Formal Techniques for Software Engineering: Behavioural Equivalences

Rocco De Nicola

IMT Institute for Advanced Studies, Lucca rocco.denicola@imtlucca.it

June 2013

Lesson 8

0010011001010
10101sysma 010
J1001010101010
10100101010010°
$0_{01000} 1201010$
$0_{201} 0^{0^{1010101}}$

Behavioural Equivalence

Specifications vs Implementations

- We are given an abstract system specification Spec
- We devise an implementation Imp by assembling many interacting components

Behavioural Equivalence

Specifications vs Implementations

- We are given an abstract system specification Spec
- We devise an implementation Imp by assembling many interacting components

A Natural Question

Are the processes Imp and Spec "behaviourally equivalent"? the answer requires

- Fixing a "good" notion of equivalence
- Proving that the two processes are equivalent or finding a counterexample and re-design Imp...
- ... or changing the notion of equivalence

Which Equivalence 1

Which processes should a reasonable behavioural equivalence equate?

- Two syntactic objects are equivalent if they have the same "meaning"
- Two processes are equivalent if they have the same "behavior", i.e., communication potential, as described by LTS's.

Idea:

Say the meaning of a process P is LTS (P), the LTS associated to it

But this yields too many distinctions:

$$
X=a . X \quad Y=\text { a.a. } Y
$$

have different LTS but both processes can (only) execute infinitely many a-actions, and should be considered equivalent.

Which Equivalence 2

What should a reasonable behavioural equivalence satisfy?

- Abstract from states (consider only the actions);
- abstract from internal behaviour (τ steps are not visible);
- identifies processes whose LTSs are isomorphic;
- considers two processes equivalent only if both can execute the same actions sequences;
- allows to replace a subprocess by an equivalent counterpart without changing the overall semantics of the system;
- be deadlock sensitive, i.e., if one has a deadlock after a given trace s, then then the other process has a deadlock after the same trace (and vice versa).

Which Equivalence 3

What else should a reasonable behavioural equivalence satisfy?

- Reflexivity: $P \equiv P$ for each process P
- Transitivity: Spec $_{0} \equiv$ Spec $_{1} \equiv$ Spec $_{2} \equiv \cdots \equiv$ Impl gives that

$$
\text { Spec }_{0} \equiv \operatorname{Impl}
$$

- Symmetry: $P \equiv Q$ iff $Q \equiv P$

An important property: Congruence

$C(P)$

$C(Q)$

An important property: Congruence

$C(P)$

$C(Q)$

Congruence Property

$$
P \equiv Q \text { implies that } C(P) \equiv C(Q)
$$

Behavioural Equivalences

Behavioural Equivalences

Problem: Should we consider these three systems as equivalent?

Traces/Language Equivalence

Let $\langle Q, A, \rightarrow\rangle$ be an LTS, with $q \in Q$ and $s \in A^{*}$.

Traces

(1) s is a trace of q if there exists $q^{\prime} \in Q$ s.t. $q \xrightarrow{s} q^{\prime}$.
(2) $T(q)$ represents the set of all traces of q

Traces/Language Equivalence

Let $\langle Q, A, \rightarrow\rangle$ be an LTS, with $q \in Q$ and $s \in A^{*}$.

Traces

(1) s is a trace of q if there exists $q^{\prime} \in Q$ s.t. $q \xrightarrow{s} q^{\prime}$.
(2) $T(q)$ represents the set of all traces of q

Traces Equivalence

Two states p and q are trace equivalent, written $p=T q$, if $T(p)=T(q)$.

Two Traces Equivalent Systems

Two Traces Equivalent Systems

Black-Box Experiments

Experiment in A

Black-Box Experiments

Black-Box Experiments

Black-Box Experiments

Black-Box Experiments

[^0]
Bisimulation Relation

Strong Bisimulation

A relation $R \subseteq Q \times Q$ is strong bisimulation if, for any pair of states p and q such that $\langle p, q\rangle \in R$, the following holds:
(1) for all $a \in A$ and $p^{\prime} \in Q$, if $p \xrightarrow{a} p^{\prime}$ then $q \xrightarrow{a} q^{\prime}$ for some $q^{\prime} \in Q$ such that $\left\langle p^{\prime}, q^{\prime}\right\rangle \in R$;
(2) for all $a \in A$ and $q^{\prime} \in Q$, if $q \xrightarrow{a} q^{\prime}$ then $p \xrightarrow{a} p^{\prime}$ for some $p^{\prime} \in Q$ such that $\left\langle p^{\prime}, q^{\prime}\right\rangle \in R$.

Bisimulation Relation

Strong Bisimulation

A relation $R \subseteq Q \times Q$ is strong bisimulation if, for any pair of states p and q such that $\langle p, q\rangle \in R$, the following holds:
(1) for all $a \in A$ and $p^{\prime} \in Q$, if $p \xrightarrow{a} p^{\prime}$ then $q \xrightarrow{a} q^{\prime}$ for some $q^{\prime} \in Q$ such that $\left\langle p^{\prime}, q^{\prime}\right\rangle \in R$;
(2) for all $a \in A$ and $q^{\prime} \in Q$, if $q \xrightarrow{a} q^{\prime}$ then $p \xrightarrow{a} p^{\prime}$ for some $p^{\prime} \in Q$ such that $\left\langle p^{\prime}, q^{\prime}\right\rangle \in R$.

