Formal Techniques for Software Engineering: Process Calculi

Rocco De Nicola

IMT Institute for Advanced Studies, Lucca rocco.denicola@imtlucca.it

June 2013

Lesson 9

0010011001010
10101sysma 010
$J 1001010101010$
10100101010010°
${ }^{0} 1010000120010$
001000^{100101}

Process Algebras

What is a process algebra

- A set of terms
- An Operational Semantics associating LTs's to terms
- An Equivalence relations equating terms exhibiting "similar" behavior

Set of Operators

- Basic Processes
- Sequentialization, Choice
- Parallel Composition, Abstraction
- Recursion

Equivalences

- Trace, Testing, Bisimulation Equivalences
- ... many others ...
- Variants taking into account that some actions are unobservable

CCS: Calculus of Communicating Processes

Milner - 1980

The set of actions $A c t_{\tau}$ consists of a set of labels Λ, of the set $\bar{\Lambda}$ of complementary labels and of the distinct action τ, the syntax is

$$
E::=\text { nil }|X| \mu . E|E \backslash L| E[f]\left|E_{1}+E_{2}\right| E_{1}\left|E_{2}\right| \text { recX.E }
$$

Moreover we have:

- $\mu \in A c t_{\tau}$;
- $L \subseteq \Lambda$;
- $f: A c t_{\tau} \rightarrow A c t_{\tau}$;
- $f(\bar{\alpha})=\overline{f(\alpha)}$ and $f(\tau)=\tau$.

CCS has been studied with Bisimulation and Testing Semantics

SCCS: Synchronous Calculus of Communicating Processes

Milner - 1983

The set of actions Act is an Abelian group containing a set of labels Λ, and of complementary actions $\bar{\Lambda}$ with over-dashed actions, the neutral element is 1 , the syntax is

$$
E::=\text { nil }|X| \mu: E|E \upharpoonright L| E_{1}+E_{2}\left|E_{1} \times E_{2}\right| \operatorname{recX} . E
$$

where

- $\mu \in A c t \cup\{1\}$,
- $L \subseteq \Lambda$,
- : denotes action prefixing

There is no relabelling operator, it is expressible via the other operators.

SCCS has been studied with Bisimulation Semantics

LOTOS: Language of Temporal Order Specification

Standard ISO-1988

The set of actions Λ_{i} contains a set of labels Λ and the distinct label i, the syntax is

$$
\begin{gathered}
E::=\text { stop } \mid \text { exit }|\mu ; E| E / L|E[f]| E_{1} \gg E_{2} \mid E_{1}\left[>E_{2}\right. \\
\quad\left|E_{1}+E_{2}\right| E_{1}\left\|E_{2}\left|E_{1} \| E_{2}\right| E_{1}|[L]| E_{2} \mid A\right.
\end{gathered}
$$

- $\mu \in \Lambda_{i}, L \subseteq \Lambda, f: \Lambda \rightarrow \Lambda$;
- the operator ; denotes action prefixing;
- the operator \gg denotes sequential composition;
- A is a process constant.

LOTOS has been studied with Bisimulation and Testing Semantics

ACP: Algebra of Communicating Processes

Bergstra-Klop - 1984

The set of actions Λ_{τ} consists of a finite set of labels Λ and of special action τ, the syntax is

$$
\begin{aligned}
E::=\sqrt{ }|a| E \backslash L|E / L| E[f] \mid & E_{1} \cdot E_{2} \mid \\
& E_{1}+E_{2} \\
& \left|E _ { 1 } \left\|E_{2}\left|E_{1} \| E_{2}\right| E_{1}\left|c_{c} E_{2}\right| \partial_{H}(p)|\delta| A\right.\right.
\end{aligned}
$$

- $a \in \Lambda_{\tau}, L \subseteq \Lambda, f: \Lambda \rightarrow \Lambda$;
- the operator • denotes sequential composition;
- $\partial_{H}(p)$ is the hiding operator;
- δ is the deadlocked process;
- A is a process constant.

