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Behavioural Equivalence

Specifications vs Implementations

We are given an abstract system specification Spec

We devise an implementation Imp by assembling many interacting
components

A Natural Question

Are the processes Imp and Spec “behaviourally equivalent”?
the answer requires

Fixing a “good” notion of equivalence

Proving that the two processes are equivalent or finding a
counterexample and re-design Imp...

... or changing the notion of equivalence
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Which Equivalence 1

Which processes should a reasonable behavioural equivalence equate?

Two syntactic objects are equivalent if they have the same “meaning”

Two processes are equivalent if they have the same “behavior”, i.e.,
communication potential, as described by LTS’s.

Idea:

Say the meaning of a process P is LTS(P), the LTS associated to it

But this yields too many distinctions:

X = a.X Y = a.a.Y
have different LTS but both processes can (only) execute infinitely many
a-actions, and should be considered equivalent.
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Which Equivalence 2

What should a reasonable behavioural equivalence satisfy?

Abstract from states (consider only the actions);

abstract from internal behaviour (τ steps are not visible);

identifies processes whose LTSs are isomorphic;

considers two processes equivalent only if both can execute the same
actions sequences;

allows to replace a subprocess by an equivalent counterpart without
changing the overall semantics of the system;

be deadlock sensitive, i.e., if one has a deadlock after a given trace s,
then then the other process has a deadlock after the same trace (and
vice versa).
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Which Equivalence 3

What else should a reasonable behavioural equivalence satisfy?

Reflexivity: P ≡ P for each process P

Transitivity: Spec0 ≡ Spec1 ≡ Spec2 ≡ · · · ≡ Impl gives that
Spec0 ≡ Impl

Symmetry: P ≡ Q iff Q ≡ P
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An important property: Congruence

P

C

Q

C

C (P) C (Q)

Congruence Property

P ≡ Q implies that C (P) ≡ C (Q)
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Behavioural Equivalences
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Problem: Should we consider these three systems as equivalent?
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Traces/Language Equivalence

Let 〈Q,A, −→ 〉 be an LTS, with q ∈ Q and s ∈ A∗.

Traces

1 s is a trace of q if there exists q′ ∈ Q s.t. q
s−→ q′.

2 T (q) represents the set of all traces of q

Traces Equivalence

Two states p and q are trace equivalent, written p =T q, if T (p) = T (q).
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Two Traces Equivalent Systems
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Black-Box Experiments

Experiment in A Experiment in B Experiment in B

coin tea coffee coin tea coffee coin tea coffee

press coin press coin press coin

coin tea coffee coin tea coffee coin tea coffee

Main Idea

Two processes are behaviorally equivalent if and only if an external
observer cannot tell them apart.
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Bisimulation Relation

Strong Bisimulation

A relation R ⊆ Q ×Q is strong bisimulation if, for any pair of states p and
q such that 〈p, q〉 ∈ R, the following holds:

1 for all a ∈ A and p′ ∈ Q, if p
a−→ p′ then q

a−→ q′ for some q′ ∈ Q
such that 〈p′, q′〉 ∈ R;

2 for all a ∈ A and q′ ∈ Q, if q
a−→ q′ then p

a−→ p′ for some p′ ∈ Q
such that 〈p′, q′〉 ∈ R.

Bisimilarity

Two states p, q ∈ Q are strongly bisimilar, written p ∼ q, if there exists a
strong bisimulation R such that 〈p, q〉 ∈ R.

∼ =
⋃
{R | R is a strong bisimulation}
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Examples

p

p1

a

p2

b

p3

c

p4

d

q

q1

a

q2

b

q4

c

q3

b

q5

d

r

r2

a

r4

b

r6

c

r1

a

r3

b

r5

d

These three systems are not bisimulation equivalent

R. De Nicola (IMT-Lucca) FoTSE@LMU 12 / 42



Examples

p

p1

a

p2

b

p3

c

p4

d

q

q1

a

q2

b

q4

c

q3

b

q5

d

r

r2

a

r4

b

r6

c

r1

a

r3

b

r5

d

These three systems are not bisimulation equivalent

R. De Nicola (IMT-Lucca) FoTSE@LMU 12 / 42



Two bisimilar Systems
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Basic Properties of Strong Bisimilarity