Bisimilarity

Two states $p, q \in Q$ are strongly bisimilar, written $p \sim q$, if there exists a strong bisimulation R such that $\langle p, q\rangle \in R$.

$$
\sim=\bigcup\{R \mid R \text { is a strong bisimulation }\}
$$

Examples

Examples

These three systems are not bisimulation equivalent

Two bisimilar Systems

Two bisimilar Systems

$R \triangleq\left\{\left\langle p_{0}, q_{0}\right\rangle,\left\langle p_{0}, q_{2}\right\rangle,\left\langle p_{1}, q_{1}\right\rangle,\left\langle p_{2}, q_{1}\right\rangle\right\}$ is a strong bisimulation

Basic Properties of Strong Bisimilarity

Theorem
~ is an equivalence relation (reflexive, symmetric and transitive)

Basic Properties of Strong Bisimilarity

Theorem
~ is an equivalence relation (reflexive, symmetric and transitive)

Theorem
\sim is the largest strong bisimulation

Basic Properties of Strong Bisimilarity

Theorem

\sim is an equivalence relation (reflexive, symmetric and transitive)

Theorem

\sim is the largest strong bisimulation

Theorem
$s \sim t$ if and only if for each $a \in$ Act:

- if $s \xrightarrow{a} s^{\prime}$ then $t \xrightarrow{a} t^{\prime}$ for some t^{\prime} such that $s^{\prime} \sim t^{\prime}$
- if $t \xrightarrow{a} t^{\prime}$ then $s \xrightarrow{a} s^{\prime}$ for some s^{\prime} such that $s^{\prime} \sim t^{\prime}$.

Two Systems that are not bisimilar

Two Systems that are not bisimilar

- States p_{0} and q_{0} are not strongly bisimilar.
- If they were equivalent, also states p_{1} and q_{1}, had to be so.

Two Systems that are not bisimilar

- States p_{0} and q_{0} are not strongly bisimilar.
- If they were equivalent, also states p_{1} and q_{1}, had to be so.
- There is no strong bisimulation R that contains $\left\langle p_{1}, q_{1}\right\rangle$.
- The c-transition from p_{1} cannot be simulated by q_{1}.

More on strong bisimulation

- Is $\emptyset=\{ \}$ a strong bisimulation?

More on strong bisimulation

- Is $\emptyset=\{ \}$ a strong bisimulation?
- Is $I d=\{\langle p, p\rangle \mid p \in Q\}$ a strong bisimulation?
- Is $Q^{2}=\{\langle p, q\rangle$
before answering)

More on strong bisimulation

- Is $\emptyset=\{ \}$ a strong bisimulation?
- Is Id $=\{\langle p, p\rangle \mid p \in Q\}$ a strong bisimulation?
- Is $Q^{2}=\{\langle p, q\rangle \mid p, q \in Q\}$ a strong bisimulation? (Think twice before answering)

More on strong bisimulation

- Is $\emptyset=\{ \}$ a strong bisimulation?
- Is Id $=\{\langle p, p\rangle \mid p \in Q\}$ a strong bisimulation?
- Is $Q^{2}=\{\langle p, q\rangle \mid p, q \in Q\}$ a strong bisimulation? (Think twice before answering)
- Let S be a strong bisimulation. Is $S^{-1}=\{\langle q, p\rangle \mid\langle p, q\rangle \in S\}$ a strong bisimulation?

More on strong bisimulation

- Is $\emptyset=\{ \}$ a strong bisimulation?
- Is $I d=\{\langle p, p\rangle \mid p \in Q\}$ a strong bisimulation?
- Is $Q^{2}=\{\langle p, q\rangle \mid p, q \in Q\}$ a strong bisimulation? (Think twice before answering)
- Let S be a strong bisimulation. Is $S^{-1}=\{\langle q, p\rangle \mid\langle p, q\rangle \in S\}$ a strong bisimulation?
- Let S_{1} and S_{2} be strong bisimulations. Is $S_{1} S_{2}=\left\{\langle p, q\rangle \mid \exists r \in Q .\langle p, r\rangle \in S_{1} \wedge\langle r, q\rangle \in S_{2}\right\}$ a strong bisimulation?

More on strong bisimulation

- Is $\emptyset=\{ \}$ a strong bisimulation?
- Is $I d=\{\langle p, p\rangle \mid p \in Q\}$ a strong bisimulation?
- Is $Q^{2}=\{\langle p, q\rangle \mid p, q \in Q\}$ a strong bisimulation? (Think twice before answering)
- Let S be a strong bisimulation. Is $S^{-1}=\{\langle q, p\rangle \mid\langle p, q\rangle \in S\}$ a strong bisimulation?
- Let S_{1} and S_{2} be strong bisimulations. Is $S_{1} S_{2}=\left\{\langle p, q\rangle \mid \exists r \in Q .\langle p, r\rangle \in S_{1} \wedge\langle r, q\rangle \in S_{2}\right\}$ a strong bisimulation?
- Let S_{1} and S_{2} be strong bisimulations. Is $S_{1} \cup S_{2}=\left\{\langle p, q\rangle \mid\langle p, q\rangle \in S_{1} \vee\langle p, q\rangle \in S_{2}\right\}$ a strong bisimulation?