ACP has been studied with Bisimulation and Branching Bis. Semantics

Axiomatic Semantics

Groups in Abstract Algebra

A group is a set G of abstract objects and of an operator $\star: G \times G \rightarrow G$ such that the following axioms hold:

- $a \star(b \star c)=(a \star b) \star c)$,
- $\exists u \in G: u \star a=a=a \star u$,
- $\forall a \in G, \exists a^{-1} \in G: a^{-1} \star a=a \star a^{-1}=u$.

A group is any model of the above equational theory. The notion of groups is used to abstract from details and work with symbols rather than numbers.

Within ACP a process algebra is any mathematical structure, consisting of a set of objects and set of operators, like, e.g., sequential, nondeterministic or parallel composition, that enjoy the a given number of properties as specified by given axioms.

ACP and Axiomatic Semantics

Atomic Actions

Λ is a finite set of atomic actions: a, b, \ldots denote specific actions, while v and w denote generic actions.

ACP Syntax

$$
\begin{aligned}
& \text { BPA } p::=v\left|p_{1}+p_{2}\right| p_{1} \cdot p_{2} \\
& \text { CPA } p::=v\left|p_{1}+p_{2}\right| p_{1} \cdot p_{2}\left|p_{1} \| p_{2}\right| p_{1} \Perp p_{2}\left|p_{1}\right|_{c} p_{2} \\
& \text { ACP } p::=v\left|p_{1}+p_{2}\right| p_{1} \cdot p_{2}\left|p_{1} \| p_{2}\right| p_{1} \Perp p_{2}\left|p_{1}\right|_{c} p_{2}\left|\partial_{H}(p)\right| \delta
\end{aligned}
$$

Communication Functions

$\gamma: \Lambda \times \Lambda \rightarrow \Lambda \cup\{\delta\}(\delta$ not in $\Lambda)$, yields the corresponding communication action $\gamma(a, b)$, if a e b are meant to communicate and yields δ otherwise. Function γ can be defined freely but it has to satisfy:

$$
\gamma(a, b)=\gamma(b, a) \quad \gamma(\gamma(a, b), c)=\gamma(a, \gamma(b, c))
$$

Axioms for ACP

Axioms for BPA

(A1) $x+y=y+x$
(A2) $(x+y)+z=x+(y+z)$
(A3) $x+x=x$
(A4) $(x+y) \cdot z=x \cdot z+y \cdot z$
(A5) $(x \cdot y) \cdot z=x \cdot(y \cdot z)$

Axioms for CPA

New Axioms for CPA

(M1) $\quad x \| y=x \llbracket y+y \llbracket x+\left.x\right|_{c} y$
$(\mathrm{LM} 2) \quad v \| y=v \cdot y$
(LM3) $\quad(v \cdot x)\lfloor y=v \cdot(x \| y)$
(LM4) $\quad(x+y) \sharp z=x \sharp z+y \sharp z$
(CM5) $\left.\quad v\right|_{c} w=\gamma(v, w)$
(CM6) $\left.\quad v\right|_{c}(w \cdot y)=\gamma(v, w) \cdot y$
(CM7) $\left.\quad(v \cdot x)\right|_{c} w=\gamma(v, w) \cdot x$
(CM8) $\left.\quad(v \cdot x)\right|_{c}(w \cdot y)=\gamma(v, w) \cdot(x \| y)$
(CM9) $\left.\quad(x+y)\right|_{c} z=\left.x\right|_{c} z+\left.y\right|_{c} z$
(CM10) $\left.\quad x\right|_{c}(y+z)=\left.x\right|_{c} y+\left.x\right|_{c} z$

Axioms for ACP

New Axioms for ACP

(A6) $x+\delta=x$
(A7) $\delta \cdot x=\delta$
$(\mathrm{LM} 11) \quad \delta\lfloor x=\delta$
(D2) $\partial_{H}(v)=\delta \quad$ if $\quad v \in H$
(D3) $\partial_{H}(\delta)=\delta$
(D4) $\partial_{H}(x+y)=\partial_{H}(x)+\partial_{H}(y)$
(D5) $\partial_{H}(x \cdot y)=\partial_{H}(x) \cdot \partial_{H}(y)$
(D1) $\partial_{H}(v)=v$ if $v \notin H$
(CM12) $\left.\quad \delta\right|_{c} x=\delta$
(CM13) $\left.\quad x\right|_{c} \delta=\delta$

