(\text { choc } \rightarrow \text { stop } \square \text { water } \rightarrow \text { stop })
\end{gathered}
$$

Internal Choice

$$
\begin{gathered}
\text { coin } \rightarrow((\text { choc } \rightarrow \text { stop } \oplus \underset{\rightarrow}{\text { water }} \rightarrow \text { stop }) \oplus \text { water } \rightarrow \text { stop }) \\
(\text { choc } \rightarrow \text { stop } \oplus \text { water } \xrightarrow[\rightarrow]{\text { coin }} \text { stop }) \oplus \text { water } \rightarrow \text { stop } \\
\text { choc } \rightarrow \text { stop } \xrightarrow[\rightarrow]{\oplus} \text { water } \rightarrow \text { stop } \\
\text { choc } \rightarrow \text { stop }
\end{gathered}
$$

User has some choice

User has no choice

Question Time

(1) Express $P \oplus Q$ in terms of $\cdot+$.
(2) Draw the LTS for $a+b \oplus c \square d$ (under all possible ways to parenthesize the expression)

Parallel Composition - 1

Interleaving

$$
\frac{E \xrightarrow{\mu} E^{\prime}}{E\left\|F \xrightarrow{\mu} E^{\prime}\right\| F} \quad \frac{F \xrightarrow{\mu} F^{\prime}}{E\|F \xrightarrow{\mu} E\| F^{\prime}}
$$

Parallel Composition - 1

Interleaving

$$
\frac{E \xrightarrow{\mu} E^{\prime}}{E\left\|F \xrightarrow{\mu} E^{\prime}\right\| F} \quad \frac{F \xrightarrow{\mu} F^{\prime}}{E\|F \xrightarrow{\mu} E\| F^{\prime}}
$$

Anagrams as traces
Draw the LTS for

$$
a\|e\| m \| r
$$

Parallel Composition - 2

We assume the existence of a co-action $\bar{\alpha}$ for each visible α, and let $\overline{\bar{\alpha}}=\alpha$
Milner's Parallel (two-party synchronization)
$\frac{E \xrightarrow{\mu} E^{\prime}}{E\left|F \xrightarrow{\mu} E^{\prime}\right| F}$
$\frac{F \xrightarrow{\mu} F^{\prime}}{E|F \xrightarrow{\mu} E| F^{\prime}}$

$$
\frac{E \xrightarrow{\alpha} E^{\prime} \quad F \xrightarrow{\bar{\alpha}} F^{\prime}}{E\left|F \xrightarrow{\tau} E^{\prime}\right| F^{\prime}}(\alpha \neq \tau)
$$

Parallel Composition - 2

We assume the existence of a co-action $\bar{\alpha}$ for each visible α, and let $\overline{\bar{\alpha}}=\alpha$
Milner's Parallel (two-party synchronization)
$E \xrightarrow{\mu} E^{\prime}$
$\frac{F \xrightarrow{\mu} F^{\prime}}{E|F \xrightarrow{\mu} E| F^{\prime}}$

$$
\frac{E \xrightarrow[\rightarrow]{\alpha} E^{\prime} \quad F \xrightarrow{\bar{\alpha}} F^{\prime}}{E\left|F \xrightarrow{\tau} E^{\prime}\right| F^{\prime}}(\alpha \neq \tau)
$$

User-Machine interaction

$$
(\text { coin } \rightarrow(\overline{\text { choc }} \rightarrow \text { stop } \oplus \overline{\text { water }} \rightarrow \text { stop })) \mid(\overline{\text { coin }} \rightarrow \text { choc } \rightarrow \text { stop })
$$

We can have different interactions

Appropriate Interaction

$$
\begin{gathered}
(\text { coin } \rightarrow(\overline{\text { choc }} \rightarrow \text { stop } \oplus \overline{\text { water }} \rightarrow \text { stop })) \mid(\overline{\text { coin }} \rightarrow \text { choc } \rightarrow \text { stop }) \\
(\overline{\text { choc }} \rightarrow \text { stop } \oplus \overline{\text { water }} \xrightarrow[\rightarrow]{\rightarrow} \text { stop }) \mid(\text { choc } \rightarrow \text { stop }) \\
(\overline{\text { choc }} \rightarrow \text { stop }) \xrightarrow{\mid}(\text { choc } \rightarrow \text { stop }) \\
\text { stop } \mid \text { stop }
\end{gathered}
$$