More on strong bisimulation

- Is $\emptyset=\{ \}$ a strong bisimulation?
- Is $I d=\{\langle p, p\rangle \mid p \in Q\}$ a strong bisimulation?
- Is $Q^{2}=\{\langle p, q\rangle \mid p, q \in Q\}$ a strong bisimulation? (Think twice before answering)
- Let S be a strong bisimulation. Is $S^{-1}=\{\langle q, p\rangle \mid\langle p, q\rangle \in S\}$ a strong bisimulation?
- Let S_{1} and S_{2} be strong bisimulations. Is $S_{1} S_{2}=\left\{\langle p, q\rangle \mid \exists r \in Q .\langle p, r\rangle \in S_{1} \wedge\langle r, q\rangle \in S_{2}\right\}$ a strong bisimulation?
- Let S_{1} and S_{2} be strong bisimulations. Is $S_{1} \cup S_{2}=\left\{\langle p, q\rangle \mid\langle p, q\rangle \in S_{1} \vee\langle p, q\rangle \in S_{2}\right\}$ a strong bisimulation?
- Let S_{1} and S_{2} be strong bisimulations. Is $S_{1} \cap S_{2}=\left\{\langle p, q\rangle \mid\langle p, q\rangle \in S_{1} \wedge\langle p, q\rangle \in S_{2}\right\}$ a strong bisimulation? (Think twice before answering)

More on strong bisimulation

- Is $\emptyset=\{ \}$ a strong bisimulation?
- Is Id $=\{\langle p, p\rangle \mid p \in Q\}$ a strong bisimulation?
- Is $Q^{2}=\{\langle p, q\rangle \mid p, q \in Q\}$ a strong bisimulation? (Think twice before answering)
- Let S be a strong bisimulation. Is $S^{-1}=\{\langle q, p\rangle \mid\langle p, q\rangle \in S\}$ a strong bisimulation?
- Let S_{1} and S_{2} be strong bisimulations. Is $S_{1} S_{2}=\left\{\langle p, q\rangle \mid \exists r \in Q .\langle p, r\rangle \in S_{1} \wedge\langle r, q\rangle \in S_{2}\right\}$ a strong bisimulation?
- Let S_{1} and S_{2} be strong bisimulations. Is $S_{1} \cup S_{2}=\left\{\langle p, q\rangle \mid\langle p, q\rangle \in S_{1} \vee\langle p, q\rangle \in S_{2}\right\}$ a strong bisimulation?
- Let S_{1} and S_{2} be strong bisimulations. Is $S_{1} \cap S_{2}=\left\{\langle p, q\rangle \mid\langle p, q\rangle \in S_{1} \wedge\langle p, q\rangle \in S_{2}\right\}$ a strong bisimulation? (Think twice before answering)
- Is \sim equals to \sim^{-1} ? And to $\sim \sim$? And to $\sim \cup \sim$?

Are P and Q bisimilar?

How to Show Nonbisimilarity?

Given:

How to prove that $p_{0} \nsim q_{0}$:

How to Show Nonbisimilarity?

Given:

How to prove that $p_{0} \nsim q_{0}$:

- Enumerate all binary relations and show that none of them at the same time contains (s, t) and is a strong bisimulation. (Expensive: $2^{\mid \text {Proc }\left.\right|^{2}}$ relations.)

How to Show Nonbisimilarity?

Given:

How to prove that $p_{0} \nsim q_{0}$:

- Enumerate all binary relations and show that none of them at the same time contains (s, t) and is a strong bisimulation. (Expensive: $2^{|P r o c|}{ }^{2}$ relations.)
- Make certain observations which enable us to disqualify many bisimulation candidates in one step.

How to Show Nonbisimilarity?

Given:

How to prove that $p_{0} \nsim q_{0}$:

- Enumerate all binary relations and show that none of them at the same time contains (s, t) and is a strong bisimulation. (Expensive: $2^{|P r o c|}{ }^{2}$ relations.)
- Make certain observations which enable us to disqualify many bisimulation candidates in one step.
- Use the game characterization of strong bisimilarity.

Strong Bisimulation Game

Let (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$) be an LTS and $s, t \in$ Proc.
We define a two-player game of an 'attacker' and a 'defender' starting from s and t.

- The game is played in rounds, and configurations of the game are pairs of states from Proc \times Proc.
- In every round exactly one configuration is called current. Initially the configuration (s, t) is the current one.

Strong Bisimulation Game

Let (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$) be an LTS and $s, t \in$ Proc.
We define a two-player game of an 'attacker' and a 'defender' starting from s and t.

- The game is played in rounds, and configurations of the game are pairs of states from Proc \times Proc.
- In every round exactly one configuration is called current. Initially the configuration (s, t) is the current one.

Intuition

The defender wants to show that s and t are strongly bisimilar while the attacker aims at proving the opposite.

Rules of the Bisimulation Games

Game Rules

In each round the players change the current configuration as follows:
(1) the attacker chooses one of the processes in the current configuration and makes an \xrightarrow{a}-move for some $a \in A c t$, and
(2) the defender must respond by making an \xrightarrow{a}-move in the other process under the same action a.
The newly reached pair of processes becomes the current configuration.
The game then continues by another round.

Rules of the Bisimulation Games

Game Rules

In each round the players change the current configuration as follows:
(1) the attacker chooses one of the processes in the current configuration and makes an \xrightarrow{a}-move for some $a \in A c t$, and
(2) the defender must respond by making an \xrightarrow{a}-move in the other process under the same action a.
The newly reached pair of processes becomes the current configuration.
The game then continues by another round.

Result of the Game

- If one player cannot move, the other player wins.
- If the game is infinite, the defender wins.