Theorem

∼ is an equivalence relation (reflexive, symmetric and transitive)

Theorem

∼ is the largest strong bisimulation

Theorem

s ∼ t if and only if for each a ∈ Act:

if s
a−→ s ′ then t

a−→ t ′ for some t ′ such that s ′ ∼ t ′

if t
a−→ t ′ then s

a−→ s ′ for some s ′ such that s ′ ∼ t ′.
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Two Systems that are not bisimilar
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States p0 and q0 are not strongly bisimilar.

If they were equivalent, also states p1 and q1, had to be so.

There is no strong bisimulation R that contains 〈p1, q1〉.
The c-transition from p1 cannot be simulated by q1 .
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More on strong bisimulation

Is ∅ = { } a strong bisimulation?

Is Id = { 〈p, p〉 | p ∈ Q } a strong bisimulation?

Is Q2 = { 〈p, q〉 | p, q ∈ Q } a strong bisimulation? (Think twice
before answering)

Let S be a strong bisimulation. Is S−1 = { 〈q, p〉 | 〈p, q〉 ∈ S } a
strong bisimulation?

Let S1 and S2 be strong bisimulations. Is
S1S2 = { 〈p, q〉 | ∃r ∈ Q. 〈p, r〉 ∈ S1 ∧ 〈r , q〉 ∈ S2 } a strong
bisimulation?

Let S1 and S2 be strong bisimulations. Is
S1 ∪ S2 = { 〈p, q〉 | 〈p, q〉 ∈ S1 ∨ 〈p, q〉 ∈ S2 } a strong bisimulation?

Let S1 and S2 be strong bisimulations. Is
S1 ∩ S2 = { 〈p, q〉 | 〈p, q〉 ∈ S1 ∧ 〈p, q〉 ∈ S2 } a strong
bisimulation? (Think twice before answering)

Is ∼ equals to ∼−1? And to ∼∼? And to ∼ ∪ ∼?
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Are P and Q bisimilar?
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How to Show Nonbisimilarity?

Given:

q0

q1

q2

q3

q4

a

a

b

c

p0 p1

p2

p3

a

b

c

How to prove that p0 6∼ q0:

Enumerate all binary relations and show that none of them at the
same time contains (s, t) and is a strong bisimulation. (Expensive:
2|Proc|

2
relations.)

Make certain observations which enable us to disqualify many
bisimulation candidates in one step.

Use the game characterization of strong bisimilarity.
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2|Proc|

2
relations.)

Make certain observations which enable us to disqualify many
bisimulation candidates in one step.

Use the game characterization of strong bisimilarity.
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Strong Bisimulation Game

Let (Proc,Act, { a−→| a ∈ Act}) be an LTS and s, t ∈ Proc.

We define a two-player game of an ‘attacker’ and a ‘defender’ starting
from s and t.

The game is played in rounds, and configurations of the game are
pairs of states from Proc × Proc.

In every round exactly one configuration is called current. Initially the
configuration (s, t) is the current one.

Intuition

The defender wants to show that s and t are strongly bisimilar while the
attacker aims at proving the opposite.
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Rules of the Bisimulation Games

Game Rules

In each round the players change the current configuration as follows:

1 the attacker chooses one of the processes in the current configuration
and makes an

a−→-move for some a ∈ Act, and

2 the defender must respond by making an
a−→-move in the other

process under the same action a.

The newly reached pair of processes becomes the current configuration.
The game then continues by another round.

Result of the Game

If one player cannot move, the other player wins.

If the game is infinite, the defender wins.
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Game Characterization of Strong Bisimilarity

Theorem

States s and t are strongly bisimilar if and only if the defender has a
universal winning strategy starting from the configuration (s, t).

States s and t are not strongly bisimilar if and only if the attacker has
a universal winning strategy starting from the configuration (s, t).