We can have different interactions
Appropriate Interaction

$$
\begin{gathered}
(\text { coin } \rightarrow(\overline{\text { choc }} \rightarrow \text { stop } \oplus \overline{\text { water }} \rightarrow \text { stop })) \mid(\overline{\text { coin }} \rightarrow \text { choc } \rightarrow \text { stop }) \\
(\overline{\text { choc }} \rightarrow \text { stop } \oplus \overline{\text { water }} \xrightarrow{\rightarrow} \text { stop }) \mid(\text { choc } \rightarrow \text { stop }) \\
(\overline{\text { choc }} \rightarrow \text { stop }) \underset{\rightarrow}{\underset{\sim}{\tau}}(\text { choc } \rightarrow \text { stop }) \\
\text { stop } \mid \text { stop }
\end{gathered}
$$

Inappropriate Interaction - Coin thrown away

$$
\begin{aligned}
&(\text { coin } \rightarrow(\overline{\text { choc }} \rightarrow \text { stop } \oplus \overline{\text { water }} \rightarrow \text { stop })) \\
&(\overline{\text { choc }} \rightarrow \text { stop } \oplus \overline{\text { water }} \rightarrow \text { soin } \rightarrow \text { choc } \rightarrow \text { stop }) \\
&(\bar{\rightarrow} \text { stop }) \mid(\text { choc } \rightarrow \text { stop }) \\
&(\overline{\text { water }} \rightarrow \text { stop }) \mid(\text { choc } \rightarrow \text { stop })
\end{aligned}
$$

Question Time

Draw the complete LTS for

$$
(\text { coin } \rightarrow(\overline{\text { choc }} \rightarrow \text { stop } \oplus \overline{\text { water }} \rightarrow \text { stop })) \mid(\overline{\text { coin }} \rightarrow \text { choc } \rightarrow \text { stop })
$$

Parallel Composition - 3

Merge Operator with Synchronization Function

$$
\begin{array}{cc}
\frac{E \xrightarrow{\mu} E^{\prime}}{E\left\|F \xrightarrow{\mu} E^{\prime}\right\| F} & \frac{F \xrightarrow{\mu} F^{\prime}}{E\|F \xrightarrow{\mu} E\| F^{\prime}} \\
\text { with } \mu \in \Lambda \cup\{\tau\}
\end{array} \quad \begin{aligned}
& E \xrightarrow{a} E^{\prime} F \xrightarrow{b} F^{\prime} \\
& \hline F \xrightarrow{\gamma(a, b)} E^{\prime} \| F^{\prime}
\end{aligned}
$$

Parallel Composition - 3

Merge Operator with Synchronization Function

$$
\begin{array}{cc}
\frac{E \xrightarrow{\mu} E^{\prime}}{E\left\|F \xrightarrow{\mu} E^{\prime}\right\| F} & \frac{F \xrightarrow{\mu} F^{\prime}}{E\|F \xrightarrow{\mu} E\| F^{\prime}}
\end{array} \quad \begin{aligned}
& E \xrightarrow{a} E^{\prime} F \xrightarrow{b} F^{\prime} \\
& \text { with } \mu \in \Lambda \cup\{\tau\}
\end{aligned}
$$

Another interaction

getCoin.(giveChoc.nil + giveWater.nil) || putCoin.getChoc.nil with $\gamma($ getCoin, putCoin $)=$ ok e $\gamma($ giveChoc, getChoc $)=$ ok.

Parallel Composition - 4

Communication Merge

$$
\frac{E \xrightarrow{a} E^{\prime} \quad F \xrightarrow{b} F^{\prime}}{\left.E\right|_{c} F \xrightarrow{\gamma(a, b)} E^{\prime} \| F^{\prime}}
$$

Parallel Composition - 4

Communication Merge

$$
\frac{E \xrightarrow{a} E^{\prime} \quad F \xrightarrow{b} F^{\prime}}{\left.E\right|_{c} F \xrightarrow{\gamma(a, b)} E^{\prime} \| F^{\prime}}
$$