Game Characterization of Strong Bisimilarity

Theorem

- States s and t are strongly bisimilar if and only if the defender has a universal winning strategy starting from the configuration (s, t).
- States s and t are not strongly bisimilar if and only if the attacker has a universal winning strategy starting from the configuration (s, t).

Game Characterization of Strong Bisimilarity

Theorem

- States s and t are strongly bisimilar if and only if the defender has a universal winning strategy starting from the configuration (s, t).
- States s and t are not strongly bisimilar if and only if the attacker has a universal winning strategy starting from the configuration (s, t).

Remark

The bisimulation game can be used to prove both bisimilarity and nonbisimilarity of two processes. It very often provides elegant arguments for the negative case.

Simulation Relation

Strong Simulation

A relation $R \subseteq Q \times Q$ is strong simulation if, for any pair of states p and q such that $\langle p, q\rangle \in R$, the following holds:

- for all $a \in A$ and $p^{\prime} \in Q$, if $p \xrightarrow{a} p^{\prime}$ then $q \xrightarrow{a} q^{\prime}$ for some $q^{\prime} \in Q$ such that $\left\langle p^{\prime}, q^{\prime}\right\rangle \in R$;

Simulation Relation

Strong Simulation

A relation $R \subseteq Q \times Q$ is strong simulation if, for any pair of states p and q such that $\langle p, q\rangle \in R$, the following holds:

- for all $a \in A$ and $p^{\prime} \in Q$, if $p \xrightarrow{a} p^{\prime}$ then $q \xrightarrow{a} q^{\prime}$ for some $q^{\prime} \in Q$ such that $\left\langle p^{\prime}, q^{\prime}\right\rangle \in R$;

Similarity

Two states $p, q \in Q$ are strongly similar, written $p \sqsubseteq q$, if there exists a strong simulation R such that $\langle p, q\rangle \in R$.

$$
\sqsubseteq=\bigcup\{R \mid R \text { is a strong simulation }\}
$$

Double Similarity

Two states $p, q \in Q$ are doubly similar, written $p \simeq q$, if we have $p \sqsubseteq q$ and $q \sqsubseteq p$ (i.e., $\simeq \triangleq \sqsubseteq \cap \sqsubseteq^{-1}$)

More on simulation relation

- Is \sqsubseteq a preorder?
- Is \sqsubseteq an equivalence?
- Let S be a strong bisimulation. Is S a strong simulation? And S^{-1} ?
 a strong bisimulation?
- $\mathrm{Is}_{\mathrm{s}} \sim$ an equivalence?
- Does \sim imply \simeq ?
- Does \simeq imply ~? (Think twice before answering)

More on simulation relation

- Is \sqsubseteq a preorder?
- Is \sqsubseteq an equivalence?
- Let S be a strong bisimulation. Is S a strong simulation? And S^{-1} ? - Let S be a strong simulation s.t. S^{-1} is also a strong simulation. Is S a strong bisimulation?
\square
- Does \sim imply \simeq ?
\square

More on simulation relation

- Is \sqsubseteq a preorder?
- Is \sqsubseteq an equivalence?
- Let S be a strong bisimulation. Is S a strong simulation? And S^{-1} ?

- Is \simeq an equivalence?
- Does ~ imply \simeq ?

More on simulation relation

- Is \sqsubseteq a preorder?
- Is \sqsubseteq an equivalence?
- Let S be a strong bisimulation. Is S a strong simulation? And S^{-1} ?
- Let S be a strong simulation s.t. S^{-1} is also a strong simulation. Is S a strong bisimulation?
- Does ~ imply \simeq ?

More on simulation relation

- Is \sqsubseteq a preorder?
- Is \sqsubseteq an equivalence?
- Let S be a strong bisimulation. Is S a strong simulation? And S^{-1} ?
- Let S be a strong simulation s.t. S^{-1} is also a strong simulation. Is S a strong bisimulation?
- Is \simeq an equivalence?

More on simulation relation

- Is \sqsubseteq a preorder?
- Is \sqsubseteq an equivalence?
- Let S be a strong bisimulation. Is S a strong simulation? And S^{-1} ?
- Let S be a strong simulation s.t. S^{-1} is also a strong simulation. Is S a strong bisimulation?
- Is \simeq an equivalence?
- Does ~imply \simeq ?

More on simulation relation

- Is \sqsubseteq a preorder?
- Is \sqsubseteq an equivalence?
- Let S be a strong bisimulation. Is S a strong simulation? And S^{-1} ?
- Let S be a strong simulation s.t. S^{-1} is also a strong simulation. Is S a strong bisimulation?
- Is \simeq an equivalence?
- Does ~ imply \simeq ?
- Does \simeq imply \sim ? (Think twice before answering)

A General Observational Approach

When defining behavioural equivalences, we do not want to distinguish between systems that cannot be taken apart by external observers. Because of this we introduce three notions

A General Observational Approach

When defining behavioural equivalences, we do not want to distinguish between systems that cannot be taken apart by external observers. Because of this we introduce three notions
(1) Observers

A General Observational Approach

When defining behavioural equivalences, we do not want to distinguish between systems that cannot be taken apart by external observers.
Because of this we introduce three notions
(1) Observers
(2) Observations

A General Observational Approach

When defining behavioural equivalences, we do not want to distinguish between systems that cannot be taken apart by external observers.
Because of this we introduce three notions
(1) Observers
(2) Observations
(3) Successful Observations

A General Observational Approach

When defining behavioural equivalences, we do not want to distinguish between systems that cannot be taken apart by external observers.
Because of this we introduce three notions
(1) Observers
(2) Observations
(3) Successful Observations

Those systems that satisfy (lead to successful observations) the same observers are considered equivalent.