Models for ACP

Correctness and Completeness of Models

- Any of the set of axioms considered above induces an equality relation, denoted by $=$.
- A model for an axiomatization is a pair $\langle\mathcal{M}, \phi\rangle$, where \mathcal{M} is a set and ϕ is a function that associates elements of \mathcal{M} to ACP terms. We then have
(1) $\langle\mathcal{M}, \phi\rangle$ is correct if $s=t$ implies $\phi(s)=\phi(t)$
(2) $\langle\mathcal{M}, \phi\rangle$ is complete if $\phi(s)=\phi(t)$ implies $s=t$, for every pair of terms s and t.
(1) Any model of (A1)-(A5) is a BPA;
(2) Any model of (A1)-(A5) plus (M1), (LM2)-(LM4), (CM5)-(CM10) is a CPA;
(3) Any models of ALL the axioms seen above is an ACP.

Models o BPA

Initial Models

- The simplest model for BPA has as elements the equivalence classes induced by $=$, i.e. all BPA terms obtained starting from atomic action, sequentialization and nondeterministic composition and mapping each term t to its equivalence class $\llbracket t \rrbracket$ as determined by $=$.
- This model is correct and complete and is known as initial model for the axiomatization.

Other, more complex models can be obtained by using LTS and factorizing them via bisimulation.

Operational Models for BPA

BPA operational semantics is defined by a doubly labelled transition system $\langle B P A, \Lambda, \rightarrow, \sqrt{ } v\rangle$ where

- $B P A$ is the set of terms generated by the corresponding syntax;
- Λ is the actions alphabet;
- \rightarrow : BPA $\times \Lambda \times B P A$ is the transition relation;
- $\sqrt{ } v$ is an auxiliary predicate indicating that a process can terminate after executing action $\sqrt{ } v$.

$$
\begin{array}{cccc}
\text { (SELF) } \overline{v \sqrt{ } v} & \\
\text { (Alt1) } \frac{x \sqrt{ } v}{x+y \sqrt{ } v} & \text { (ALT2) } \frac{x \xrightarrow{v} x^{\prime}}{x+y \xrightarrow{v} x^{\prime}} & \text { (Alt3) } \frac{y \sqrt{ } v}{x+y \sqrt{ } v} \\
\text { (Alt4) } \frac{y \xrightarrow{v} y^{\prime}}{x+y \xrightarrow{v} y^{\prime}} & \text { (SEQ1) } \frac{x \sqrt{ } v}{x \cdot y \xrightarrow{v} y} & \text { (SEQ2) } \frac{x \xrightarrow{v} x^{\prime}}{x \cdot y \xrightarrow{v} x^{\prime} \cdot y^{\prime}}
\end{array}
$$

Axioms and Bisimilarity

Correspondence between Axiomatic and Operational Semantics

- Equality $=$ as induced by (A1)-(A5) is correct relatively to bisimilarity \sim, i.e., if $p=q$ then $\mathcal{L T} \mathcal{S}(p) \sim \mathcal{L T S}(q)$;
- Equality $=$ as induced by (A1)-(A5) is complete relatively to bisimilarity \sim, i.e., if $\mathcal{L T} \mathcal{S}(p) \sim \mathcal{L T} \mathcal{S}(q)$ then $p=q$.

TCSP: Theoretical Communicating Sequential Processes

Brookes-Hoare-Roscoe - 1984

The set of actions is a set Λ, and the syntax is

$$
E::=\text { Stop } \mid \text { skip }|a \rightarrow E| E_{1} \sqcap E_{2}\left|E_{1} \square E_{2}\right| E_{1}|[L]| E_{2} \mid E / a
$$

where

- $a \in \Lambda, L \subseteq \Lambda, f: \Lambda \rightarrow \Lambda$,
- the operators \sqcap and \square denote internal and external choice respectively;
- the operator \rightarrow denotes action prefixing

CSP has been studied with Failure Semantics - a variant of Testing Sem.