Remark

The bisimulation game can be used to prove both bisimilarity and
nonbisimilarity of two processes. It very often provides elegant arguments
for the negative case.
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Simulation Relation

Strong Simulation

A relation R ⊆ Q × Q is strong simulation if, for any pair of states p and
q such that 〈p, q〉 ∈ R, the following holds:

for all a ∈ A and p′ ∈ Q, if p
a−→ p′ then q

a−→ q′ for some q′ ∈ Q
such that 〈p′, q′〉 ∈ R;

Similarity

Two states p, q ∈ Q are strongly similar, written p v q, if there exists a
strong simulation R such that 〈p, q〉 ∈ R.

v =
⋃
{R | R is a strong simulation}

Double Similarity

Two states p, q ∈ Q are doubly similar, written p ' q, if we have p v q
and q v p (i.e., ' , v ∩ v−1)
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More on simulation relation

Is v a preorder?

Is v an equivalence?

Let S be a strong bisimulation. Is S a strong simulation? And S−1?

Let S be a strong simulation s.t. S−1 is also a strong simulation. Is S
a strong bisimulation?

Is ' an equivalence?

Does ∼ imply '?

Does ' imply ∼? (Think twice before answering)
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A General Observational Approach

When defining behavioural equivalences, we do not want to distinguish
between systems that cannot be taken apart by external observers.
Because of this we introduce three notions

1 Observers
2 Observations
3 Successful Observations

Those systems that satisfy (lead to successful observations) the same
observers are considered equivalent.

1 An observer is an LTS having actions from Aw , A ∪ {w}, with
w 6∈ A;

2 To determine whether a state q satisfies an observer o the set
OBS(q, o) of all computations from 〈q, o〉 is considered

3 A process may satisfy an observer always or sometimes.
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Observations

Given two LTS 〈Q,A, −→ 〉 and 〈O,Aw , −→ 〉, and two states q ∈ Q and
o ∈ O, an observation c from 〈q, o〉 is a sequence of pairs 〈qi , oi 〉,such
that

1 〈q0, o0〉 = 〈q, o〉;
2 the transition 〈qi , oi 〉

a−→ 〈qi+1, oi+1〉 can be proved using:

E
a−→ E ′ F

a−→ F ′

a ∈ A
〈E ,F 〉 a−→ 〈E ′,F ′〉

3 the last element of the sequence, say 〈qk , ok〉, is such that for no
configuration 〈q′, o ′〉, with q′ ∈ Q and o ′ ∈ O, there exists a ∈ A
such that 〈qk , ok〉

a−→ 〈q′, o ′〉 via the above rule.

OBS(q, o) is the set of all observations from the initial configuration
〈q, o〉.
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Experimentations

Successful Experiments

An observation c ∈ OBS(q, o) is successful if there exists a configuration
〈qn, on〉 ∈ c, with n ≥ 0, such that on

w−→ .

Satisfaction of Observers

1 q may satisfy o if there exists an observation c ∈ OBS(q, o) that is
successful;

2 q must satisfy o if all observations c ∈ OBS(q, o) are successful.
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May, Must and Testing Equivalences

May Equivalence

p is may equivalent to q, p 'm q, if for all observers o ∈ O we have p
may satisfy o if and only if q may satisfy o;

Must Equivalence

p is must equivalent to q, p 'M q, if for all observers o ∈ O we have p
must satisfy o if and only if q must satisfy o.

Testing Equivalence

p is testing equivalent to q, p 'test q, if p 'm q and p 'M q.
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Examples for may, must and testing

p

p1

a

p2

b

p3

c

p4

d

q

q1

a

q2

b

q4

c

q3

b

q5

d

r

r2

a

r4

b

r6

c

r1

a

r3

b

r5

d

p 'm q

NOT p 'M q

q 'M r

q 'test r
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Alternative characterisations of Testing Equivalences

Failures

Let 〈Q,Aτ , −→ 〉 be an LTS, q ∈ Q, s ∈ A∗ and L ⊆ A

1 q refuses L if for all b ∈ B, there is no q′ such that q
b−→ q′.

2 〈s, L〉 is a failure for q if there exists q′ such that q
s−→ q′ and q′

refuses L.