A General Observational Approach

When defining behavioural equivalences, we do not want to distinguish between systems that cannot be taken apart by external observers.
Because of this we introduce three notions
(1) Observers
(2) Observations
(3) Successful Observations

Those systems that satisfy (lead to successful observations) the same observers are considered equivalent.

A General Observational Approach

When defining behavioural equivalences, we do not want to distinguish between systems that cannot be taken apart by external observers.
Because of this we introduce three notions
(1) Observers
(2) Observations
(3) Successful Observations

Those systems that satisfy (lead to successful observations) the same observers are considered equivalent.
(1) An observer is an LTS having actions from $A_{w} \triangleq A \cup\{w\}$, with $w \notin A$;

A General Observational Approach

When defining behavioural equivalences, we do not want to distinguish between systems that cannot be taken apart by external observers.
Because of this we introduce three notions
(1) Observers
(2) Observations
(3) Successful Observations

Those systems that satisfy (lead to successful observations) the same observers are considered equivalent.
(1) An observer is an LTS having actions from $A_{w} \triangleq A \cup\{w\}$, with $w \notin A$;
(2) To determine whether a state q satisfies an observer o the set $\operatorname{OBS}(q, o)$ of all computations from $\langle q, o\rangle$ is considered

A General Observational Approach

When defining behavioural equivalences, we do not want to distinguish between systems that cannot be taken apart by external observers.
Because of this we introduce three notions
(1) Observers
(2) Observations
(3) Successful Observations

Those systems that satisfy (lead to successful observations) the same observers are considered equivalent.
(1) An observer is an LTS having actions from $A_{w} \triangleq A \cup\{w\}$, with $w \notin A$;
(2) To determine whether a state q satisfies an observer o the set $\operatorname{OBS}(q, o)$ of all computations from $\langle q, o\rangle$ is considered
(3) A process may satisfy an observer always or sometimes.

Observations

Given two LTS $\langle Q, A, \rightarrow\rangle$ and $\left\langle O, A_{w}, \rightarrow\right\rangle$, and two states $q \in Q$ and $o \in O$, an observation c from $\langle q, o\rangle$ is a sequence of pairs $\left\langle q_{i}, o_{i}\right\rangle$, such that
(1) $\left\langle q_{0}, o_{0}\right\rangle=\langle q, o\rangle$;
(1) the transition $\left\langle q_{i}, o_{i}\right\rangle \xrightarrow{a}\left\langle q_{i+1}, o_{i+1}\right\rangle$ can be proved using:

$$
\frac{E \xrightarrow{a} E^{\prime} \quad F \xrightarrow{a} F^{\prime}}{\langle E, F\rangle \xrightarrow{a}\left\langle E^{\prime}, F^{\prime}\right\rangle} a \in A
$$

(3) the last element of the sequence, say $\left\langle q_{k}, o_{k}\right\rangle$, is such that for no configuration $\left\langle q^{\prime}, o^{\prime}\right\rangle$, with $q^{\prime} \in Q$ and $o^{\prime} \in O$, there exists $a \in A$ such that $\left\langle q_{k}, o_{k}\right\rangle \xrightarrow{a}\left\langle q^{\prime}, o^{\prime}\right\rangle$ via the above rule.

Observations

Given two LTS $\langle Q, A, \rightarrow\rangle$ and $\left\langle O, A_{w}, \rightarrow\right\rangle$, and two states $q \in Q$ and $o \in O$, an observation c from $\langle q, o\rangle$ is a sequence of pairs $\left\langle q_{i}, o_{i}\right\rangle$, such that
(1) $\left\langle q_{0}, o_{0}\right\rangle=\langle q, o\rangle$;
(1) the transition $\left\langle q_{i}, o_{i}\right\rangle \xrightarrow{a}\left\langle q_{i+1}, o_{i+1}\right\rangle$ can be proved using:

$$
\frac{E \xrightarrow{a} E^{\prime} \quad F \xrightarrow{a} F^{\prime}}{\langle E, F\rangle \xrightarrow{a}\left\langle E^{\prime}, F^{\prime}\right\rangle} a \in A
$$

(3) the last element of the sequence, say $\left\langle q_{k}, o_{k}\right\rangle$, is such that for no configuration $\left\langle q^{\prime}, o^{\prime}\right\rangle$, with $q^{\prime} \in Q$ and $o^{\prime} \in O$, there exists $a \in A$ such that $\left\langle q_{k}, o_{k}\right\rangle \xrightarrow{a}\left\langle q^{\prime}, o^{\prime}\right\rangle$ via the above rule.
$\operatorname{OBS}(q, o)$ is the set of all observations from the initial configuration $\langle q, o\rangle$.

Experimentations

Successful Experiments

An observation $c \in O B S(q, o)$ is successful if there exists a configuration $\left\langle q_{n}, o_{n}\right\rangle \in c$, with $n \geq 0$, such that $o_{n} \xrightarrow{w}$.

Experimentations

Successful Experiments

An observation $c \in \operatorname{OBS}(q, o)$ is successful if there exists a configuration $\left\langle q_{n}, o_{n}\right\rangle \in c$, with $n \geq 0$, such that $o_{n} \xrightarrow{w}$.

Satisfaction of Observers

(1) q MAY SATISFY o if there exists an observation $c \in O B S(q, o)$ that is successful;
(2) q MUST SATISFY o if all observations $c \in O B S(q, o)$ are successful.