Left Merge

$$
\frac{E \xrightarrow{\mu} E^{\prime}}{E \sharp F \xrightarrow{\mu} E^{\prime} \| F}
$$

Question Time

Compare the LTS for

$$
P \| Q
$$

with respect to the one for

$$
(P \| Q)+(Q \| P)+\left(\left.P\right|_{c} Q\right)
$$

Parallel Composition - 5

Hoare's Parallel (multi-party synchronization)

$$
\begin{aligned}
& \frac{E \xrightarrow{\mu} E^{\prime}}{E|[L]| F \xrightarrow{\mu} E^{\prime}|[L]| F}(\mu \notin L) \frac{F \xrightarrow{\mu} F^{\prime}}{E\left\|[L]|F \xrightarrow{\mu} E \|[L]| F^{\prime}\right.}(\mu \notin L) \\
& \frac{E \xrightarrow{a} E^{\prime} \quad F \xrightarrow{a} F^{\prime}}{E|[L]| F \xrightarrow{a} E^{\prime}|[L]| F^{\prime}}(a \in L)
\end{aligned}
$$

Parallel Composition - 5

Hoare's Parallel (multi-party synchronization)

$$
\begin{aligned}
& \frac{E \xrightarrow{\mu} E^{\prime}}{E|[L]| F \xrightarrow{\mu} E^{\prime}|[L]| F}(\mu \notin L) \frac{F \xrightarrow{\mu} F^{\prime}}{E \|[L]|F \xrightarrow{\mu} E|[L] \mid F^{\prime}}(\mu \notin L) \\
& \frac{E \xrightarrow{a} E^{\prime} \quad F \xrightarrow{a} F^{\prime}}{E|[L]| F \xrightarrow{a} E^{\prime}|[L]| F^{\prime}}(a \in L)
\end{aligned}
$$

The operators $\cdot|[\emptyset]|$ • and $\cdot \| \mid$ are substantially equivalent

Interaction via Synchronization Algebra

Most operators for parallel composition can be expressed in terms of suitable synchronization algebras (assume $E \xrightarrow{*} E$ for all E).

Definition

A Synchronization Algebra is a 4-tuple $\langle\Lambda, *, 0, \bullet\rangle$ where
(1) Λ is a set of labels including * (idle) e 0 (forbidden),
(2) - is an associative and commutative binary operation Λ (i.e.

- : $\Lambda \times \Lambda \rightarrow \Lambda$) that satisfies:
(1) $a \bullet 0=0$ for all $a \in \Lambda$,

Interaction via Synchronization Algebra

Most operators for parallel composition can be expressed in terms of suitable synchronization algebras (assume $E \xrightarrow{*} E$ for all E).

Definition

A Synchronization Algebra is a 4-tuple $\langle\Lambda, *, 0, \bullet\rangle$ where
(1) Λ is a set of labels including * (idle) e 0 (forbidden),
(2) - is an associative and commutative binary operation Λ (i.e.

- : $\Lambda \times \Lambda \rightarrow \Lambda$) that satisfies:
(1) $a \bullet 0=0$ for all $a \in \Lambda$,
(2) $* \bullet *=*$,

Interaction via Synchronization Algebra

Most operators for parallel composition can be expressed in terms of suitable synchronization algebras (assume $E \xrightarrow{*} E$ for all E).

Definition

A Synchronization Algebra is a 4-tuple $\langle\Lambda, *, 0, \bullet\rangle$ where
(1) Λ is a set of labels including * (idle) e 0 (forbidden),
(2) - is an associative and commutative binary operation Λ (i.e.

- : $\Lambda \times \Lambda \rightarrow \Lambda$) that satisfies:
(1) $a \bullet 0=0$ for all $a \in \Lambda$,
(2) $* \bullet *=*$,
(3) $a \bullet b=*$ implies $a=b=*$, for all $a, b \in \Lambda$.

Interaction via Synchronization Algebra

Most operators for parallel composition can be expressed in terms of suitable synchronization algebras (assume $E \xrightarrow{*} E$ for all E).

Definition

A Synchronization Algebra is a 4-tuple $\langle\Lambda, *, 0, \bullet\rangle$ where
(1) Λ is a set of labels including * (idle) e 0 (forbidden),
(2) - is an associative and commutative binary operation Λ (i.e.