Failures Equivalence

Let F(q) denote the set of all failures of a generic state q then

p 'F r if and only if F(p) = F(r)

Alternative May and Must Equivalences

p 'M q if and only if p 'F q

p 'm q if and only if p 'T q
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Another characterisation of Must Testing

Futures

Let 〈Q,Aτ , −→ 〉 be an LTS, q ∈ Q and s ∈ A∗

q after s = {q′ | q
s−→ q′}

Init(q) = {a | q
a−→ q′}

Acceptance Sets

Let 〈Q,Aτ , −→ 〉 be an LTS, p ∈ Q, s ∈ A∗ and L ⊆ A, P ⊆ Q

p MUST L if and only if Init(p) ∩ L 6= ∅
P MUST L if and only if ∀p ∈ P p MUST L

Alternative Must Equivalence

p 'M q if and only if ∀L,∀s
p after s MUST L iff q after s MUST L
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Weak Equivalences

Is it right to consider different from a user point of view the three machine
below, if

grinding is an internal action?

τ is an invisible action?

p0
coin grinding coffee

q0
coin coffee

p0
coin τ coffee
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Weak Traces Equivalence

Let 〈Q,A, −→ 〉 be an LTS, with q ∈ Q and s ∈ A∗

and
Let q

s
=⇒ q′ denote that q reduces to q′ by performing the sequence s of

visible actions each of which can be preceded or followed by internal
actions τ .

Weak Traces

1 s is a weak trace of q if there exists q′ ∈ Q s.t. q
s

=⇒ q′.

2 L(q) represents the set of all weak traces of q

Weak Traces Equivalence

Two states p and q are weak trace equivalent, written p ≈L q, if
L(q) = L(p).
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Weak Observations

To define the weak variants of may, must and testing equivalences it
suffices to change experiments so that processes and observers can freely
perform silent actions

Given two LTS 〈Q,Aτ , −→ 〉 and 〈O,Aτ,w , −→ 〉, and two states q ∈ Q and
o ∈ O, a weak experiment c from 〈q, o〉 is a sequence of pairs 〈qi , oi 〉,s.t.

1 〈q0, o0〉 = 〈q, o〉;
2 the transition 〈qi , oi 〉

µ−→ 〈qi+1, oi+1〉 can be proved using:

E
τ−→ E ′

〈E ,F 〉 τ−→ 〈E ′,F 〉

F
τ−→ F ′

〈E ,F 〉 τ−→ 〈E ,F ′〉

E
a−→ E ′ F

a−→ F ′

a ∈ A
〈E ,F 〉 τ−→ 〈E ′,F ′〉

3 the last element of the sequence, say 〈qk , ok〉, is such that for no
configuration 〈q′, o ′〉, with q′ ∈ Q and o ′ ∈ O, there exists a
transition 〈qk , ok〉

τ−→ 〈q′, o ′〉 via the above rule.
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1 〈q0, o0〉 = 〈q, o〉;
2 the transition 〈qi , oi 〉

µ−→ 〈qi+1, oi+1〉 can be proved using:

E
τ−→ E ′

〈E ,F 〉 τ−→ 〈E ′,F 〉

F
τ−→ F ′

〈E ,F 〉 τ−→ 〈E ,F ′〉

E
a−→ E ′ F

a−→ F ′

a ∈ A
〈E ,F 〉 τ−→ 〈E ′,F ′〉

3 the last element of the sequence, say 〈qk , ok〉, is such that for no
configuration 〈q′, o ′〉, with q′ ∈ Q and o ′ ∈ O, there exists a
transition 〈qk , ok〉

τ−→ 〈q′, o ′〉 via the above rule.
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Weak Testing

Futures

Let 〈Q,Aτ , −→ 〉 be an LTS, q ∈ Q and s ∈ A∗

q after s = {q′ | q
s

=⇒ q′}
Init(q) = {a | q

a
=⇒ q′}

Acceptance Sets

Let 〈Q,Aτ , −→ 〉 be an LTS, p ∈ Q, s ∈ A∗ and L ⊆ A, P ⊆ Q

p MUST L if and only if Init(p) ∩ L 6= ∅
P MUST L if and only if ∀p ∈ P p MUST L

Alternative Must Equivalence

p 'M q if and only if ∀L,∀s
p after s MUST L iff q after s MUST L
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Weak Bisimulation Relation: An immediate generalization