May, Must and Testing Equivalences

May Equivalence

p is may equivalent to $q, p \simeq_{m} q$, if for all observers $o \in \mathcal{O}$ we have p MAY SATISFY o if and only if q MAY SATISFY o;

May, Must and Testing Equivalences

May Equivalence

p is may equivalent to $q, p \simeq_{m} q$, if for all observers $o \in \mathcal{O}$ we have p MAY SATISFY o if and only if q MAY SATISFY o;

Must Equivalence

p is must equivalent to $q, p \simeq_{M} q$, if for all observers $o \in \mathcal{O}$ we have p MUST SATISFY o if and only if q MUST SATISFY o.

May, Must and Testing Equivalences

May Equivalence

p is may equivalent to $q, p \simeq_{m} q$, if for all observers $o \in \mathcal{O}$ we have p MAY SATISFY o if and only if q MAY SATISFY o;

Must Equivalence

p is must equivalent to $q, p \simeq_{M} q$, if for all observers $o \in \mathcal{O}$ we have p MUST SATISFY o if and only if q MUST SATISFY o.

Testing Equivalence

p is testing equivalent to $q, p \simeq_{\text {test }} q$, if $p \simeq_{m} q$ and $p \simeq_{M} q$.

Examples for may, must and testing

Examples for may, must and testing

Examples for may, must and testing

- $p \simeq{ }_{m} q$

Examples for may, must and testing

- $p \simeq_{m} q$
- NOT $p \simeq_{M} q$

Examples for may, must and testing

- $p \simeq_{m} q$
- NOT $p \simeq_{M} q$
- $q \simeq{ }_{M} r$

Examples for may, must and testing

- $p \simeq_{m} q$
- NOT $p \simeq_{M} q$
- $q \simeq{ }_{M} r$
- $q \simeq_{\text {test }} r$

Alternative characterisations of Testing Equivalences

Failures

Let $\left\langle Q, A_{\tau}, \rightarrow\right\rangle$ be an LTS, $q \in Q, s \in A^{*}$ and $L \subseteq A$
(1) q refuses L if for all $b \in B$, there is no q^{\prime} such that $q \xrightarrow{b} q^{\prime}$.
(2) $\langle s, L\rangle$ is a failure for q if there exists q^{\prime} such that $q \xrightarrow{s} q^{\prime}$ and q^{\prime} refuses L.

Failures Equivalence

Let $\mathcal{F}(q)$ denote the set of all failures of a generic state q then

- $p \simeq_{\mathcal{F}} r$ if and only if $\mathcal{F}(p)=\mathcal{F}(r)$

Alternative May and Must Equivalences

- $p \simeq_{M} q$ if and only if $p \simeq_{\mathcal{F}} q$
- $p \simeq_{m} q$ if and only if $p \simeq_{T} q$

Another characterisation of Must Testing

Futures

Let $\left\langle Q, A_{\tau}, \rightarrow\right\rangle$ be an LTS, $q \in Q$ and $s \in A^{*}$

- q after $s=\left\{q^{\prime} \mid q \xrightarrow{s} q^{\prime}\right\}$
- $\operatorname{Init}(q)=\left\{a \mid q \xrightarrow{a} q^{\prime}\right\}$

Acceptance Sets

Let $\left\langle Q, A_{\tau}, \rightarrow\right\rangle$ be an LTS, $p \in Q, s \in A^{*}$ and $L \subseteq A, P \subseteq Q$

- p MUST L if and only if $\operatorname{Init}(p) \cap L \neq \emptyset$
- P MUST L if and only if $\forall p \in P p$ MUST L

Alternative Must Equivalence

- $p \simeq_{M} q$ if and only if $\forall L, \forall s$
p after s MUST L iff q after s MUST L

Weak Equivalences

Is it right to consider different from a user point of view the three machine below, if

- grinding is an internal action?
- τ is an invisible action?

Weak Traces Equivalence

Let $\langle Q, A, \rightarrow\rangle$ be an LTS, with $q \in Q$ and $s \in A^{*}$
and
Let $q \stackrel{s}{\Rightarrow} q^{\prime}$ denote that q reduces to q^{\prime} by performing the sequence s of visible actions each of which can be preceded or followed by internal actions τ.

Weak Traces

(1) s is a weak trace of q if there exists $q^{\prime} \in Q$ s.t. $q \stackrel{s}{\Rightarrow} q^{\prime}$.
(2) $L(q)$ represents the set of all weak traces of q

Weak Traces Equivalence

Let $\langle Q, A, \rightarrow\rangle$ be an LTS, with $q \in Q$ and $s \in A^{*}$
and
Let $q \stackrel{s}{\Rightarrow} q^{\prime}$ denote that q reduces to q^{\prime} by performing the sequence s of visible actions each of which can be preceded or followed by internal actions τ.

Weak Traces

(1) s is a weak trace of q if there exists $q^{\prime} \in Q$ s.t. $q \stackrel{s}{\Rightarrow} q^{\prime}$.
(2) $L(q)$ represents the set of all weak traces of q

Weak Traces Equivalence

Two states p and q are weak trace equivalent, written $p \approx_{L} q$, if $L(q)=L(p)$.