- : $\Lambda \times \Lambda \rightarrow \Lambda$) that satisfies:
(1) $a \bullet 0=0$ for all $a \in \Lambda$,
(2) $* \bullet *=*$,
(3) $a \bullet b=*$ implies $a=b=*$, for all $a, b \in \Lambda$.

$$
\frac{E \xrightarrow{\alpha} E^{\prime} \quad F \xrightarrow{\beta} F^{\prime}}{E \bullet F \xrightarrow{\alpha \bullet \beta} E^{\prime} \bullet F^{\prime}} \quad(\alpha \bullet \beta \neq 0)
$$

\bullet	$*$	α	0
$*$	$*$		0
α			0
0	0	0	0

Abstraction - 1

Restriction

$$
\frac{E \xrightarrow{\alpha} E^{\prime}}{E \backslash L \xrightarrow{\alpha} E^{\prime} \backslash L}(\alpha, \bar{\alpha} \notin L)
$$

(coin. $\overline{o k} . n i l) \mid$ ok.($\overline{c h o c} . n i l+\overline{w a t e r} . n i l)) \backslash o k$

("ok.nil) ok.(두oc.nil + water.nil) \ok | choc.nil

$(\overline{\text { choc. }}$ nil $+\overline{\text { water. }}$. nil $)) \backslash o k$

Abstraction - 1

Restriction

$$
\frac{E \xrightarrow{\alpha} E^{\prime}}{E \backslash L \xrightarrow{\alpha} E^{\prime} \backslash L}(\alpha, \bar{\alpha} \notin L)
$$

Forcing Interaction
((coin. $\overline{o k} . n i l) \mid o k .(\overline{c h o c} . n i l+\overline{w a t e r} . n i l)) \backslash o k \quad \mid \overline{c o i n} . c h o c . n i l$

$$
\begin{gathered}
((\overline{\text { ok.nil }}) \mid \text { ok. }(\overline{\text { choc.nil }}+\underset{\overrightarrow{\text { water.nil }})}{\stackrel{\tau}{\rightarrow}}) \backslash \text { ok } \mid \text { choc.nil } \\
(\text { nil } \mid(\overline{\text { choc.nil }+\underset{\text { water.nil })}{ }) \backslash \text { ok } \mid \text { choc.nil }} \\
(\text { nil } \mid \text { nil }) \backslash \text { ok } \mid \text { nil }
\end{gathered}
$$

A malicious user executing $\overline{o k}$.choc.nil would be stopped.

Abstraction - 2

Hiding

$$
\frac{E \xrightarrow{\alpha} E^{\prime}}{E / L \xrightarrow{\alpha} E^{\prime} / L}(\alpha \notin L) \quad \frac{E \xrightarrow{\alpha} E^{\prime}}{E / L \xrightarrow{\tau} E^{\prime} / L}(\alpha \in L)
$$

Avoiding Interaction

$$
((\text { coin.ok.nil) }|[o k]| \text { ok.(choc.nil + water.nil) }) / \text { ok }
$$

The ok signal is internalized thus it cannot be used by a dishonest user.

Abstraction - 3

Renaming

$$
\frac{E \xrightarrow{\mu} E^{\prime}}{E[f] \xrightarrow{f(\mu)} E^{\prime}[f]}
$$

Multilingual Interaction

An Italian user
soldo. acqua. nil
can interact with the machine with English indication by applying:
(soldo. acqua. nil) [coin/soldo, water/acqua]

Infinite Behaviour - 1

Recursion

$$
\frac{E\{\operatorname{rec} X . E / X\} \xrightarrow{\mu} E^{\prime}}{r e c X . E \xrightarrow{\mu} E^{\prime}}
$$

Infinite Behaviour - 1

Recursion

$$
\frac{E\{r e c X . E / X\} \xrightarrow{\mu} E^{\prime}}{\operatorname{rec} X . E \xrightarrow{\mu} E^{\prime}}
$$

Cell rec C. in. $\overline{\text { out }}$. C

rec C. in. $\overline{\text { out. }}$. C

Infinite Behaviour - 1

Recursion

$$
\frac{E\{r e c X . E / X\} \xrightarrow{\mu} E^{\prime}}{\operatorname{rec} X . E \xrightarrow{\mu} E^{\prime}}
$$