Weak Bisimulation

A relation R ⊆ Q × Q is weak bisimulation if, for any pair of states p and
q such that 〈p, q〉 ∈ R, the following holds:

1 for all s ∈ A∗ and p′ ∈ Q, if p
s

=⇒ p′ then q
s

=⇒ q′ for some q′ ∈ Q
such that 〈p′, q′〉 ∈ R;

2 for all s ∈ A∗ and q′ ∈ Q, if q
s

=⇒ q′ then p
s

=⇒ p′ for some p′ ∈ Q
such that 〈p′, q′〉 ∈ R.

Weak Bisimilarity

Two states p, q ∈ Q of an LTS 〈Q,Aτ , −→ 〉 are weakly bisimilar, written
p ≈ q, if there exists a weak bisimulation R such that 〈p, q〉 ∈ R.
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Weak Bisimulation Relation: A simpler definition

Weak Bisimulation

A relation R ⊆ Q × Q is weak bisimulation if, for any pair of states p and
q such that 〈p, q〉 ∈ R, the following holds:

1 for all µ ∈ Act and p′ ∈ Q, if p
µ−→ p′ then q

µ̂
=⇒ q′ for some q′ ∈ Q

such that 〈p′, q′〉 ∈ R;

2 for all µ ∈ Act and q′ ∈ Q, if q
µ−→ q′ then p

µ̂
=⇒ p′ for some p′ ∈ Q

such that 〈p′, q′〉 ∈ R.
where

µ̂ =

{
ε se µ = τ
µ se µ 6= τ

Weak Bisimilarity

Two states p, q ∈ Q of an LTS 〈Q,Aτ , −→ 〉 are weakly bisimilar, written
p ≈ q, if there exists a weak bisimulation R such that 〈p, q〉 ∈ R.
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Two Pairs of Weakly Bisimilar Systems

Ignoring Tau’s
a τ b a b

Ignoring Tau’s and Branching

p0 p1

p2

p3 p4

a

c

τ

b

q0

q1

q5

q2

q3

q6

q4

a

a

c

τ

b

b
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An Alternative to Weak Bisimulation

Branching Bisimulation

A symmetric relation R ⊆ Q × Q is branching bisimulation if, for any pair
of states p and q such that 〈p, q〉 ∈ R, if p

µ−→ p′, with µ ∈ Aτ and
p′ ∈ Q, at least one of the following conditions holds:

1 µ = τ and 〈p′, q〉 ∈ R

2 q =⇒ q′′
µ−→ q′ for some q′, q′′ ∈ Q such that 〈p, q′′〉 ∈ R and

〈p′, q′〉 ∈ R.

Branching Bisimilarity

Two states p, q ∈ Q of an LTS 〈Q,Aτ , −→ 〉 are Branching bisimilar,
written p ≈b q, if there exists a branching bisimulation R such that
〈p, q〉 ∈ R.
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Branching Bisimulation, ... pictorially

p p′

q1 q2 . . . qn q′
1

q′
2

. . . q′m

µ

τ τ τ µ τ τ τ
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Testing vs Bisimulation - 1

p1

p3

p2 p4

a

τ

b

≃test q1

q2

q3

q5

q4

q6

τ

τ

a

b

b

The systems above are weakly testing equivalent but NOT weakly (nor
branching) bisimilar
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Testing vs Bisimulation - 2

p2
a

⊒test

6⊑test

q2

q2

a

τ

The systems above are NOT testing equivalent but are weakly (and
branching) bisimilar.
N.B.: The τ -arrow from q2 to q2 denotes a τ -loop.
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Equivalences Hierarchies

For strongly convergent systems (i.e., systems without tau-loops) we have:

=CT ≃M

∼

=T ≈L ≡≃m

≃F ≡ ≃M

≈

≈b
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