Weak Observations

To define the weak variants of may, must and testing equivalences it suffices to change experiments so that processes and observers can freely perform silent actions

Weak Observations

To define the weak variants of may, must and testing equivalences it suffices to change experiments so that processes and observers can freely perform silent actions

Given two LTS $\left\langle Q, A_{\tau}, \rightarrow\right\rangle$ and $\left\langle O, A_{\tau, w}, \rightarrow\right\rangle$, and two states $q \in Q$ and $o \in O$, a weak experiment c from $\langle q, o\rangle$ is a sequence of pairs $\left\langle q_{i}, o_{i}\right\rangle$, s.t.
(1) $\left\langle q_{0}, o_{0}\right\rangle=\langle q, o\rangle$;
(2) the transition $\left\langle q_{i}, o_{i}\right\rangle \xrightarrow{\mu}\left\langle q_{i+1}, o_{i+1}\right\rangle$ can be proved using:

$$
\frac{E \xrightarrow{\tau} E^{\prime}}{\langle E, F\rangle \xrightarrow{\tau}\left\langle E^{\prime}, F\right\rangle} \quad \frac{F \xrightarrow{\tau} F^{\prime}}{\langle E, F\rangle \xrightarrow{\tau}\left\langle E, F^{\prime}\right\rangle} \quad \frac{E \xrightarrow{a} E^{\prime} F \xrightarrow{a} F^{\prime}}{\langle E, F\rangle \xrightarrow{\tau}\left\langle E^{\prime}, F^{\prime}\right\rangle} a \in A
$$

(3) the last element of the sequence, say $\left\langle q_{k}, o_{k}\right\rangle$, is such that for no configuration $\left\langle q^{\prime}, o^{\prime}\right\rangle$, with $q^{\prime} \in Q$ and $o^{\prime} \in O$, there exists a transition $\left\langle q_{k}, o_{k}\right\rangle \xrightarrow{\tau}\left\langle q^{\prime}, o^{\prime}\right\rangle$ via the above rule.

Weak Testing

Futures

Let $\left\langle Q, A_{\tau}, \rightarrow\right\rangle$ be an LTS, $q \in Q$ and $s \in A^{*}$

- q after $s=\left\{q^{\prime} \mid q \stackrel{s}{\Rightarrow} q^{\prime}\right\}$
- $\operatorname{lnit}(q)=\left\{a \mid q \stackrel{a}{\Rightarrow} q^{\prime}\right\}$

Acceptance Sets

Let $\left\langle Q, A_{\tau}, \rightarrow\right\rangle$ be an LTS, $p \in Q, s \in A^{*}$ and $L \subseteq A, P \subseteq Q$

- p MUST L if and only if $\operatorname{Init}(p) \cap L \neq \emptyset$
- P MUST L if and only if $\forall p \in P p$ MUST L

Alternative Must Equivalence

- $p \simeq_{M} q$ if and only if $\forall L, \forall s$ p after s MUST L iff q after s MUST L

Weak Bisimulation Relation: An immediate generalization

Weak Bisimulation

A relation $R \subseteq Q \times Q$ is weak bisimulation if, for any pair of states p and q such that $\langle p, q\rangle \in R$, the following holds:
(1) for all $s \in A^{*}$ and $p^{\prime} \in Q$, if $p \stackrel{s}{\Rightarrow} p^{\prime}$ then $q \stackrel{s}{\Rightarrow} q^{\prime}$ for some $q^{\prime} \in Q$ such that $\left\langle p^{\prime}, q^{\prime}\right\rangle \in R$;
(2) for all $s \in A^{*}$ and $q^{\prime} \in Q$, if $q \stackrel{s}{\Rightarrow} q^{\prime}$ then $p \stackrel{s}{\Rightarrow} p^{\prime}$ for some $p^{\prime} \in Q$ such that $\left\langle p^{\prime}, q^{\prime}\right\rangle \in R$.

Weak Bisimulation Relation: An immediate generalization

Weak Bisimulation

A relation $R \subseteq Q \times Q$ is weak bisimulation if, for any pair of states p and q such that $\langle p, q\rangle \in R$, the following holds:
(1) for all $s \in A^{*}$ and $p^{\prime} \in Q$, if $p \stackrel{s}{\Rightarrow} p^{\prime}$ then $q \stackrel{s}{\Rightarrow} q^{\prime}$ for some $q^{\prime} \in Q$ such that $\left\langle p^{\prime}, q^{\prime}\right\rangle \in R$;
(2) for all $s \in A^{*}$ and $q^{\prime} \in Q$, if $q \stackrel{s}{\Rightarrow} q^{\prime}$ then $p \stackrel{s}{\Rightarrow} p^{\prime}$ for some $p^{\prime} \in Q$ such that $\left\langle p^{\prime}, q^{\prime}\right\rangle \in R$.

Weak Bisimilarity

Two states $p, q \in Q$ of an LTS $\left\langle Q, A_{\tau}, \rightarrow\right\rangle$ are weakly bisimilar, written $p \approx q$, if there exists a weak bisimulation R such that $\langle p, q\rangle \in R$.

Weak Bisimulation Relation: A simpler definition

Weak Bisimulation

A relation $R \subseteq Q \times Q$ is weak bisimulation if, for any pair of states p and q such that $\langle p, q\rangle \in R$, the following holds:
(1) for all $\mu \in A c t$ and $p^{\prime} \in Q$, if $p \xrightarrow{\mu} p^{\prime}$ then $q \xrightarrow{\hat{\mu}} q^{\prime}$ for some $q^{\prime} \in Q$ such that $\left\langle p^{\prime}, q^{\prime}\right\rangle \in R$;
(2) for all $\mu \in$ Act and $q^{\prime} \in Q$, if $q \xrightarrow{\mu} q^{\prime}$ then $p \xrightarrow{\hat{\mu}} p^{\prime}$ for some $p^{\prime} \in Q$ such that $\left\langle p^{\prime}, q^{\prime}\right\rangle \in R$.