Failure Sets

(1) $\langle s, V\rangle \in F \Longrightarrow V$ finite.
(2) $\langle\epsilon, \emptyset\rangle \in F$, where ϵ denotes the empty sequence and \emptyset the empty set Refusal-set are not-empty.
(3) $\langle s t, \emptyset\rangle \in F \Longrightarrow\langle s, \emptyset\rangle \in F$.

The set of traces needs o be prefix-closed.
(c) $V \subseteq W$ e $\langle s, W\rangle \in F \Longrightarrow\langle s, V\rangle \in F$.

Refusal sets are downwards closed.
(5) If $U=\{a \mid\langle s a, \emptyset\rangle \in F\}$ and $W \subseteq_{f}(A-U)$ then $\langle s, V\rangle \in F \Longrightarrow\langle s, V \cup W\rangle \in F$.
If from a state reacheable via trace s an action a cannot be performed then after s there must be a refusal set containing a, i.e., if $\langle s a, \emptyset\rangle \notin F$ and $\langle s, V\rangle \in F$ then $\langle s, V \cup\{a\}\rangle \in F$.

Failure Semantics for TCSP

- $\mathcal{F} \llbracket S t o p \rrbracket=\{\langle\epsilon, V\rangle \mid V \subseteq A\}$
- $\mathcal{F} \llbracket s k i p \rrbracket=\{\langle\epsilon, V\rangle \mid V \subseteq A\} \cup\{\langle\sqrt{ }, V\rangle \mid V \subseteq A\}$
- $\mathcal{F} \llbracket a \rightarrow P \rrbracket=\{\langle\epsilon, V\rangle \mid V \subseteq A-\{a\}\} \cup\{\langle a s, W\rangle \mid\langle s, W\rangle \in \mathcal{F} \llbracket P \rrbracket\}$
- $\mathcal{F} \llbracket P_{1} \square P_{2} \rrbracket=\left\{\langle\epsilon, V\rangle \mid\langle\epsilon, V\rangle \in \mathcal{F} \llbracket P_{1} \rrbracket \cap \mathcal{F} \llbracket P_{2} \rrbracket\right\} \cup\{\langle s, W\rangle \mid\langle s, W\rangle \in$ $\mathcal{F} \llbracket P_{1} \rrbracket \cup \mathcal{F} \llbracket P_{2} \rrbracket$ and s is a non empty sequence of actions $\}$
- $\mathcal{F} \llbracket P_{1} \sqcap P_{2} \rrbracket=\mathcal{F} \llbracket P_{1} \rrbracket \cup \mathcal{F} \llbracket P_{2} \rrbracket$
- $\mathcal{F} \llbracket P_{1}|[L]| P_{2} \rrbracket=\{\langle u, V \cup W\rangle \mid V-L=W-L \wedge\langle s, V\rangle \in$ $\left.\mathcal{F} \llbracket P_{1} \rrbracket \wedge\langle t, W\rangle \in \mathcal{F} \llbracket P_{2} \rrbracket \wedge u \in \|_{L}(s, t)\right\}-\|_{L}(s, t)$ denotes the merging of s and t considering synchronization of actions in L.
- $\mathcal{F} \llbracket P / a \rrbracket=\{\langle s / a, V\rangle \mid\langle s, V \cup\{a\}\rangle \in \mathcal{F} \llbracket P \rrbracket\},-s / a$ denotes the sequence obtained from s by removing all occurrences of a.

Testing and Failures for CSP

Correspondence between Denotational and Operational Semantics

- $\mathcal{F} \llbracket P \rrbracket=\mathcal{F} \llbracket Q \rrbracket$ if and only if $\mathcal{L T S}(P) \simeq_{\text {test }} \mathcal{L T S}(Q)$;