Cell rec C. in. $\overline{\text { out } . ~ C ~}$

(in.out. C) $\{$ rec C.in. $\overline{o u t} . C / C\}$
rec C. in.out. C

Infinite Behaviour - 1

Recursion

$$
\frac{E\{r e c X . E / X\} \xrightarrow{\mu} E^{\prime}}{\operatorname{rec} X . E \xrightarrow{\mu} E^{\prime}}
$$

Cell rec C. in. $\overline{\text { out }}$. C

in. $\overline{o u t}$. rec C. in. $\overline{o u t} . C$
rec C. in.out. C

Infinite Behaviour - 1

Recursion

$$
\frac{E\{r e c X . E / X\} \xrightarrow{\mu} E^{\prime}}{\operatorname{rec} X . E \xrightarrow{\mu} E^{\prime}}
$$

Cell rec C. in. $\overline{\text { out } . ~ C ~}$

in. $\overline{o u t}$. rec C. in. $\overline{o u t} . C \xrightarrow{\text { in }} \overline{\text { out. } . ~ r e c ~} C$. in. $\overline{o u t . ~} C$
rec C. in.out. C

Infinite Behaviour - 1

Recursion

$$
\frac{E\{r e c X . E / X\} \xrightarrow{\mu} E^{\prime}}{r e c X . E \xrightarrow{\mu} E^{\prime}}
$$

Cell rec C. in. $\overline{\text { out } . ~ C ~}$

in. $\overline{o u t}$. rec C. in. $\overline{o u t} . C \xrightarrow{\text { in }} \overline{\text { out. rec } C . i n . \overline{o u t . ~} C}$
rec C. in. $\overline{\text { out } . ~} C \xrightarrow{\text { in }} \overline{\text { out. }}$. rec C. in. $\overline{\text { out } . ~ C ~}$

Infinite Behaviour - 1

Recursion

$$
\frac{E\{r e c X . E / X\} \xrightarrow{\mu} E^{\prime}}{r e c X . E \xrightarrow{\mu} E^{\prime}}
$$

Cell rec C.in. $\overline{\text { out } . ~ C ~}$

in. $\overline{\text { out. }}$. rec $C . i n . \overline{o u t} . C \xrightarrow{\text { in }} \overline{\text { out. } . ~ r e c ~} C$. in. $\overline{o u t} . C$
rec C. in. $\overline{\text { out. }}$. C
A Long Lasting Vending Machine
rec D. coin. ($\overline{\text { choc. }} D+\overline{\text { water. }} . D)$

Infinite Behaviour - 1

Recursion

$$
\frac{E\{\operatorname{rec} X . E / X\} \xrightarrow{\mu} E^{\prime}}{\operatorname{rec} X . E \xrightarrow{\mu} E^{\prime}}
$$

Long Lasting Vending Machine

$$
\text { rec } D . \text { coin. }(\overline{c h o c} . D+\overline{\text { water. }} D)
$$

rec D. coin. $(\overline{\text { choc. }} D+\overline{\text { water }} . D) \quad\} \quad \xrightarrow{\text { coin }}$
$\overline{\text { choc. rec } D . c o i n . ~(\overline{c h o c} . ~} D+\overline{\text { water } . ~} D)$
\qquad
water. rec D. coin. (choc. $D+\overline{\text { water. }} D$)
rec D. coin. $(\overline{\text { choc. }} D+\overline{\text { water }} . D) \quad\} \quad \xrightarrow{\text { coin }}$

Question Time

(1) Define a process P such that its LTS resembles the one below

(2) Define a process P such that its LTS resembles the one below

Infinite Behaviour - 2

The notation rec $X . E$ for recursion makes the process expressions more difficult to parse and less pleasant to read.