Weak Bisimulation Relation: A simpler definition

Weak Bisimulation

A relation $R \subseteq Q \times Q$ is weak bisimulation if, for any pair of states p and q such that $\langle p, q\rangle \in R$, the following holds:
(1) for all $\mu \in A c t$ and $p^{\prime} \in Q$, if $p \xrightarrow{\mu} p^{\prime}$ then $q \xrightarrow{\hat{\mu}} q^{\prime}$ for some $q^{\prime} \in Q$ such that $\left\langle p^{\prime}, q^{\prime}\right\rangle \in R$;
(2) for all $\mu \in$ Act and $q^{\prime} \in Q$, if $q \xrightarrow{\mu} q^{\prime}$ then $p \xrightarrow{\hat{\mu}} p^{\prime}$ for some $p^{\prime} \in Q$ such that $\left\langle p^{\prime}, q^{\prime}\right\rangle \in R$.
where

$$
\hat{\mu}= \begin{cases}\epsilon & \text { se } \mu=\tau \\ \mu & \text { se } \mu \neq \tau\end{cases}
$$

Weak Bisimulation Relation: A simpler definition

Weak Bisimulation

A relation $R \subseteq Q \times Q$ is weak bisimulation if, for any pair of states p and q such that $\langle p, q\rangle \in R$, the following holds:
(1) for all $\mu \in$ Act and $p^{\prime} \in Q$, if $p \xrightarrow{\mu} p^{\prime}$ then $q \stackrel{\hat{\mu}}{\Rightarrow} q^{\prime}$ for some $q^{\prime} \in Q$ such that $\left\langle p^{\prime}, q^{\prime}\right\rangle \in R$;
(2) for all $\mu \in$ Act and $q^{\prime} \in Q$, if $q \xrightarrow{\mu} q^{\prime}$ then $p \xrightarrow{\hat{\mu}} p^{\prime}$ for some $p^{\prime} \in Q$ such that $\left\langle p^{\prime}, q^{\prime}\right\rangle \in R$.
where

$$
\hat{\mu}= \begin{cases}\epsilon & \text { se } \mu=\tau \\ \mu & \text { se } \mu \neq \tau\end{cases}
$$

Weak Bisimilarity

Two states $p, q \in Q$ of an LTS $\left\langle Q, A_{\tau}, \rightarrow\right\rangle$ are weakly bisimilar, written $p \approx q$, if there exists a weak bisimulation R such that $\langle p, q\rangle \in R$.

Two Pairs of Weakly Bisimilar Systems

Ignoring Tau's

Two Pairs of Weakly Bisimilar Systems

Ignoring Tau's

Ignoring Tau's and Branching

An Alternative to Weak Bisimulation

Branching Bisimulation

A symmetric relation $R \subseteq Q \times Q$ is branching bisimulation if, for any pair of states p and q such that $\langle p, q\rangle \in R$, if $p \xrightarrow{\mu} p^{\prime}$, with $\mu \in A_{\tau}$ and $p^{\prime} \in Q$, at least one of the following conditions holds:
(1) $\mu=\tau$ and $\left\langle p^{\prime}, q\right\rangle \in R$
(2) $q \Rightarrow q^{\prime \prime} \xrightarrow{\mu} q^{\prime}$ for some $q^{\prime}, q^{\prime \prime} \in Q$ such that $\left\langle p, q^{\prime \prime}\right\rangle \in R$ and $\left\langle p^{\prime}, q^{\prime}\right\rangle \in R$.

An Alternative to Weak Bisimulation

Branching Bisimulation

A symmetric relation $R \subseteq Q \times Q$ is branching bisimulation if, for any pair of states p and q such that $\langle p, q\rangle \in R$, if $p \xrightarrow{\mu} p^{\prime}$, with $\mu \in A_{\tau}$ and $p^{\prime} \in Q$, at least one of the following conditions holds:
(1) $\mu=\tau$ and $\left\langle p^{\prime}, q\right\rangle \in R$
(2) $q \Rightarrow q^{\prime \prime} \xrightarrow{\mu} q^{\prime}$ for some $q^{\prime}, q^{\prime \prime} \in Q$ such that $\left\langle p, q^{\prime \prime}\right\rangle \in R$ and $\left\langle p^{\prime}, q^{\prime}\right\rangle \in R$.

Branching Bisimilarity

Two states $p, q \in Q$ of an $\operatorname{LTS}\left\langle Q, A_{\tau}, \rightarrow\right\rangle$ are Branching bisimilar, written $p \approx_{b} q$, if there exists a branching bisimulation R such that $\langle p, q\rangle \in R$.

Branching Bisimulation, ... pictorially

Testing vs Bisimulation - 1

The systems above are weakly testing equivalent but NOT weakly (nor branching) bisimilar

Testing vs Bisimulation - 2

The systems above are NOT testing equivalent but are weakly (and branching) bisimilar. N.B.: The τ-arrow from q_{2} to q_{2} denotes a τ-loop.

Equivalences Hierarchies

For strongly convergent systems (i.e., systems without tau-loops) we have:

[^0]: Main Idea
 Two processes are behaviorally equivalent if and only if an external observer cannot tell them apart.