Recursion via constant declaration

A suitable alternative is to allow for the (recursive) definition of some fixed set of constants, that can then be used as some sort of procedure calls inside processes.
Let $\Gamma=\left\{X_{1} \triangleq E_{1}, X_{2} \triangleq E_{2}, \ldots, X_{n} \triangleq E_{n}\right\}$ be the set of definitions, then

$$
\frac{X \triangleq E \in \Gamma \quad E \xrightarrow{\mu} E^{\prime}}{X \xrightarrow{\mu} E^{\prime}}
$$

Long Lasting Vending Machine

$$
D \triangleq \operatorname{coin} .(\overline{\text { choc. }} D+\overline{\text { water }} . D)
$$

From Constant Declarations to Recursive Processes

$X_{1} \triangleq E_{1}$	$\operatorname{rec} X_{1} \cdot E_{1}$
$X_{1} \triangleq E_{1}$	$\operatorname{rec} X_{1} \cdot\left(E_{1}\left\{\operatorname{rec} X_{2} \cdot E_{2} / X_{2}\right\}\right)$
$X_{2} \triangleq E_{2}$	$\operatorname{rec} X_{2} \cdot\left(E_{2}\left\{\operatorname{rec} X_{1} \cdot E_{1} / X_{1}\right\}\right)$
$X_{1} \triangleq E_{1}$	$\operatorname{rec} X_{1} \cdot\left(\left(E_{1}\left\{\operatorname{rec} X_{2} \cdot E_{2} / X_{2}\right\}\right)\left\{\operatorname{rec} X_{3} \cdot\left(E_{3}\left\{\operatorname{rec} X_{2} \cdot E_{2} / X_{2}\right\}\right) / X_{3}\right\}\right)$
$X_{2} \triangleq E_{2}$	$\operatorname{rec} X_{2} \cdot\left(\left(E_{2}\left\{\operatorname{rec} X_{3} \cdot E_{3} / X_{3}\right\}\right)\left\{\operatorname{rec} X_{1} \cdot\left(E_{1}\left\{\operatorname{rec} X_{3} \cdot E_{3} / X_{3}\right\}\right) / X_{1}\right\}\right)$
$X_{3} \triangleq E_{3}$	$\operatorname{rec} X_{3} \cdot\left(\left(E_{3}\left\{\operatorname{rec} X_{1} \cdot E_{1} / X_{1}\right\}\right)\left\{\operatorname{rec} X_{2} \cdot\left(E_{2}\left\{\operatorname{rec} X_{1} \cdot E_{1} / X_{1}\right\}\right) / X_{2}\right\}\right)$
\cdots	\cdots

Question Time

(1) Redefine the previous two up-down processes using suitable constant declarations instead of the recursion construct.
(2) Define a process P such that its LTS resembles the one below

Infinite Behaviour - 3

Replication

$$
\frac{E \mid!E \xrightarrow{\mu} E^{\prime}}{!E \xrightarrow{\mu} E^{\prime}}
$$

Chocolate ad libitum

The replication operator can be defined by the following equation $!E \triangleq E \mid!E$ that can be expressed in terms of rec as follows: $\operatorname{rec} X .(E \mid X)$

Infinite Behaviour - 4

Iteration

$$
\overline{E^{*} \xrightarrow{\epsilon} \sqrt{ }}
$$

and

$$
\frac{E \xrightarrow{\mu} E^{\prime}}{E^{*} \xrightarrow{\mu} E^{\prime} ; E^{*}}
$$

This iteration operator is the classical one of regular expressions.

Question Time

(1) Draw the LTS for rec $X .(a . X+b . X+c .0)$
(2) Draw the LTS for rec $X .(a . X \oplus b . X \oplus c .0)$
(3) Draw the LTS for rec $X .((a . X+b . X) \mid c .0)$
(9) Suppose P can issue \bar{a} but not a. Intuitively, what is the "meaning" of $(P \mid a . Q) \backslash a$? Intuitively, what is the "meaning" of $(P \mid!a . Q) \backslash a$?

Linking

$$
C \frown C=(C[p / o u t] \mid C[p / \text { in }]) \backslash p=\left(C_{i} \mid C_{o}\right) \backslash p
$$

Question Time
 Draw the LTS for $C \frown C$

Question Time

Let the operation \frown be defined as

$$
X \frown Y=(X[p, q, r / i, d, z] \mid Y[p, q, r / \text { inc, dec, zero }]) \backslash\{p, q, r\}
$$

Assume the following constants declarations are present:

$$
\begin{aligned}
Z & \triangleq \overline{z e r o} . Z+i n c .(I \frown Z) \\
I & \triangleq \overline{\operatorname{dec}} . D+i n c . \bar{i} . I \\
D & \triangleq d . I+z . Z
\end{aligned}
$$

Draw, at least in part, the LTS for Z.

Interaction with Value Passing

Single Evolutions

$$
\overline{a(x) \cdot E \xrightarrow{a(v)} E\{v / x\}}(v \text { is a value })
$$

$$
\bar{a} e . E \xrightarrow{\bar{a} \mathrm{val}(e)} E
$$

Interaction with Value Passing

Single Evolutions

$$
\overline{a(x) \cdot E \xrightarrow{a(v)} E\{v / x\}}(v \text { is a value }) \quad \overline{\bar{a} e . E \xrightarrow{\bar{a} v a l(e)} E}
$$

Interaction

$$
\xrightarrow[{E\left|F \xrightarrow{\tau} E^{\bar{a} v} E^{\prime}\right| F^{\prime}}]{F \xrightarrow{a(v)} F^{\prime}} \quad \xrightarrow[{E\left|F \xrightarrow{\tau} E^{\prime}\right| F^{\prime}}]{E \xrightarrow{a(v)} E^{\prime} F \xrightarrow{\bar{a} v} F^{\prime}}
$$

Conditional Execution

$$
\frac{\operatorname{val}(e)=\text { true } \quad E \xrightarrow{\mu} E^{\prime}}{\text { if e then } E \text { else } F \xrightarrow{\mu} E^{\prime}} \quad \frac{\text { val }(e)=\text { false } \quad F \xrightarrow{\mu} F^{\prime}}{\text { if e then } E \text { else } F \xrightarrow{\mu} F^{\prime}}
$$

Conditional Execution

$$
\frac{\operatorname{val}(e)=\text { true } E \xrightarrow{\mu} E^{\prime}}{\text { if e then } E \text { else } F \xrightarrow{\mu} E^{\prime}} \quad \begin{aligned}
& \text { val }(e)=\text { false } \quad F \xrightarrow{\mu} F^{\prime} \\
& \text { if e then } E \text { else } F \xrightarrow{\mu} F^{\prime}
\end{aligned}
$$

Let us consider a vending machine that accept 20 cents coins (or higher) and offers a chocolate:

$$
\operatorname{coin}(x) \text {. if } x \geq 20 \text { then choc.nil else nil }
$$

The user interacts with the machine as follows:

$$
\begin{gathered}
\operatorname{coin}(x) \text {. if } x \geq 20 \text { then } \overline{c h o c . n i l} \text { else nil } \mid \bar{\rightarrow} \text { coin } 40 . \text { choc.nil } \\
\text { if } 40 \geq 20 \text { then } \underset{\substack{\text { choc.nil } \\
\tau}}{\text { nil } \mid ~ n i l ~ n i l ~} \mid \text { choc.nil }
\end{gathered}
$$

Pipelining

Pipeline

The binary operator for pipeline is denoted by

- $>$ -

If E ed F are processes, process $E>F$ spawns a copy of F everytime E succeeds.

$$
\frac{E \xrightarrow{\mu} E^{\prime}}{E>F \xrightarrow{\mu} E^{\prime}>F}(\mu \neq \sqrt{ }) \quad \frac{E \xrightarrow{\vee} E^{\prime}}{E>F \xrightarrow{\tau}\left(E^{\prime}>F\right) \mid F}
$$

Pipelining

Pipeline

The binary operator for pipeline is denoted by

- $>$ -

If E ed F are processes, process $E>F$ spawns a copy of F everytime E succeeds.

$$
\frac{E \xrightarrow{\mu} E^{\prime}}{E>F \xrightarrow{\mu} E^{\prime}>F}(\mu \neq \sqrt{ }) \quad \frac{E \xrightarrow{\vee} E^{\prime}}{E>F \xrightarrow{\tau}\left(E^{\prime}>F\right) \mid F}
$$

A "three shot" vending machine

$$
(\text { coin } \mid \text { coin } \mid \text { coin })>\text { choc }
$$

Interruption - 1

Disabling Operator

The disabling binary operator

- [$>$
permits to interrupt some actions when specific events happen.

$$
\frac{E \xrightarrow{\mu} E^{\prime}}{E\left[>F \xrightarrow{\mu} E^{\prime}[>F\right.}(\mu \neq \sqrt{ }) \quad \frac{E \xrightarrow{\vee} E^{\prime}}{E\left[>F \xrightarrow{\tau} E^{\prime}\right.} \quad \frac{F \xrightarrow{\mu} F^{\prime}}{E\left[>F \xrightarrow{\mu} F^{\prime}\right.}
$$

Interruption - 1

Disabling Operator

The disabling binary operator

- [>
permits to interrupt some actions when specific events happen.

$$
\frac{E \xrightarrow{\mu} E^{\prime}}{E\left[>F \xrightarrow{\mu} E^{\prime}[>F\right.}(\mu \neq \sqrt{ }) \quad \frac{E \xrightarrow{\vee} E^{\prime}}{E\left[>F \xrightarrow{\tau} E^{\prime}\right.} \quad \frac{F \xrightarrow{\mu} F^{\prime}}{E\left[>F \xrightarrow{\mu} F^{\prime}\right.}
$$

A cheating customer

$$
(\text { coin } \rightarrow \text { choc } \rightarrow \text { stop })[>(\text { bang } \rightarrow \text { choc } \rightarrow \text { stop })
$$

This describes a vending machine that when "banged" gives away a chocolate without getting the coin

Interruption - 2

Try Catch ("non classical")

The try catch operators

- try - $\operatorname{catch}(A)$ _ permits to handle specific events (maybe less natural to use in PA).

$$
\begin{gathered}
\frac{E \xrightarrow{\mu} E^{\prime}}{\operatorname{try} E \operatorname{catch}(A) F \xrightarrow{\mu} \operatorname{try} E^{\prime} \operatorname{catch}(A) F} \quad(\mu \notin A) \\
\frac{E \xrightarrow{\mu} E^{\prime}}{\operatorname{try} E \operatorname{catch}(A) F \xrightarrow{\tau} F}(\mu \in A) \\
\frac{E \xrightarrow{\checkmark} E^{\prime}}{\operatorname{try} E \operatorname{catch}(A) F \xrightarrow{\checkmark} E^{\prime}}
\end{gathered}
$$

Tapas Basics

Tapas Syntax

$$
\begin{aligned}
& \text { PROC_DEC }::=\mathrm{X}_{1}=\sum_{i \in I_{1}} \mathrm{ACT}_{1}^{i} \cdot \mathrm{PROC}_{1}^{i} \\
& \mathrm{X}_{n}=\sum_{j \in I_{n}} \mathrm{ACT}_{n}^{j} \cdot \mathrm{PROC}_{n}^{j} \\
& \text { ACT ::= tau | c! |c? } \\
& \text { PROC ::= nil | P[X] | S } \\
& \text { (Process dec.) } \\
& \text { (Action) } \\
& \text { (Process) } \\
& \text { SYS_DEC }::=C\left|C_{1}(+) C_{2}\right| C_{1}[] C_{2} \mid C_{1} \| C_{2} \text { (System dec.) } \\
& \text { CS }::=\quad * \quad\left\{\mathrm{c}_{1}, \ldots, \mathrm{c}_{n}\right\} \\
& \text { F ::= c/c' | F, F }
\end{aligned}
$$

Tapas Exercise

(1) Use Tapas to draw the processes below.

(2) Build a system by composing the two processes and restricting ports a and b.
(3) Use Tapas to see if it is guaranteed that c is eventually issued.

Tapas Exercise

(1) Use Tapas to draw the processes below.

(2) Build a system by composing the two processes and restricting ports a and b.
(3) Use Tapas to see if it is guaranteed that c is eventually issued.

Practice with Tapas

(1) Model a one-position buffer using Tapas: it has input ports put, get, and output ports empty, full, error. An error must be issued if an attempt is made to get from an empty buffer or to put on a full buffer.
(2) Model a producer for the above buffer: it has input ports empty, full and output port put. It must check that the buffer is empty before issuing a put.
(3) Model a consumer for the above buffer: which ports are needed? Which check is recommended?
(9) Build a system with a buffer, a producer and a consumer running in parallel, with all ports restricted except error. Generate the corresponding LTS and check that error is never issued.
(0) Introduce another consumer in the above scenario. Can the system issue some error?

A non-trivial exercise

Define a process P such that its LTS resembles the one below... up-to the execution of some internal actions

